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3D NURBS-Enhanced Finite Element Method

(NEFEM)
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Laboratori de Càlcul Numèric (www-lacan.upc.edu), Departament de Matemàtica
Aplicada III, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat

Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

Abstract

This paper presents the extension of the recently proposed NURBS-Enhanced
Finite Element Method (NEFEM) to 3D domains. NEFEM is able to exactly
represent the geometry of the computational domain by means of its CAD
boundary representation with Non-Uniform Rational B-Splines (NURBS)
surfaces. Specific strategies for interpolation and numerical integration are
presented for those elements affected by the NURBS boundary representa-
tion. For elements not intersecting the boundary, a standard finite element
rationale is used, preserving the efficiency of classical FEM. In 3D NEFEM
special attention must be paid to geometric issues that are easily treated in
the 2D implementation. Several numerical examples show the performance
and benefits of NEFEM compared to standard isoparametric or cartesian
finite elements. NEFEM is a powerful strategy to efficiently treat curved
boundaries and it avoids excessive mesh refinement to capture small geomet-
ric features.

Keywords: NURBS, accurate geometry representation, CAD, Finite
Elements, Discontinuous Galerkin, high-order isoparametric approximations

1. INTRODUCTION

Research in finite element methods (FEMs) with an accurate or exact
geometric representation of the computational domain has received increasing
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attention in the last years, see among others [1, 2, 3]. The standard FE
technique in domains with curved boundaries is the isoparametric FEM,
in which curved boundaries are approximated using piecewise polynomial
parametrizations, see [4]. Geometric approximation induced by isoparametric
FEs may lead to an important loss of accuracy, specially when high-order
approximations are considered, see [5]. In this situation, mesh refinement to
accurately capture geometry may compromise the benefits of using high-order
approximations.

Non-uniform rational B-splines (NURBS, see [6]) are nowadays widely
used for geometric description in Computer Aided Design (CAD). Other
popular options for geometric description in CAD are polynomial B-splines (a
particular case of NURBS) and subdivision surfaces. This fact has motivated
the development of novel numerical techniques considering CAD descriptions
of the computatoinal domain.

Isogeometric methods have become very popular in the last decade, see
[1, 7, 8, 9, 10, 11] to name a few. These methods consider a CAD description
of the entire computational domain and the solution is approximated using
the same basis used for the CAD representation of the geometry.

NURBS-Enhanced Finite Element Method uses NURBS to accurately
describe the boundary of the computational domain, but it differs from iso-
geometric methods in two main facts. First, NURBS are used to describe the
boundary of the computational computational domain, not the entire domain
as done in isogeometric methods. Secondly, the solution is approximated us-
ing polynomials and the approximation is defined with cartesian coordinates,
directly in the physical space. From a practical point of view, NEFEM con-
siders efficient strategies for numerical integration on elements affected by
curved boundaries. The basis of NEFEM in 2D are presented in [12], showing
the advantages in front of classical isoparametric FEs using both continuous
and discontinuous Galerkin formulations. See also [13] for the application of
NEFEM to the numerical solution of inviscid flow problems. Several high-
order FE methodologies for the treatment of curved boundaries are discussed
and compared in [5], including isoparametric FEM, cartesian FEM, p-FEM
and NEFEM. Numerical examples show that NEFEM is not only more ac-
curate than FE methods with an approximate boundary representation, but
also outperforms p-FEM with an exact boundary representation, showing
the advantages of combining cartesian approximation with exact boundary
representation.

This paper focuses on the extension of NEFEM to 3D domains. Although
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conceptually easy, the extension of NEFEM to 3D requires attention to sev-
eral geometric aspects. It is important to remark that all the ideas presented
here are valid not only when the boundary of the domain is parametrized by
NURBS, but for any piecewise boundary parametrization. The discussion
is centered on NURBS boundary parametrization because they are the most
extended technology in CAD. Section 2 introduces basic concepts on NURBS
surfaces. The extension of NEFEM to 3D domains is presented in Section
3. Curved elements and faces are defined in terms of the NURBS bound-
ary representation of the domain. This section also presents the strategy to
approximate the solution and to perform the numerical integration in those
elements affected by NURBS boundaries. The strategy presented here allows
a straightforward treatment of trimmed and singular NURBS surfaces. Sec-
tion 4 presents and discusses several numerical examples, which are solved
using a piecewise continuous (standard FE) or discontinuous formulations.
These examples show not only the performance and benefits of the proposed
method for simple geometries, but also the possibilities of NEFEM when very
small geometric features induce drastic mesh refinement with standard finite
elements.

2. BASIC CONCEPTS ON NURBS SURFACES

NURBS surfaces are piecewise rational functions defined in parametric
form. NURBS allow representing a wide range of surfaces, and contrary to
polynomial B-Splines or subdivision surfaces, they allow to represent conics
exactly. Basic concepts on NURBS surfaces are recalled in this section, see
[6] for a complete presentation.

A NURBS surface of degree q in λ and degree l in κ, is a piecewise rational
parametrization

S(λ, κ) =

( nλcp∑

i=0

nκcp∑

j=0

νij Bij S
q,l
i,j (λ, κ)

) / ( nλcp∑

i=0

nκcp∑

j=0

νij S
q,l
i,j (λ, κ)

)

0 ≤ λ, κ ≤ 1,

where {Bij} are the coordinates of the (nλcp+1)(nκcp+1) control points (defin-

ing the control net), {νij} are the control weights, and {Sq,l
i,j (λ, κ)} are the

2D B-spline basis functions of degree q in λ and l in κ. Each 2D B-Spline
basis function is defined as a tensor product of 1D basis functions, that is

Sq,l
i,j (λ, κ) := CΛλ

i,q (λ)C
Λκ

j,l (κ), (1)
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where, for instance in the λ direction, 1D B-spline basis functions are recur-
sively defined as

CΛλ

i,0 (λ) =

{

1 if λ ∈ [λi, λi+1[,

0 elsewhere,

CΛλ

i,k (λ) =
λ− λi

λi+k − λi

CΛλ

i,k−1(λ) +
λi+k+1 − λ

λi+k+1 − λi+1
CΛλ

i+1,k−1(λ),

for k = 1 . . . q, where λi, for i = 0, . . . , nλk , are the knots or breakpoints,
assumed ordered 0 ≤ λi ≤ λi+1 ≤ 1. They form the so-called knot vector

Λλ = {0, . . . , 0
︸ ︷︷ ︸

q+1

, λq+1, . . . , λnλk−q−1, 1, . . . , 1︸ ︷︷ ︸

q+1

},

which uniquely describes B-spline basis functions. The multiplicity of a knot,
when it is larger than one, determines the decrease in the number of contin-
uous derivatives. The number of control points, nλcp+1, and knots, nλk+1, are

related to the degree of the parametrization, q, by the relation n
λ
k = n

λ
cp+q+1,

see [6] for more details. Figure 1 shows two 2D B-spline basis functions for
knot vectors

Λλ = {0, 0, 0, 0, 0.4, 1, 1, 1, 1},

Λκ = {0, 0, 0, 0.2, 0.6, 0.6, 1, 1, 1}.

Complete 1D basis are represented for each direction to illustrate the con-
struction of 2D basis functions (1).

Note that NURBS surfaces change their definition along knot lines, that
is when λ = λi, for i = 1, . . . , nλk , or κ = κi, for i = 1, . . . , nκk . An example of
a NURBS surface is represented in Figure 2, with the corresponding control
net. Knot lines are represented on the NURBS surface in order to stress the
piecewise nature of the parametrization.

Trimmed NURBS surfaces, defined as the original parametrization re-
stricted to a subspace of the parametric space, are common in practical ap-
plications. An example of a trimmed NURBS surface is represented in Figure
3, showing the NURBS surface of Figure 2 trimmed with the thick curve. In
practical applications, it is also common to deal with singular (or singularly
parametrized) NURBS surfaces. Such surfaces contain at least one singular
point, defined as a point where a directional derivative is zero. For these
surfaces, knot lines typically converge to the singular point, see an example
in Figure 4.
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λ

3,2 (λ)C
Λ
κ

2,3 (κ)

Figure 1: Example of 2D B-spline basis functions
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Figure 2: (a) Parametric space, (b) NURBS surface with knot lines, and (c) control net
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0 10.4

(a) (b) (c)

Figure 3: (a) Parametric space trimmed by the thick curve, (b) trimmed NURBS surface
with knot lines and the thick curve used to trim the initial surface of Figure 2, and (c)
control net
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Figure 4: (a) Parametric space, (b) singular NURBS surface with knot lines, and (c)
control net

3. 3D NEFEM

Consider an open bounded domain Ω ⊂ R
3 whose boundary ∂Ω, or a por-

tion of it, is defined by NURBS surfaces. Every NURBS surface is assumed
to be parametrized by

S : [0, 1]2 −→ S([0, 1]2) ⊆ ∂Ω ⊂ R
3.

A regular partition of the domain Ω =
⋃

eΩe in tetrahedrons is assumed, such
that Ωi

⋂
Ωj = ∅, for i 6= j. For instance, Figure 5 shows a computational

domain with part of the boundary defined by NURBS surfaces corresponding
to the NASA almond [14], a useful geometry for benchmarking electromag-
netic scattering codes. A cut through an unstructured tetrahedral mesh is
also represented in Figure 5, including the surface triangular mesh on the
almond.

As usual in FE mesh generation codes, it is assumed that every curved
boundary face belongs to a unique NURBS. That is, one element face can
not be defined by portions of two, or more, different NURBS surfaces. Note
however that the piecewise definition of each NURBS is independent on the
mesh discretization. Thus, NURBS parametrization can change its definition
within one face, that is, FE edges do not need to coincide with knot lines.
Figure 6 shows the image of the knot lines of the NASA almond surfaces and
the surface triangulation corresponding to the mesh represented in Figure 5.
It can be observed that spatial discretization is independent of the piecewise
NURBS surface parametrization. It is worth remarking that allowing knot
lines to be independent on the spatial discretization means that special at-
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(a) (b) (c)

Figure 5: (a) Domain with part of the boundary defined by curved NURBS surfaces
corresponding to the NASA almond, (b) cut through an unstructured tetrahedral mesh
with the surface triangular mesh on the almond, and (c) detail of the mesh near the almond

(a) (b) (c)

Figure 6: (a) Knot lines of the NURBS surfaces defining the NASA almond, (b) surface
triangulation, and (c) surface triangulation and knot lines
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tention must to be paid to the numerical integration over elements affected
by the NURBS boundary representation, see Section 3.3.

An element without any edge or face in contact with NURBS boundaries
has planar faces and it is defined and treated as a standard FE. Therefore, in
the vast majority of the domain, interpolation and numerical integration are
standard, preserving the computational efficiency of classical FEM. Specifical
numerical strategies for interpolation and numerical integration are needed
only for those elements affected by NURBS boundaries.

3.1. Curved elements

In NEFEM, curved elements are defined in terms of the NURBS boundary
representation of the domain. The formal definition of curved faces and
elements in a NEFEM tetrahedral mesh is given in this section.

Let Υe be a tetrahedral face on the NURBS boundary parametrized by S,
and x1,x2,x3 ∈ ∂Ω the three vertices on the NURBS boundary, see Figure 7.
Assuming that the vertices x1,x2,x3 do not correspond to singular points of
the NURBS parametrization, a straight-sided triangle Λe in the parametric
space of the NURBS is uniquely defined by the parametric coordinates of the
vertices, S−1(x1), S

−1(x2) and S
−1(x3). The curved face with a NURBS

boundary representation, Υe, is defined as the image of the straight-sided
triangle Λe by the NURBS parametrization S,

Υe := S(Λe), (2)

as illustrated in Figure 7.
Note that when the surface S is trimmed by a curve C in the paramet-

ric space of the NURBS, the edges of the triangle Λe must be replaced by
trimmed NURBS curves. In such cases Λe is a curved triangle in the para-
metric space of the NURBS and curved edges of Λe are NURBS curves (used
to trim the original surface), see an example in Figure 8. Finally, assuming
that one of the vertices of the tetrahedral face corresponds to a singular point
of the NURBS parametrization, Λe must be defined as a quadrilateral in the
parametric space of the NURBS, see an example in Figure 9.

Interior curved faces with an edge on the NURBS boundary are defined
as a convex linear combination of the curved edge and the interior face node.
For instance, curved face ΥE

e represented in Figure 7 is parametrized by

Θx4
: [̺1, ̺2]× [0, 1] −→ ΥE

e

(̺, σ) 7−→ Θx4
(̺, σ) := (1− σ)θ(̺) + σx4,

(3)
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S
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S
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−1(x3)

Υe
E

x4

Figure 7: Curved tetrahedral element with a face on the NURBS boundary, showing a
face Υe on the NURBS boundary, and a face ΥE

e with an edge on the NURBS boundary,
ΥE

e

0 1
0

1

λ

κ

Λe

S

z

x
y

1x

x2

x3

Υe

C

Figure 8: Curved tetrahedral face on a trimmed NURBS boundary. NURBS surface S is
trimmed by NURBS curve C, leading to a curved triangle Λe in the parametric space
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0 1
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1

λ

κ

S

z

x
y

x2

x3

1xΥeΛe

Figure 9: Curved tetrahedral face on a singular NURBS boundary with a singular point,
leading to a quadrilateral Λe in the parametric space

where θ([̺1, ̺2]) parametrizes the curved edge from vertex x2 to vertex x3.
Note that this approach to define interior curved faces ensures the same
definition of an interior curved face as seen from the two elements sharing
this face. Note also that other types of curved faces are present in real
meshes, such as faces with several edges over the NURBS boundary. The
definition of all possible curved faces is presented in Section 3.3.

With this definition of curved faces, a curved tetrahedral element with a
face on the NURBS boundary corresponds to a convex linear combination
of the curved NURBS face and the interior vertex. For instance, element
represented in Figure 7 is parametrized by

Ψ : Λe × [0, 1] −→ Ωe

(λ, κ, ϑ) 7−→ Ψ(λ, κ, ϑ) := (1− ϑ)S(λ, κ) + ϑx4,
(4)

where x4 denotes the interior vertex of Ωe. Similarly, an element with an
edge on the NURBS boundary corresponds to a convex linear combination
of one of its curved faces and the opposite node, and can be parametrized by

Φ : [̺1, ̺2]× [0, 1]2 −→ Ωe

(̺, σ, τ) 7−→ Φ(̺, σ, τ) := (1− τ)Θx3
(̺, σ) + τx4,

(5)

where x3 and x4 are the interior vertices of Ωe, see Figure 10. Note that the
definition of Φ in (5) is independent on the order of the interior vertices x3

and x4. That is, element Ωe can be equivalently parametrized by

Φ(̺, σ, τ) := (1− τ)Θx4
(̺, σ) + τx3.
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x3

1x

x4

Υe
E

Γe

Figure 10: Curved tetrahedral element with an edge on the NURBS boundary

It is worth remarking that interior edges,(i.e, edges with no more than one
node over the NURBS boundary) are considered as straight edges. Note that
this assumption allows to ensure that the elements affected by the NURBS
boundary representation of the domain are only elements with at least one
face or one edge over the NURBS boundary, and therefore, the overhead in-
troduced by NEFEM is restricted to a very small portion of the total number
of elements.

3.2. Polynomial interpolation

NEFEM considers nodal polynomial interpolation in each element. To
ensure reproducibility of polynomials in the physical space, NEFEM defines
the approximation directly with cartesian coordinates, x = (x, y, z)T , that is

u(x) ≃ uh(x) =

nen∑

i=1

uiNi(x), (6)

where ui are nodal values, Ni are polynomial shape functions (Lagrange
polynomials) of order p in x, and nen is the number of element nodes. Re-
call that in isoparametric FEM or p-FEM the approximation is defined in a
reference element. However, contrary to NEFEM, the definition of the poly-
nomial basis for high-order curved elements does not ensure reproducibility
of polynomials in the physical space.

Different options can be considered to define a nodal distribution in Ωe.
Any nodal distribution, such as equally-spaced nodal distributions, can be
defined on the tetrahedral with planar faces given by the vertices of Ωe, or
adapted to the NURBS geometry, see Figure 11. The definition of a nodal

11

Preprint of 
R. Sevilla, S. Fernández-Méndez and A. Huerta 
3D NURBS-Enhanced Finite Element Method 
International Journal for Numerical Methods in Engineering, 88 (2); 103-125, 2011



(a) (b)

Figure 11: Equally-spaced nodal distribution for p = 3 (a) defined using the tetrahe-
dral with planar faces represented by discontinuous lines, and (b) adapted to the curved
geometry

distribution on the tetrahedral with planar faces, see Figure 11 (a), induces a
marginal extra efficiency [12], avoiding a specific nodal distribution for each
curved element. Adapting a nodal distribution to the NURBS geometry, see
Figure 11 (b), allows a seamless imposition of boundary conditions in strong
form, directly imposing the value of the solution at nodes on the boundary.
But, nodal distributions adapted to curved boundaries do not represent any
implementation advantage if boundary conditions are imposed in weak form,
as usual in DG formulations. Note however the evolution of the condition
number, shown in Figure 12, for the element mass matrix as a function of
the polynomial degree of approximation, p. Adapted distributions of nodes
induce an important reduction on condition number. In the example of Fig-
ure 11, the use of nodal distributions non-adapted to the NURBS boundary
implies that some nodes lie outside the region of interest (i.e., the volume
that defines the curved element). Shape functions associated to those nodes
contribute very little to the elemental mass matrix deteriorating its condition
number. The problem is far more evident as the degree of the approximation
is increased because more nodes lie outside the region of interest.

For very high-order approximations, let say p > 5, equally-spaced nodal
distributions may lead to ill-conditioned elemental matrices, even if adapted
distributions are considered. In this case, specific nodal distributions should
be implemented in Ωe, see for instance the distributions proposed in [15, 16,
17] for elements with planar faces. Adaptation of such distributions to the
curved geometry may lead to an extra reduction in condition number of the
elemental matrices, see for instance [12]. An example of such distributions in
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Figure 12: Condition number of the mass matrix as a function of the interpolation degree
(p)

the tetrahedral element with planar faces and adapted to the curved geometry
is represented in Figure 13, corresponding to distribution proposed in [16] for
p = 3.

It is worth remarking that nodal distributions are used to define the
polynomial approximation in the physical space (i.e., with Cartesian coor-
dinates). Even if the nodes are placed over an imaginary tetrahedral with
planar faces, the approximation is only defined on the interior of the element
with the NURBS boundary representation.

(a) (b)

Figure 13: Nodal distribution proposed by [16] for p = 3 (a) defined in the tetrahedral with
planar faces represented by discontinuous lines, and (b) adapted to the curved geometry
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3.3. Numerical integration

Weak form of the problem requires both integrations over element faces
and in element interiors. Integrals in elements not having an edge or face in
contact with NURBS boundaries are computed using standard procedures.
For an element Ωe affected by the NURBS boundary representation, de-
sign of specific quadratures is necessary. Special attention must be paid
to the definition of suitable quadratures accounting for changes of NURBS
parametrization within an element face or edge.

Next sections present numerical integration on curved faces (surface inte-
grals, usually related to the implementation of natural boundary conditions
or to flux evaluation over the face in a DG context) and in curved elements
(volume integrals).

3.3.1. Surface integrals

Curved faces on a NEFEM tetrahedral mesh can be classified in boundary
faces or curved faces with at least one edge on a NURBS boundary. To re-
duce casuistics in the implementation (i.e., to avoid implementing a different
parametrization for each curved face), faces with several edges on different
NURBS boundaries are split in subfaces with only one edge on a NURBS
boundary. It is worth remarking that subdivisions are only applied to design
a numerical quadrature without a special treatment of each face typology,
no new degrees of freedom are introduced.

To illustrate the proposed strategy, let us consider a face with two edges
on different NURBS boundaries, see Figure 14. Curved face ΥE

e is split in
three subfaces, which are defined as a linear convex combination of the edges
of ΥE

e and its center of mass xF
C , see Figure 14. After subdivision each subface

has at most one edge on a NURBS boundary. In the example of Figure 14,
two subfaces have one edge on a NURBS boundary, and the third face, given
by x2, x1 and x

F
C , is planar.

With this splitting technique, it is only necessary to describe the strategy
to perform the numerical integration on curved boundary faces and curved
faces with only one edge on a NURBS boundary.

A surface integral on a curved boundary face Υe = S(Λe), see Figure 7,
can be written as

∫

Υe

f dA =

∫

Λe

f
(
S(λ, κ)

)
‖JS(λ, κ)‖ dA, (7)

14
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Figure 14: Tetrahedral element with two edges on different NURBS boundaries, and face
splitting used for numerical integration (no new degrees of freedom are introduced)

where f is a generic function (here a polynomial) and ‖JS(λ, κ)‖ denotes the
norm of the differential of the NURBS parametrization S (which, in gen-
eral, is not a polynomial). An efficient option to evaluate integral (7) is to
use a triangle quadrature [18] in Λe. Recall that the spatial discretization is
independent on the NURBS boundary representation. Therefore, a bound-
ary face can be intersected by knot lines of the NURBS surface, see Figure
6. If changes of NURBS parametrization are present within the parametric
triangle Λe, numerical quadrature must be designed to account for the piece-
wise NURBS parametrization. For instance, a triangulation of Λe such that
each subtriangle has no changes of NURBS parametrization can be consid-
ered, with the associated composite quadrature (triangle quadrature in each
subtriangle), see Figure 15.

An integral on a curved face ΥE
e with an edge on the NURBS boundary,

see Figure 7, can be written as

∫

ΥE
e

f dA =

∫ ̺2

̺1

∫ 1

0

f
(
Θ(̺, σ)

)
‖JΘ(̺, σ)‖ dA, (8)

where f is a generic function and ‖JΘ(̺, σ)‖ denotes the norm of the dif-
ferential of mapping Θ, see Equation (3), which in general is not a poly-
nomial. Numerical integration can be performed using 1D Gauss-Legendre
quadratures in each direction. In fact, application Θ is linear in the sec-
ond parameter, σ, and exact integration is feasible in this direction. For a
NEFEM solution with a degree of approximation p, integral (8) can be ex-
actly computed for this direction, using a Gauss-Legendre quadrature with
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Figure 15: Definition of a numerical quadrature on Λe for the numerical integration on a
curved tetrahedral face with changes of NURBS parametrization along discontinuous lines
(knot lines): (a) triangle in the parametric space and (b) detailed view of the composite
quadrature

p + 1 integration points. Numerical integration for the first direction, given
by NURBS parameter ̺, presents the same difficulty as integration over a
NURBS curve.

As usual, the evaluation of integral (8) requires taking into account the
piecewise nature of the NURBS parametrization, considering composite quadra-
tures for ̺ direction.

3.3.2. Volume integrals

Curved elements on a NEFEM tetrahedral mesh can be classified in el-
ements with at least one face or one edge a NURBS boundary. To reduce
casuistics in the implementation, elements with several faces and/or edges
on different NURBS boundaries are split in subelements with only one face
or one edge on a NURBS boundary. Again, it is worth remarking that sub-
divisions are only applied to design a numerical quadrature without a special
treatment of each element typology, no new degrees of freedom are intro-
duced.

Two examples are presented to illustrate the proposed strategy. First
example considers a tetrahedral element with two edges on different NURBS
boundaries, see Figure 14. To design a numerical quadrature on Ωe, three
subelements are defined as a linear convex combination of the subfaces and
interior vertex of the element, x4, see Figure 16. In this example, two subele-
ments have one edge on a NURBS boundary and the third one has planar
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Figure 16: Splitting used for numerical integration in an element with two edges defined
by different NURBS (no new degrees of freedom are introduced)

faces. Second example considers an element Ωe with two faces on different
NURBS boundaries, as represented in Figure 17. To perform numerical in-
tegration in Ωe, the element is split in four subelements using its center of
mass, xE

C . Subelements are defined as a linear convex combination of xE
C and

original faces of Ωe, having at most one face on a NURBS boundary.
By combination of these two subdivision strategies, any element with

several faces and/or edges on the NURBS boundary can be split into elements
with only one face or one edge on the NURBS boundary. Thus, it is only
necessary to describe the strategy to perform the numerical integration on
these two element typologies.

Volume integrals for an element with one face on a NURBS boundary are
performed using parametrization (4) as

∫

Ωe

f dV =

∫

Λe

∫ 1

0

f
(
Ψ(λ, κ, ϑ)

)
|JΨ(λ, κ, ϑ)| dV,

where f is a generic function (here a polynomial), and |JΨ| denotes the
determinant of the Jacobian of transformation Ψ. A numerical quadrature
on Λe × [0, 1] is easily defined as a tensor product of a triangle quadrature
in Λe and a 1D Gauss-Legendre quadrature in [0, 1], see Figure 18. In fact,
exact integration is feasible in third parameter due to the linearity of Ψ with
respect to ϑ. For a NEFEM solution with a degree of approximation p, exact
integration in this direction is provided by a Gauss-Legendre quadrature with
p+2 integration points. To account for changes of NURBS parametrization,
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Figure 17: Splitting used for numerical integration in an element with two faces defined
by different NURBS (no new degrees of freedom are introduced)
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Figure 18: Transformation from Λe × [0, 1] to Ωe to perform numerical integration on an
element with a face on the NURBS boundary
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only the quadrature in Λe must be modified as described in Section 3.3.1, see
Figure 15. This represents an important advantage compared to numerical
integration for p-FEM with NURBS, see [5] for further details.

Similarly, for an element with one edge on a NURBS boundary, volume
integrals are performed using parametrization (5) as

∫

Ωe

f dV =

∫ ̺2

̺1

∫ 1

0

∫ 1

0

f
(
Φ(̺, σ, τ)

)
|JΦ(̺, σ, τ)| dV,

where |JΦ| is the determinant of the Jacobian of transformation Φ. Note
that application Φ is linear in second and third parameters, σ and τ . There-
fore, integrals involved in the elemental matrices, for a NEFEM solution with
interpolation of degree p, can be exactly computed for these directions using
a Gauss-Legendre quadrature with p + 2 integration points. No exact inte-
gration is feasible in NURBS parameter ̺, and composite quadratures must
be considered if changes of NURBS parametrization are present.

4. NUMERICAL EXAMPLES

Application of NEFEM is illustrated using several 3D examples. First a
second-order elliptic problem is solved using a standard continuous Galerkin
formulation. More complex applications, involving the numerical solution of
transient Maxwell’s equations are also presented, and they are solved in a
DG framework.

4.1. Second-order elliptic problem

The behavior of NEFEM in a continuous Galerkin framework is illustrated
using the following second-order elliptic problem:

{
−∆u+ u = s in Ω

∇u · n = gn on ∂Ω,
(9)

where Ω is a sphere of unit radius and n is the outward unit normal vector
to ∂Ω. The analytical solution is u(x, y) = x cos(y) + y sin(z) + z cos(x),
and the source term s is determined by analytical differentiation of u. Neu-
mann boundary conditions corresponding to the analytical normal flux are
imposed in ∂Ω. A coarse mesh with only eight curved tetrahedral elements
is considered, see Figure 19, and high-order approximations are introduced
to properly capture the solution.
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Figure 19: Coarse mesh of the sphere with eight curved tetrahedrons

Figure 20 shows cartesian FEM and NEFEM solutions with quadratic
and cubic approximation. The piecewise polynomial approximation of the
curved boundary introduced by isoparametric mapping is clearly observed.
With quadratic FEs, the maximum difference between exact and approxi-
mated boundaries is 0.1037. For cubic approximation, geometric error is still
important, 0.0268. Moreover, the piecewise polynomial approximation of the
boundary induces a loss of regularity. Recall that the exact boundary ∂Ω is a
C∞ surface, whereas its piecewise isoparametric approximation ∂Ωh is only C0

across boundary edges, see Figures 20 (a) and (c). NEFEM exactly describes
the sphere boundary with one quadratic singular NURBS, independently of
the spatial discretization (i.e. the polynomial degree of approximation), as
represented in Figures 20 (b) and (d).

Figure 21 shows a p-convergence comparison when the polynomial or-
der of approximation is uniformly increased starting with p = 2 and for the
discretization shown in Figure 19. Errors in maximum and energy norms
are represented as a function of the cube root of the number of degrees of
freedom (ndof). For NEFEM, the expected (exponential) convergence for a
problem with a smooth solution is obtained, whereas a much slower conver-
gence is obtained for methods with an approximate boundary representation.
Note that cartesian and isoparametric FEs offer the same performance if er-
ror is measured in maximum norm. However, when error is measured in
energy norm, cartesian FEs perform slightly better. The definition of the
polynomial basis in cartesian coordinates offers a better approximation of
derivatives compared to isoparametric FEs, see [5] for more details. Figure
21 (a) also depicts maximum geometric error (measured as the maximum
distance between true boundary ∂Ω and its approximation ∂Ωh), revealing
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(a) FEM p=2 (b) NEFEM p=2

(c) FEM p=3 (d) NEFEM p=3

Figure 20: Second-order elliptic problem: surface plot of cartesian FEM and NEFEM
solutions using quadratic and cubic approximations
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Figure 21: p-convergence comparison for the second-order elliptic problem. The poly-
nomial degree of the approximation is uniformly increased from p = 2 and the error is
measured (a) in the maximum norm and (b) in the energy norm

that geometric error controls solution error if an approximated boundary
representation is considered (isoparametric FEM or cartesian FEM).

This example stress the importance of geometrical model in FE simu-
lations and critical conclusions are derived. In [19], p-FEM with an ex-
act boundary description is compared to high-order subparametric elements
(with a quadratic approximation of the boundary). Two dimensional ex-
amples confirm the expected exponential convergence of p-FEM, whereas
subparametric approach leads to a suboptimal convergence rate. The 3D ex-
ample shown in this section shows a more dramatic situation because NEFEM
is compared to high-order isoparametric and cartesian elements. Therefore,
this example demonstrate that a high-order approximation of the geometry
is not always sufficient to achieve maximum performance for a given spatial
discretization.

Remark 1. As usual, for any formulation using Cartesian approximation,
the reader should be aware that the continuity of the solution across inter-
nal curved faces is not guaranteed by imposing the continuity of the solution
at face nodes. Optimal nodal distributions on curved internal faces can be
used in order to guarantee optimal convergence or extra constraints must be
imposed in order to guarantee the continuity of the solution across internal
faces. This difficulty does not appear if a DG framework because the conti-
nuity of the solution is weakly imposed, with numerical fluxes.
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4.2. Electromagnetic scattering

In this section a DG formulation is considered for the simulation of 3D
scattering of a single plane wave by a perfect electric conductor (PEC) obsta-
cle, assumed to be surrounded by free space. For a linear isotropic material of
relative permittivity ε and relative permeability µ, 3D Maxwell’s equations
can be written as a system of conservation laws

∂U

∂t
+

∂F k(U)

∂xk

= 0, (10)

where Einstein notation is assumed. Vector of conserved variables U and
fluxes F k are defined as

U =

(
εE
µH

)

, F 1 =











0
H3

−H2

0
−E3

E2











, F 2 =











−H3

0
H1

E3

0
−E1











, F 3 =











H2

−H1

0
−E2

E1

0











,

where E = (E1, E2, E3)
T and H = (H1, H2, H3)

T are scattered electric and
magnetic field intensity vectors.

Remark 2. In the conservative form of Maxwell’s equations (10) divergence-
free conditions have been neglected, see [20, 21]. It is well known that, al-
though in the continuous case divergence-free conditions are derived from
(10) (provided the initial condition is divergence-free), this is not true in
the discrete case. Nevertheless, spurious fields caused by the negligence of
divergence-free conditions are easily avoided using an incident field correc-
tion described in [22].

In the DG implementation, an element-by-element discontinuous approx-
imation is considered and communication between elements is performed by
using numerical fluxes, see [23]. At interior faces numerical fluxes are de-
fined from Rankine-Hugoniot jump conditions, which can be interpreted as
a flux splitting technique, see [24]. At exterior faces numerical flux defini-
tion depends on boundary conditions. For instance, at a PEC boundary, the
tangential component of total electric field (scattered plus incident) vanish,
that is

n× (E +E
I) = 0.
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Figure 22: Scattering by a PEC sphere of diameter λ: (a) two cuts of a coarse mesh with
a 2λ thick PML, and (b) E1 field for a NEFEM solution with p = 5

At the artificially truncated boundary a Perfectly Matched Layer (PML)
[25] is employed to absorb outgoing waves and a characteristic boundary
condition is used to terminate the PML region, see [26].

The radar cross section (RCS) is one of the most important quantities
of interest in electromagnetic scattering problems. It provides a description
of how an object reflects an incident electromagnetic wave and it is defined
by RCS= 10 log10(χ), where χ is the scattering width, see [20, 21, 25] for
more details. The RCS is used in numerical examples to evaluate NEFEM
performance.

4.2.1. PEC sphere

First example considers an incident plane wave traveling in z+ direction
and scattered by a PEC sphere of diameter equal to the wave length λ. The
analytical solution for this problem can be found in [20, 21].

With NEFEM, the sphere is exactly described with a quadratic singular
NURBS surface, and a coarse mesh with only eight elements for the dis-
cretization of the curved boundary is considered, see two cuts of the volume
mesh and the surface mesh on the sphere in Figure 22 (a). The mesh has
1 271 elements with planar faces and 32 curved elements. Scattered E1 field
computed with NEFEM and a polynomial approximation of degree p = 5 is
represented in Figure 22 (b), showing the field intensity on the sphere surface
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Figure 23: Scattering by a PEC sphere of diameter λ: bistatic RCS comparison for in-
creasing p and for the vertical polarization

and illustrating the absorption of outgoing waves in the PML.
Figures 23 and 24 compare bistatic RCS computed with cartesian FEs

and NEFEM for a degree of approximation p = 3 and p = 4 to the analytical
solution, for vertical and horizontal polarizations respectively. For cartesian
FEs, RCS error is not reduced for all viewing angles as p increases. In
particular, RCS near viewing angles −π and π is more accurate with p = 3
than using p = 4, see Figures 23 (a) and 24 (a). This discrepancy is caused
by differences in the piecewise polynomial approximation of the boundary
with p = 3 and p = 4. For the coarse mesh considered here, approximate
boundary representation has a critical influence in scattered field distribution,
and therefore in RCS patterns. With NEFEM, RCS error is decreased for
all viewing angles as the degree of approximation is increased from p = 3
to p = 4 due to the exact boundary representation. In particular, a perfect
match between analytical and computed solution is observed for p = 4, see
Figures 23 (b) and 24 (b).

Note that cartesian FEs offer a slightly different performance for vertical
and horizontal polarizations. In fact, higher errors are observed for horizontal
polarization, whereas for NEFEM almost identical performance is observed
for both polarizations. To compare accuracy, Figure 25 represents RCS er-
ror in L2(−π, π) norm for increasing p, starting with p = 2, showing the
superiority of NEFEM compared to cartesian FEs. Most critical difference
is observed in horizontal polarization for p = 5, NEFEM is almost one order
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Figure 24: Scattering by a PEC sphere of diameter λ: bistatic RCS comparison for in-
creasing p and for the horizontal polarization
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Figure 25: Scattering by a PEC sphere of diameter λ: p-convergence comparison of the
RCS error
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(a) Surface mesh (b) E1

Figure 26: Scattering by a PEC sphere of diameter 20λ

of magnitude more precise than corresponding cartesian FEs.
Compared to other techniques, NEFEM is also more accurate and ef-

ficient. For instance, to achieve an accuracy of 10−2 measuring scattering
width error in maximum norm, high-order edge elements require more than
100 000 degrees of freedom [27]. With NEFEM, a degree of approximation
p = 4 provides an error of 4.7 × 10−3, using 45 605 degrees of freedom.
That is, NEFEM is two times more accurate by using 50% of the ndof, show-
ing that NEFEM is also competitive compared to other techniques used by
computational electromagnetics (CEM) community.

Next example considers the scattering of an incident wave traveling in the
z+ direction by a PEC sphere of diameter 20λ. The mesh used has 124 135
elements with planar faces and 17 856 curved elements. The surface mesh
on the sphere is represented in Figure 26 (a), and the first component of
scattered electric field over the sphere for a NEFEM solution with p = 5 is
represented in Figure 26 (b). A comparison between computed and analytical
bistatic RCS is depicted in Figure 27, showing an excellent agreement. In
fact, RCS distributions overlap for viewing angles in [−π/4, π/4], see Figure
28. Note also that very small differences are observed for other viewing
angles. The RCS error in the L2(−π, π) norm is 2.2 × 10−2 for the vertical
polarization and 2.5× 10−2 for the horizontal polarization.

It is worth recalling that even if the surface mesh of the obstacle is re-
fined for high frequency simulations, an accurate geometric description is still
important. With standard FEs the approximated surface of the obstacle is
only C0 at boundary edges. These geometric singularities may cause impor-
tant discrepancies in computed scattered field and this effect becomes more
important as frequency increases, see [28].

27

Preprint of 
R. Sevilla, S. Fernández-Méndez and A. Huerta 
3D NURBS-Enhanced Finite Element Method 
International Journal for Numerical Methods in Engineering, 88 (2); 103-125, 2011



-20

-10

0

10

20

30

40

R
C

S

 

 

-π/2 π/2-π π0

θ

(a) Vertical polarization

10

20

30

40

R
C

S

 

 

Analytical
NEFEM

-π/2 π/2-π π0
φ

(b) Horizontal polarization

Figure 27: Scattering by a PEC sphere of diameter 20λ: bistatic RCS for a NEFEM
solution with p = 4
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Figure 28: Scattering by a PEC sphere of diameter 20λ: bistatic RCS in the range
[−π/4, π/4] for a NEFEM solution with p = 4
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Figure 29: Scattering by a PEC NASA almond of characteristic length λ: monostatic RCS
for a NEFEM solution with p = 4, compared with high-order edge elements [30]

4.2.2. PEC NASA almond

Following example considers a popular benchmark for 3D RCS compu-
tations, the scattering by a PEC NASA almond, see [14, 29]. One of the
challenges of this example is the solution singularity on the tip of the al-
mond. Moreover, the high variations on surface curvature introduce extra
difficulty to obtain accurate RCS patterns.

First, monostatic RCS computation of an almond of characteristic length
λ is considered. The mesh has 10 805 elements with planar faces and 336
curved elements. The evaluation of monostatic RCS is performed by comput-
ing N = 36 solutions corresponding to a series of incident angles θj = jπ/N ,
with j = 0, . . . , N . Monostatic RCS for vertical polarization is represented in
Figure 29, and compared with a reference solution, showing excellent agree-
ment. Difference between both RCS patterns is 1.5× 10−2 in the L2(−π, π)
norm. Reference data corresponds to published results in [30], which are
obtained using high-order edge elements with non-uniform degree of approx-
imation on a tetrahedral mesh with 4 723 elements. In NEFEM computation,
markers correspond to 36 computations, and continuous line corresponds to
standard postprocess of the monostatic data described in [31].

Next example considers the scattering of a plane electromagnetic wave
by a PEC NASA almond of characteristic length 8λ. The mesh has 9 348
elements with planar faces and 1 200 curved elements. The surface mesh
on the almond is represented in Figure 30 (a), and a detailed view of two
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(a) Surface mesh (b) E3 (c) H3

Figure 30: Scattering by a PEC NASA almond of characteristic length 8λ: surface mesh
and two components of the scattered field for a NEFEM solution with p = 5

-40

-30

-20

-10

0

R
C

S

-π/2 π/2-π π0

θ

(a) Vertical polarization

-60

-50

-40

-30

-20

-10

0
R

C
S

 

 

p=4
p=5

-π/2 π/2-π π0
φ

(b) Horizontal polarization

Figure 31: Scattering by a PEC NASA almond of characteristic length 8λ: bistatic RCS
for a NEFEM solution with p = 4 and p = 5

components of the scattered field are represented over the almond surface in
Figures 30 (b) and 30 (c), corresponding to a wave incident onto the tip of
the almond.

Figure 31 shows bistatic RCS for vertical and horizontal polarizations.
Two RCS patterns are displayed, for a NEFEM solution with p = 4 and
p = 5 respectively. Results show a perfect agreement with published results
[32], which are obtained with linear FEs in a tetrahedral mesh with 1 121 431
mesh nodes. Thus, this example shows the competitiveness of NEFEM com-
pared to other formulations for more challenging applications. Even if a
DG formulation is considered, i.e. duplicating nodes at inter-element faces,
the computation requires less degrees of freedom to obtain similar accuracy,
due to the good performance of NEFEM with coarse meshes and high-order
approximations.
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(a) Surface mesh (b) E3 (c) H3

Figure 32: Scattering by a PEC NASA almond of characteristic length 21λ: surface mesh
on the almond and two components of the scattered field for a NEFEM solution with p = 3
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(b) Horizontal polarization

Figure 33: Scattering by a PEC NASA almond of characteristic length 21λ: bistatic RCS
for a NEFEM solution with p = 4

Finally, the scattering by a PEC NASA almond of characteristic length
21λ is considered. The mesh has 48 699 elements with planar faces and 6 008
curved elements. Figure 32 shows the surface mesh on the almond and two
components of the scattered field almond computed with NEFEM and p = 3,
corresponding to a wave incident onto the tip of the almond. Bistatic RCS
distribution for vertical and horizontal polarization are represented in Figure
33. Results compare well with published results [32], and again show the
competitiveness of NEFEM for higher frequency problems. The tetrahedral
mesh used in [32] has 51 342 008 linear elements, and approximately 8 million
of nodes. With NEFEM and p = 4 the mesh has 2 million of nodes (including
the duplication due to the DG formulation), requiring four times less degrees
of freedom than using standard linear FEs.
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4.2.3. PEC thin plate

Examples in previous sections show the advantages of NEFEM compared
to several numerical techniques used by CEM community for the numerical
solution of some classical tests and benchmark problems. However, possibil-
ities of NEFEM still go beyond.

It is well known that, in the context of FEs, the size of the model is some-
times subsidiary of geometrical complexity and not only on solution itself.
In particular, FE simulations of scattering by complex objects with small
geometric details requires drastic h-refinement to capture geometry. More-
over, for scattering applications, small geometric details are influential in the
solution, specially for high frequency problems, and a simplification of the
geometry may lead to important discrepancies in computed RCS. Neverthe-
less, as it will be shown in this example, in the NEFEM context, when small
is influential it does not imply small elements.

As noted earlier in Section 3, it is important to remark that the only
restriction for a NEFEM element is that boundary edges and/or faces belong
to one NURBS. It is neither necessary to locate nodes at boundary corners or
edges (entities with C0 continuity) nor to refine the mesh near the boundary
to capture geometry, it is exactly represented in NEFEM independently on
the spatial discretization.

Scattering by a PEC thin plate of dimensions λ× 4λ/7× λ/22 is consid-
ered. The small thickness of the plate with respect to wave length λ implies
that h-refinement in standard FE meshes is controlled by the thickness of
the plate, not by a desired number of nodes per wavelength.

Two standard FEM computational meshes are considered to compare ac-
curacy of NEFEM computations. Figure 34 (a) shows a standard FE mesh
with refinement towards the edges of the plate. Second mesh is a FEM
mesh with a desired mesh size of about λ/8, see Figure 34 (b). As usual,
a standard mesh generator needs to perform extra h-refinement to capture
the small thickness of the plate, and minimum element size is, at least, λ/22.
In contrast, element size for NEFEM is not controlled by small geometric
features, and desired element size is maintained, even in the presence of sin-
gularities in the boundary. The plate is exactly represented by two NURBS
surfaces with C0 continuity at the edges as illustrated in Figure 35 (a). A
coarse NEFEM mesh is represented in Figure 35 (b). Note that, to obtain
the desired element size, some elements contain an edge singularity inside
one NURBS face, see a detailed view of a NEFEM element in Figure 36.
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(a) Reference FEM mesh (b) FEM mesh

Figure 34: Scattering by a PEC thin plate: standard FE meshes

(a) NURBS surfaces (b) NEFEM mesh

Figure 35: Scattering by a PEC thin plate: NURBS surfaces (separated for visualization)
and NEFEM coarse mesh with elements containing edge singularities

Figure 36: Detailed view of a NEFEM element containing an edge singularity in its bound-
ary face
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Figure 37: Scattering by a PEC thin plate: comparison of the RCS computed in the
discretizations shown in Figures 34 (a), 34 (b) and 35 (a)

Figure 37 compares bistatic RCS distributions for vertical and horizon-
tal polarizations. An excellent agreement is observed between three com-
putations, showing the potential of coarse NEFEM meshes with elements
containing geometric singularities. Maximum disagreement is obtained at
singularities of the RCS due to its logarithmic scale, see [21]. In fact, error
of the scattering width in L2(−π, π) norm is 3.2 × 10−2 and 4.7 × 10−2 for
vertical and horizontal polarizations respectively.

5. CONCLUDING REMARKS

This paper presents the extension of NEFEM to 3D domains. Exact CAD
description of the geometrical model is considered, but only for the bound-
ary of the computational domain. Thus, efficiency of classical FE techniques
is preserved. The proposed methodology allows an efficient way to perform
numerical integration over elements affected by NURBS boundaries. More-
over, trimmed and singular NURBS surfaces can be easily considered, making
NEFEM a powerful methodology to work with industrial CAD models.

Numerical examples stress the drastic advantages of NEFEM compared
to classical isoparametric and cartesian FEs, showing the importance of the
geometrical model when coarse meshes and high-order of approximations are
considered. The use of isoparametric or cartesian FEs leads to several or-
ders of magnitude higher errors than using NEFEM. Some electromagnetic
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scattering applications are considered to show the performance and benefits
of the proposed method combined with a DG formulation. NEFEM is not
only more accurate an efficient than isoparametric and cartesian FEs, but
also is advantageous compared to other techniques used by CEM commu-
nity. Finally, further possibilities and benefits of NEFEM are shown when
very small geometric features compromises the use of standard methods that
require excessive mesh refinement to capture geometry.
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