

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

IEEE Transactions on Software Engineering

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa26037

Paper:

Thimbleby, H. (2015). Safer User Interfaces: A Case Study in Improving Number Entry. IEEE Transactions on

Software Engineering, 41(7), 711-729.

http://dx.doi.org/10.1109/TSE.2014.2383396

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa26037
http://dx.doi.org/10.1109/TSE.2014.2383396
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

1

Safer user interfaces:
A case study in improving number entry

Harold Thimbleby
Swansea University

harold@thimbleby.net
Cite as: IEEE Transactions on Software Engineering, DOI 10.1109/TSE.2014.2383396, 2015

Abstract—Numbers are used in critical applications, including
finance, healthcare, aviation, and of course in every aspect of
computing. User interfaces for number entry in many devices
(calculators, spreadsheets, infusion pumps, mobile phones, etc)
have bugs and design defects that induce unnecessary use errors
that compromise their dependability.

Focusing on Arabic key interfaces, which use digit keys
(0 – 9) usually augmented with correction keys, this paper
introduces a method for formalising and managing design prob-
lems.

Since number entry and devices such as calculators have been
the subject of extensive user interface research since at least
the 1980s, the diverse design defects uncovered imply that user
evaluation methodologies are insufficient for critical applications.
Likewise, formal methods are not being applied effectively. User
interfaces are not trivial and more attention should be paid to
their correct design and implementation.

The paper includes many recommendations for designing safer
number entry user interfaces.

“The most important property of a program is
whether it accomplishes the intentions of its
user.” Tony Hoare [13]

D.2.17.e: Error processing, Software/Software Engineering.
D.2.14.a: User interfaces, Human Factors in Software Design.
H.5.2: User Interfaces, Information Interfaces and Represen-
tation (HCI).

I. INTRODUCTION

PROGRAMMING IS DIFFICULT. Over fifty years ago
what are now called formal methods were developed

so programs could be implemented that reliably achieved
what their designers intended. Dijkstra memorably argued that
debugging could only find bugs [6]: being unable to find bugs
did not mean there were no bugs — no amount of debugging
can prove the absence of bugs. One therefore needs to prove
a program is correct. Hoare and others developed various
rigorous formal techniques to reason correctly about programs
without relying on debugging.

Dijkstra’s comment recalls Popper’s scientific philosophy of
refutation [28]: Popper defined criteria for scientific theories
and showed it is impossible to prove a theory correct by
experiment. Both Dijkstra and Popper are right for the same
reasons. It follows that in principle one cannot use empirical
experiments to establish a user interface is correct.

Yet, according to the international standard ISO 9241,
which defines best practice [14], user interfaces should be

implemented, tested on users, bugs fixed, and then re-tested
in an iterative, experimental cycle. This empirical process
involves human participants and statistics to ensure sufficiently
reliable conclusions are drawn despite natural variation in
human behaviour and performance. Particular care has to be
taken to ensure that the participants appropriately represent the
final users of the system.

Building user interfaces to be used by people is a very
different type of problem than building programs to be run
by computers. Designers cannot plausibly anticipate all user
needs and requirements in detail, so a prototype is developed
and tested on users. Indeed, users may change how they behave
or change what they want after they start using a prototype,
so the process has to be iterated.

Yet some user interfaces are safety critical and must be
developed in ways that must avoid or mitigate safety issues.
A balance needs to be struck: formal methods should be
used to assure correctness and the absence of defects, and
conventional usability experiments should be used to polish
user interfaces and identify classes of defect that should then
be proved absent. For example user experiments or expert
heuristic analysis might identify the need for undo, then formal
methods can be used to ensure that undo is available and works
correctly in every state of the system.

Unfortunately, most user interface experts think formal
methods are inaccessible and inapplicable, and most formal
methods experts think user interfaces are trivial (which is an
ironic consequence of “ease of use”). And a third group, many
designers and programmers, just build user interfaces that are
subject to neither usability nor formal scrutiny because they
seem so simple they “obviously” work. User interfaces for
number entry are a case in point.

The present paper is concerned with user interfaces for num-
ber entry, and specifically number entry using conventional
Arabic numeric keys, as illustrated in figure I, or as can be used
with standard QWERTY keyboards. Such user interfaces are
used for many purposes: dates and times, telephone numbers,
passcodes for security systems, cash machines, finance and
mathematics generally, as well as in numerous computer
applications, from setting tab positions in word processors to
scaling images.

Handheld calculators are a very familiar application of
number entry, so they will be used to illustrate many design
issues in this paper. By using real, clearly identified devices
we demonstrate the techniques discussed scale to design issues

2

0.

7 8 9

4 5 6

1 2 3

0 • C

Fig. 1. Sketch of a simple numeric user interface of the type explored in this
paper. Many alternative keyboard layouts are shown in figure 2. Note that a
layout does not specify any interaction design decisions. For example, it is
not possible to tell what the key C does; after pressing it, will or 0 or
nothing be displayed? Perhaps the C means “correct” rather than “cancel”
and the display will change to an earlier display, say 123 or 12. . . . ?

that arise in real systems; the discussion is not limited to ide-
alised systems. Furthermore, as consumer products, calculators
are very easy to obtain to replicate and explore the defects
examined in this paper. A note at the end of this paper briefly
summarises all devices mentioned in this paper.

A. Contributions of this paper

We use the term rule to mean a design property that can be
used to express interaction properties precisely and that can
be reasoned with. If a user interface is correctly implemented,
then it will obey its rules, which in turn were derived from
design requirements, themselves established by empirical ex-
periments (or based in the relevant literature or experience
of the domain of application). Crucially, designers (or the
design tools they use) should be able to think clearly about
rules, for example considering whether they are consistent and
cover all possible cases of interaction. Rules cannot be seen
by users, thus designers have an obligation to carefully select
and implement appropriate rules.

We will show that rules user interfaces could obey can
be stated using a simple notation, which we will introduce.
One can then reason how to design safer and more consistent
number entry user interfaces. Our notation is based on and is
equivalent to Hoare triples [13]. It would have been possible
to express the same issues in many other notations, such as
HOL, PVS, SMV, TLA and VDM. However, many formal
methods have steep learning curves, and there is a tendency to
promote one over another because once you know a notation,
using it seems much easier than learning an alternative. In
contrast, our lightweight notation takes little effort to learn and
can be used immediately. The disadvantage is that there is no
tool support; there is no automatic way to ensure coverage,
type correctness or other properties. Nevertheless, it is trivial
to translate the notation into a tool-supported notation or
programming language (like SPARK, which has assertions).
The real contribution, then, is not so much the notation, but
demonstrating that user interfaces are not designed rigorously,
and that they could be and should be.

II. MOTIVATING EXAMPLES

We start with some broad-ranging motivating examples,
which illustrate common design defects. Then, in contrast,
section III, shows that analogous problems were recognised
over fifty years ago in programming, and for which there are
now many ways to manage them or avoid them. Putting user
interface design and programming one-after-the-other high-
lights that user interface design has not adopted the established
benefits of formal methods.

A. Problems of unclear, unstated design requirements

Fu [7] points out a surprising lack of regard for the
specification of requirements in medical device software, even
though the field is safety critical and regulated. Devices that
are not safety critical in a regulatory sense (such as handheld
calculators), even though they may be used in medical and
other safety critical applications, fare even worse.

User interfaces implementing unstated, incomplete or incon-
sistent requirements will have defects, and probably unnec-
essary and confusing variation. Number entry has interesting
problems: it appears to be simple, so designers may not bother
to specify and analyse it adequately.

Numerical issues such as overflow interact with concrete
display representations, such as field widths. Many number
interfaces ignore excess input after the “end” of a number and
some ignore “incorrect” keystrokes — if the user interface ex-
pects integers, 1.5 may be misread as either 1 or 15 depending
on the implementation. Numbers may be syntactically invalid
or out of range, but most user interfaces ignore errors (e.g.,
two decimal points) and happily process some valid number
(e.g., the prefix up to the second decimal point, ignoring it and
anything beyond it). No number entered may be converted to
a default value (typically zero or a previous value) without the
user being aware. And so on.

Except when the display is full, number entry displays
behave as if digits are appended to whatever is displayed. This
behaviour can be implemented in many ways: primarily, either
as a string operation or as a numerical operation. As string
concatenation, the meaning of the decimal point is that it is
just a character. Alternatively, as a numerical operation, the
decimal point is typically implemented as a flag (or a transition
in control flow) that changes the meaning of subsequent digits.
Amongst other differences, the behaviour of two decimal
points will be different in the two methods of implementation.
As a user will only rarely enter two decimals, these differences
will be unfamiliar and possibly a surprise. Unpredictability is
arguably one of the last things a user wants after an error.

Many users spend most of their time in general purpose
environments, such as word processors and web browsers. In
these environments, all input is simple text, so decimal points
are treated no differently to digits, and the delete key deletes
the previous keystroke. The user’s model that is acquired and
reinforced in this environment does not work on number-based
user interfaces: the keys • (decimal point), ± (change
sign) and ← (delete) all behave differently.

Even simple-looking requirements for number entry may
be inconsistent. The Institute of Safe Medication Practices

3

(ISMP) has rules to improve the legibility of numbers [17]:
“naked decimal points” are forbidden (e.g., because .5 may
be mistaken as 5), and trailing zeros after a decimal point are
forbidden (e.g., because 5.0 may be mistaken as 50). Unfor-
tunately these well-meaning requirements cannot be invariant:
as a number is entered in a user interface it may go through
error-prone intermediate stages. If a user enters 5 • 5

and pauses while entering it (for how long?), what should
be displayed? If the ISMP rules are rigorously followed, the
intermediate number should be displayed as 5 , but this makes
the behaviour of the next keystroke, whether a digit or a
delete key, ambiguous — which defeats the point of the ISMP
requirements! One solution is for the display to flash or change
colour so that invalid syntax can be visible [43]. In other
words, despite their goals, unmodified ISMP requirements
cannot be considered user interaction requirements: they are
problematic in any number display that can be interacted with.

B. Problems of logs

Many devices record a log of what they do, and this may be
used to help understand incidents involving use of the device.
For example, in a hospital if a patient receives an overdose
of a drug, then the log of the infusion pump (a device that
delivers drugs automatically) may be consulted to see if the
pump delivered the overdose. This would then be evidence
that the user instructed the device to do so.

Unfortunately if the infusion pump has a user interface
design (as many do) like the Casio HR-150TEC calculator
the following scenario is plausible:1

User keyed 0 • • ← 5 — that is, the user
accidentally keyed two decimal points and pressed ← to
delete the second decimal point.

User thought 0 • • ← 5 = 0.5 , because ←
would delete the preceding keystroke, as it does on any PC
application.

Device logged The calculator records that the user entered
the number 5 on its log.

If the user keyed something like this, continuing with the
calculation would update the display and these keystrokes
would be lost; the final result would be incorrect, and the
log would show the user made an uncorrected mistake. The
point of using a calculator is that you do not know what
the answer is, and therefore few users would be able to tell
the difference between a calculation based on 0.5 and one
unexpectedly based on 5. Many devices are similar: a number
the user enters (e.g., a drug dose) is generally part of a larger
interaction sequence, and in general it is very hard to spot an
intermediate error.

One can imagine an incident investigator confronting a
nurse with the log: “You told the infusion pump to deliver
5 mL of the drug, which killed the patient.” The nurse might
say, “I thought I’d entered 0.5, but if the log says 5, I suppose

1As explained in the introduction, we use concrete examples from specific
devices, briefly summarised at the end of the paper, so that they may be easily
replicated by the reader. Casio is a leading manufacturer and its devices are
widely available and much easier to obtain than infusion pumps. All problems
discussed arise on a wide variety of devices and are not restricted to any one
manufacturer.

I must have made a mistake.” Thus the nurse incriminates
themselves. In fact, the device may have implemented delete
like the HR-150TEC and, if so, its behaviour would have
induced the fatal error and misdirected blame on the user.
Until user interfaces are implemented correctly, their logs
cannot be believed.

In fact, the HR-150TEC displays a decimal point all the
time, regardless of whether the user has keyed one. It is likely,
then, that the program code implementing the number entry
user interface does not represent decimal points explicitly, and
therefore it was problematic to implement the delete key as a
general delete key. Rather, it is easier to implement it as an
operation on a numeric value, ignoring the decimal point. This
is exactly how delete behaves on the Casio.

Interestingly, the entire explanation of the delete key in
the HR-150TEC user manual is the single concrete example
“7 8 9X → 7 8” just correcting a single digit, and from which
a user would certainly be justified generalising its behaviour
to deleting other keystrokes. Perhaps the detailed behaviour of
the delete key was overlooked?

C. Problems of design variation

There is considerable variability in user interface design
for managing error: almost all user interfaces handle correct
numbers correctly, but they vary widely on how they handle
error, as illustrated in the examples above. Such arbitrary
approaches to handle error will induce transfer errors: that is,
over time, users acquire low level skills to correct error: doing
such-and-such corrects an error and the user can continue.
These strategies become automated and drop out of conscious
attention. Hence on a system that behaves in a different way,
in particular in any way that does not draw the user’s attention
to the differences, the user is likely to automatically correct an
error and make the situation worse. From the perspective of the
present paper, it appears that the lack of consistency follows
from failing to think through error handling; for example, we
can imagine simple program code that implements “read a
number” and, say, simply terminates when it parses an unex-
pected character as if it was the end of the number. In section
III, below, we consider a classic programming problem, much
simpler than reading a number, but nevertheless an error-prone
example that illustrates the need for clearer thinking.

The Casio fx-85GT implements the delete key so it deletes
both digits and decimal points; in the example above (section
II-B), the user would have entered 0.5, not 5, after correcting
multiple decimal points. This variation in user interface design
will induce transfer errors. A user familiar with one Casio
calculator will be induced to have problems with another.
Unnecessary design variation for the same task seems to be
confirmation that delete key behaviour has been overlooked.

Variation also occurs between device manufacturers. Below,
three devices are compared handling the same sequence of
keystrokes:

4

Key Casio Casio Apple
press fx-85GT HR-150TEC iPhone

AC 0. 0

0 0 0. 0

• 0. 0. 0.

• 0.. 0. 0.

← 0. 0. 0

5 0.5 5. 5

D. Problems of ambiguous display feedback

Part of the problem with decimal points is that the display
does not unambiguously show the user how many decimal
points have been keyed. Many number user interfaces display
0. when they are switched on or cleared, and the display

does not change when the user keys 0 or • . Unfortu-
nately, this is ambiguous: if the user keys 5 next, the display
may change to 0.5 or to 5. .

The fx-85GT has a left-justified display, which ensures
that deleting a key always removes the right-most character
from the display, whereas on the more common right-justified
displays deleting a key moves the entire display contents right.
Deletion when the display shows 55. cannot provide
unambiguous feedback to show whether the 50 digit or the
05 digit was deleted.

Some calculators, including the HR-150TEC, use I as
their representation of the delete key, which makes sense
as pressing I moves the display contents to the right as
it deletes the right-most digit (provided the display is not
showing just 0.). However, on the HR-150TEC, the key
I will move the display right even when it is an answer

to a calculation, in which case I is not deleting what the
user keyed!

E. Problems of negative numbers

Not all number entry user interfaces support negative values,
but for those that do there is a potential conflict with conven-
tional mathematical notation. On many calculators starting a
new expression with an operator like + adds the next value
to the previous result, which implies that starting a calculation
with − is ambiguous: it could mean start a negative number
or subtract a number from the previous result. Most calculators
resolve the problem by providing an unconventional key for
negating numbers, like ± or (-) .

Every calculator examined allows ± to be used anywhere
within a number. Thus ± 5 0 , 5 ± 0 and 5

0 ± are equivalent ways to enter −50. However, there
are major variations with how ± interacts with delete (see
table 1):
• On the Hewlett Packard EasyCalc 100 calculator, the

delete key ignores the ± key and deletes any
preceding digit. Hence 6 7 ± ← is −6, not 67.

• On the Apple iPhone, AC ± 0 ← displays
-NaN (“NaN” stands for “not a number,” and being

visible to the user indicates a bug).
• On Apple OSX, the calculator does not allow this: it

will not display -0 ; entering ± 9 results in 9 , so

a prefix ± is ignored; yet 9 ± ← 8 results in
-8 , even though immediately after the delete the

display is an unsigned 0 . The internal negative flag is
incorrectly programmed.

• C 9 ± ← ± results in NaN on OSX but
Error on the iPhone. Two pieces of code with the

“same” functionality from the same manufacturer
exhibit different bugs.

• When we tried to understand the behaviour of − on
the HR-150TEC, it froze until it was switched off and
on again.

• On the HR-150TEC, the sequence 4 – 5 =

results in 1 (when perhaps -1 was expected),
because the – keystroke turns the 4 to -4 , then the

5 is the next number added to it. This unusual
behaviour ensures that learning one calculator will be of
little help for using another.

It is interesting that two Apple calculators work in different
ways for something so “simple,” but this is not unusual
— elsewhere in this paper different models from the same
manufacturer have incompatible user interfaces, and figure 2
shows the “same” model from a single manufacturer may be
available in several incompatible variations.

The mixture of incompatible, confusing user interface de-
sign and actual bugs suggests that manufacturers have not
attempted to specify the requirements for negative numbers,
made careful design trade-offs, nor attempted to implement
them carefully or correctly.

F. Problems of input field overflow

Grete Fossbakk made a typing slip and accidentally trans-
ferred $100,000 of her money to an unknown person who
spent it [26]. With an accidentally repeated 5, she typed 12
digits into an account field, but unfortunately the first 11 digits
of the number was a valid Norwegian account number, even
though the full 12 digit number itself was an invalid account
number.

The repeated 5 may have been caused by a faulty keyboard
or software rather than a keying slip, though presumably she
was using her own PC and did not use the bank’s PC, so the
keybounce may have been technically her responsibility (if
one agrees with the various waivers manufacturers impose on
users). In other areas, key bounce is recognised by regulators
as a regular and serious problem, which has resulted in product
recalls and seizures [15].

In user studies to explore how Fossbakk made the error [26],
41% of numbers entered were too long. It is surprising that the
bank does not check for such a common error. Amusingly, in
its defence the bank argued that there should not be different
rules of responsibility depending on the length of a number!

In 2013, my own Lloyds Bank internet account uses an
HTML text field for account numbers, defined as:
<input type="text" autocomplete="off" ...

maxlength="8"
/>

The parameter maxlength="8" ensures the browser will
discard any characters typed in excess of 8. Again, the logs

5

Canon HP HP Apple Apple Casio Samsung
Key sequence F-502G EasyCalc 100 SmartCalc 300s iPhone OSX OfficeCalc 100 Android

± 9 9 9 -9 -9 9 9 -9
6 7 ± ← -6 -6 67 -6 -6 -6 -6
± 0 ← 0 0 any number -NaN 0 0 Wrong format

9 ± ← ± 0 -0 Syntax ERROR Error NaN 0

9 ± ← 8 8 8 98 -NaN -8 8 -8

Table 1. There is no common way of handling negative numbers (section II-E). “Any number” arises because the SmartCalc inserts Ans , a
variable denoting the previous answer, making the input syntatically correct but numerically arbitrary. “NaN” means “not a number,” a bug
that should have been detected by the device and reported (e.g., as Error to the user) or should have been avoided altogether.

cannot show an auditor whether the user typed an invalid
account number that should have been rejected.

Number overflow can occur for many reasons. We might
be interested what proportion of the world’s population is
Welsh (I live in Wales). The population of Wales divided by
the population of the world can be found using a calculator:
3, 063, 500 ÷ 7, 300, 000, 000. The following results are ob-
tained:

Casio HS-8V 0.04. . .
Apple iPhone portrait 0.004. . .

Apple iPhone landscape 0.0004. . .
Hewlett Packard EasyCalc 100 0.0004. . .

All ignore digits that do not fit into the display — and none
report an error when they discard digits. The display is 8 digits
on the Casio HS-8V, but the world is 10 digits, so the division
is out by a factor of 100; the iPhone in portrait has a display
with 9 digits, so the answer is out by a factor of 10; and the
iPhone landscape display is larger than 10 digits, so it gets the
answer right. The EasyCalc would have similar problems with
calculations involving more than 12 digits, but the calculation
here does not reveal it.

Whatever is going on inside the Apple iPhone, arguably it
could have detected an error since it provides two different
answers. It could report an error when there is a discrepancy.
Probably the iPhone has a single “calculator engine” and in
portrait mode the user interface fails to tell the engine what the
user keyed after the first 9 digits. In this case, the engine cannot
do any better, as it is being let down by the user interface,
which in turn is letting the user down — it is discarding input
without any warning.

G. Problems of behaviour depending on value

The Baxter Colleague 3 volumetric infusion pump has a
numeric user interface: if the user enters 1 0 • 1

then the display shows 10.1 ; if the user enters 1 0 0
• 1 then the display shows 1001 , with no warning or

error sound that the decimal point has disappeared. In other
words, when the number entered is “large” the user interface
silently ignores decimal points — the number entered will be
a factor of 10, 100, etc, higher than the intended. This is a
design defect found on many medical devices [22].

Instead of using numerical values, the Sigma Spectrum uses
a character count limit, so it might accept 1 0 0 0

but if 1 0 0 • is keyed, it will not accept further
digits; thus forcing the number displayed to end in a decimal

point (forbidden under Institute of Safe Medication Practices
rules [17]). Despite numeric rounding being well known (and
appropriate in the domain) it will treat 100.9 as 100 not 101.

H. Problems of changing or editing values

Often a user will want to change a number; typically the
device will display the last number accepted in the same
place the user will edit or enter the new number. The Alaris
PC illustrates one problem: if the display shows 9 from
previous use, then pressing 0 • 1 will change the
display to 0.1 , but if the 9 is a number currently being
entered, then pressing 0 • 1 will change it to 90.1 .
Confusion arises because the Alaris PC does not distinguish
the previous and current numbers.

This is a failure of equal opportunity [30], which says input
and output should be exactly the same; here they look the
same but behave differently, which is a recipe for confusion.

If the user enters a number that is out of range the device
will not accept it, yet the number is displayed in the same
place as the previous number, which was in range. Thus the
Alaris PC discards the final digit the user keys; if the user tries
to enter 88888 when 9999 is the maximum, the display will
show 8888, dropping the last keystroke. Underflow presents
similar problems: the display might show 0. , warn that 0.
is less than the minimum (perhaps set at 0.1), yet forbid the
user keying 9 which would make the number larger than the
minimum — the problem is that once underflow is detected,
the number displayed has been “accepted” and is no longer
the number the user is entering (yet the display is identical)!

The Alaris PC requires fractional numbers to be entered
starting with a decimal point; a leading zero is therefore an
error. Hence if the display is 123 and the user keys 0 , it
is ignored except for a beep. Yet continuing and pressing •
changes the display to 0. as if the discarded zero was in fact
processed. (This design flouts the Institute of Safe Medication
Practices rules; see section II-A.)

The user interface would be simpler and more consistent if
the old values were never displayed when a user is entering
(or about to enter) a new value, and if the number the user is
keying is always faithfully displayed, regardless of overflow —
then the standard correction keys will work as the user expects.
As implemented on the Alaris PC, the device provides some
correction, but thus making its behaviour unpredictable.

6

I. Problems of unusual behaviour on errors

Many numeric user interfaces (such as the HS-8V) ignore
excess decimal points, so 1 • 2 • 3 is treated
as 1.23 without any error warning. The Graseby 3400 is
unusual: it treats decimal points as clearing the decimal part
of a number, so 1 • 2 • 3 is treated as 1.3

[38]. In Excel, 1 • 2 • 3 is treated as zero
without warning if it occurs in a SUM expression. Many PC
applications end a number at the first non-numeric character,
thus ignoring the error — JavaScript, which underlies most
web applications, treats 1..2 as 1, because an unexpected
decimal point ends a number without warning. Many examples
are provided in [40], which more generally illustrates the large
problem of system design that is heedless to error of all sorts.

J. Problems of confusing key clicks

Many devices (e.g., the Alaris PC) provide different sounds
when keys do different things; in particular an attentive user
can tell by the different sounds whether a key press is being
ignored. The Sigma Spectrum provides a “key click” sound
when any key is pressed whether or not the key does anything;
so (for example) keying 0.15 sounds exactly the same as if all
keys were handled correctly, but the device only shows 0.1 .

K. Problems of terminating number entry

Typically there is a key OK to confirm a number has been
completed; when this is pressed, the device records the number
and goes on to its next activity. Often any non-numeric key
confirms the number, but on some devices that allow many
numbers to be entered, such as the Sigma Spectrum, pressing
H changes the selected number — except that it does not

“confirm” any number. Instead, the number reverts to the
previous value before the user started entering it. In other
words, while a user might think H is just a “passive” cursor
movement (i.e., with no side-effects) it behaves instead like

C OK .

L. Problems of time-outs

Devices cannot tell whether a user has given up interact-
ing with them. Battery-powered devices have battery life to
conserve. Walk-up-and-use devices (like cash machines) do
not want the next user to continue with the interaction started
by the previous user. The solution is typically for the device
to switch off or revert to standby after no use for so-many
minutes.

The EasyCalc, despite having a photocell to provide power,
switches off after 5 minutes of inactivity. It does not beep
or otherwise warn the user it is about to switch off, and on
switching on the displayed number is lost but, strangely, the
memory register is not lost — so there is no technical reason
not to save the displayed number too. At least the display goes
blank so the user can see the device has reset.

In contrast, the Graseby 3400 [38] has a 4 second time-out
that zeros the number currently being entered. Hence, entering

0 • [delay] 5 will enter 5 instead of 0.5 .2

If there is an argument for n second time-outs, then there is
a pretty good argument for n+1 seconds — and so on! Since
there is no perfect time-out interval, a better idea may be to
flash and beep and try hard to recover the user’s attention;
if necessary there then might be a hard time-out, when the
device has reason to give up hope.

M. Problems of feature interaction

Features seem useful, so combining features seems even
more useful. Yet features may interact with each other detri-
mentally.

The HR-150TEC has a double-zero key 00 feature, to
speed up entering numbers with repeated zeros. Unfortunately
the key is handled specially by the delete key: pressing 00

then ← is treated as 0 . The reasoning is presumably that
the 00 may be pressed when 0 was intended, so ←
corrects that specific error rather than deleting the previous
keystroke, which is its normal meaning. Do the new types
of error and confusion offset the gains of the button? Unfor-
tunately, having a key 00 might sell more calculators, and
design trade-offs may then be secondary to sales.

N. Problems of transient error warnings

Eye tracking experiments [25] show that the user does not
pay perfect attention to the display. It is therefore advisable
that error states are persistent and cannot be unset accidentally,
and it may be advisable for errors to be associated with noises
or vibration so that the user is made aware of them more
effectively than just displaying a visual symbol.

The Apple iPhone calculator given the incorrect calculation
1÷0.+42 = will present the answer 42 — but it transiently
displays Error when the key + is pressed. The user
is likely to miss this warning, as they are concentrating on
pressing the correct keys not on tracking the display. If the
calculator had persistent error warnings, the warning would
still be there when the user is ready to read the answer: the
answer should be Error not 42 .

Many calculators display E (meaning “error”) on the far
left and will display any number right-justified in the main part
of the display. It is possible for a user to read the number and
think it is the answer without noticing the E at the other end
of the display. Therefore the main part of the display should
either be blank or, preferably, display Error or equivalent
warning. In some applications it may help the user further
to display Error! Press AC , or otherwise clearly prompt
the user that to proceed they must clear the error. (The word
“Error” can easily be written using seven segment displays, so
it could be reprogrammed for existing systems.)

O. Problems of inconsistent ergonomics

The ergonomics, layout, and presentation of number entry
user interfaces is clearly critical — poor lighting, poor tactile

2A 4 second time-out seems very short for this user interface. It is plausible
that internal hardware uses a 4 second time-out (e.g., to check that the motor
has not stalled) and inappropriately, as a side-effect, the same mechanism
resets the user interface if it has “stalled.”

7

feel, poor font have all be criticised (e.g., [41]). There is
classic research such as [5] which could inform design (or
more research) so the diversity evident in figure 2 suggests that
criteria other than usability and dependability drive user inter-
face design for number entry — the diversity must increase
transfer errors. Plausible design considerations in use must
include branding, compactness (i.e., weight, cost), business
engineering (once a user is familiar with a particular user
interface, any other user interface will seem hard and error-
prone in comparison), confusion marketing, etc.

When a user presses a key, the device should provide feed-
back. Many devices have physical keys that feel they “click”
when they are pressed, and many devices generate an audible
click either from the mechanical movement or generated by
software. Of course, successfully pressing a key is different
from successfully achieving the intended action on the device.
For example, it would be confusing if the display was full,
but pressing 2 gave all the feedback as if it had been
successfully entered. Devices should therefore provide more
than “mechanical” feedback, and should make appropriate
non-keyclick sounds when keys fail to work normally — if the
display does not change when a key is pressed, there should
be a warning.

P. Idiosyncratic variations

Burglar alarms are “walk up and use” user interfaces, so the
user might break off or start entering a number at any point,
and they are therefore often permissive [37] in when a number
starts. Since a typical alarm code is 4 digits the last four digits
the user keys is taken to be the number entered. Thus there
is no overflow; the most significant digit just disappears when
the next digit is keyed. This style of “scrolling” interface is
also surprisingly common in other contexts where it is clearly
inconsistent with the rest of the user interface design, and
where there is no walk up and use requirement.

Other variations are common too. Although the Apple OSX
System Preferences allows Arabic number entry, it sets times
in an idiosyncratic way. The display shows a valid time, such
as 9:45 , and when the user selects it to enter a number,
either the hours or minutes is selected. For example, 9: 45

shows the minutes is selected. Pressing digits now replace the
selected number; thus pressing 9 will change the display
to 9: 09 ; not to 59, and with the 4 silently lost. To enter
a time like 12:45 they have to select hours, press 1 2

then change the selection, then 4 5 . Moreover, there
is a time dependency: if 2 is entered, the time becomes
9: 2 then a moment later, 9: 02 ; if before a time-

out, pressing 3 will change the display to 9: 23 , but
pressing it after the time-out, there is a beep and the display
is unchanged. Within each component, digits move leftwards,
suggesting one might start entering a time like 12:45 in the
minutes component, but the colon does not work and just
beeps. If the user enters 12:45 with a delay between the 4

and 5 , the display becomes 12:04, then pressing the 5

will make it display 12:05 .
Then there are erroneous examples: if the user tries entering

a “time” such as 57:96 the display will be 07:09 — the

second digit of the first erroneous component is kept, but the
first digit of the second component is kept. If the user enters
1259, it may be displayed as 09:30 , with an unchanged
minutes setting. And so on.

We have not explained all of its features, and we are not
sure we have understood what we have explained. A user has
to read the display to check whether their intended number has
been entered correctly. Similar problems occur in date setting
user interfaces, with the added complication that day, month
and year numbers mutually interact in a way that minutes and
hours do not.

Q. It is not just numeric keypads . . .

This paper focuses on numeric keypads, but there are many
other forms of user interface for number entry. For example:
• The GE Dash 4000 uses a knob to adjust number

values; turning the knob clockwise will increase values,
anticlockwise will decrease values. So if a number
displayed is 40, turning the knob clockwise will show
successively 41, 42, 43, 44, 45, then 50, 55, 60. Turning
the number back, anticlockwise, will show 55, 50, 45,
40 — skipping values, not reversing the effects of the
preceding clockwise rotation.

• The BBraun Infusomat [4] uses four keys to enter
numbers: two allowing a cursor to be moved left and
right, and two for digits to be increased or decreased. If
the display shows 0 .__ a user can move the cursor
to the hundredths column, increase the digit by 1, yet
0.1 0 , not 0.0 1 , will be displayed — ten times

out from what the user entered, but without warning.
• Using handwriting with immediate recognition feedback

improves error rate [45].

III. PROGRAMMING MAXIMUM

The preceding section raised concerns with user interfaces,
yet analogous concerns in programming are taken very se-
riously. In this section we present a familiar programming
example to contrast the type of formal thinking routinely
applied to program code to gain the sorts of detailed insights
that are evidently lacking in user interface design. We take it
for granted that we should reason formally about programs to
ensure they are correct; we should not balk at reasoning about
user interfaces.

We could have chosen reading a number as an example,
but the code to do so would be distractingly long; instead,
suppose we wish to write some code in Java to simply find
the maximum value of an array a of integers. Here is how it
might be written:

1.1 int max = 0;
1.2 for(int i = 1; i < a.length; i++)
1.3 if(a[i] > max) max = a[i];

Testing is not sufficient. Many tests of this code will show
that it finds the maximum value correctly. It is possible
that “thorough” testing overlooks the critical cases that are
incorrect. Indeed, there is a problem of circularity: if you write
a program to find the maximum value of an array, how are

8

1 2 3
4 5 6
7 8 9
4• 0 5
Abbott Gemstar

7 8 9
4 5 6
1 2 3
4• 0 5
Abbott AimPlus

1 42 3
4 5 6
7 8 9
• 50

CME BodyGuard 545

1 2 3 4 45 •
6 7 8 9 50

CME BodyGuard 545

41 2 53
4 5 6
7 8 9

0 •
Graseby 500

1 2 3 4
5 6 7 8
9 0 • C

Graseby Omnifuse

1 2 3
4 5 6 •
7 8 9 0
SK Medical SK-500III

7 8 9
4 5 6
1 2 3
0 •

SK Medical SK-600III

1 2 3 4
5 6 7 8
C 9 0 4

• 5
Upreal UPR-900

1 2 3 •
4 5 6 0
7 8 9

Upreal CTN-TCI-V

1 2 3
4 5 6
7 8 9

0
Apple iPhone (phone)

C
7 8 9
4 5 6
1 2 3

0 •
Apple iPhone (calculator)

7 8 9 0
4 5 6 C
1 2 3 •

BBraun Vista Basic

7 8 9 0
4 5 6 •
1 2 3 C

DRE SP1500 Plus

1 2 3 4
5 6 7 8 C

• 0 9
DRE Avanti Plus

0 1 2 3
• 4 5 6

7 8 9
Sigma Spectrum

7 8 9
4 5 6
1 2 3
0 •

Sigma 6000 Plus

1 2 3
4 5 6
7 8 9

0 •
Sigma 8000 Plus

7 8 9
4 5 6

C 1 2 3
0 00 •

Casio MU-120T

7 8 9
4 5 6

C 1 2 3
0 00 000 •

Casio DJ-120D

7 8 9
4 5 6
1 2 3

C 0 00 •
Casio HR-150TEC

C
7 8 9
4 5 6
1 2 3
0 •
Casio HS-8V

1 2 3 4 5 6 7 8 9 0
.

•
QWERTY keyboard (not showing separate numeric keypad)

Fig. 2. Keyboard layout on a selection of number entry systems, showing that the same manufacturer and even the same model use different layouts (e.g.,
see the two variants of the CME BodyGuard 545, top right). The variety of keyboard designs will cause confusion in use, training and maintenance. The
schematics make the decimal point much clearer than on most devices; the schematics do not show the variety of uses of the “spare” button locations, which
are variously blank, “info,” etc. The and 5represent up/down keys, in many cases dual uses for numeric keys, which is known to cause confusion [16]. Note
that telephones generally have a top line of 123 in contrast to calculators, which generally have a top line 789; on mobile phones and wristwatches (which
can run calculators as applications) this is likely to cause unnecessary confusion.

you going to check it is doing the right thing, since checking
is subject to the same blindspots that led to any errors in
the program in the first place? One might resort to multi-
version programming (i.e., using many “independent” teams
of programmers), but this has been robustly criticised as a
flawed approach [19].

Formal reasoning is essential. Thinking mathematically
about a program is more reliable than testing. Here, it would
reveal two flaws that testing may overlook. First, if the array
consists of only negative numbers, the code cannot give a
maximum value less than 0; it is therefore incorrect. Secondly,
the value a[0] is ignored. Both problems can be corrected
by replacing line 1.1 with int max = a[0].

In fact, with line 1.1 as int max = a[0] the invariant
max = maximum(a[0..0]) is established, and each itera-

tion of the for loop ends with max = maximum(a[0..i])
established, and i increases in steps of 1 up to a.length-1,
so on termination of the loop we have max = maxi-
mum(a[0..a.length-1]), which is what we want.

Formal reasoning would also beg to include the requirement
“and the array a is unchanged,” as the faulty code

2.1 int max = 0;
2.2 for(int i = 0; i < a.length; i++)
2.3 a[i] = 0;

is otherwise a correct way to ensure that max is the
maximum value of the array!

In summary, we have shown, as is well known, that
programming is deceptively hard, and that formal reasoning
increases the confidence that programs indeed implement what

9

they are required to do and, concurrently, we also improve
our understanding of what we want them to do. Conversely,
without formal reasoning it is unlikely — literally, there is
no reason — a program will do what is or should have been
intended, although it might deceptively look like it does.

A. Lessons from programming and formal methods

We conclude section III with four insights:
• User testing is not thorough (it does not guarantee

coverage) and it does not identify all possible problems
of a design. Although user interface evaluation is, or
should be routine, it focuses on what users can
experience in a short time. This will help identify
confusions and help improve user experience (UX), but
it does not have the reach to identify all bugs that will
eventually affect some users.

• Without rigorous reasoning it is very unlikely any user
interface will do what it is intended to do. Bugs in user
interfaces are hard to see and understand — and unlike
program code, the behaviour of a user interface cannot
be seen or read as a text. It has to be represented in
other ways.

• Formal methods is not just reasoning rigorously about
programs, but also about what we want them to do. In
the maximum example, an “obvious” invariant was not
tight enough to specify what the intended requirement
of the program really was.

• An intermediate approach, between user testing and
formal methods, is to employ stochastic testing based
on human error models. Here, simulated user trials
explore large, complex state spaces. This has speed and
coverage advantages over human evaluation, and is
simpler than formal methods; its twin disadvantages are
that a simulation cannot have the qualitative insights
human users will have, and unlike formal methods, it
cannot help design out errors as it can only help find
them — and to find an error, one needs a preconceived
concept of what the error might be. We do not discuss
stochastic methods in the present paper, but see [2],
[39], [4].

IV. PREVIOUS WORK

For many years around the 1980s, calculators were a
standard object for research in human-computer interaction
(HCI); notable papers include [47], [9], [23]. The primary
concern was usability and understanding the relation of the
user’s model to the device model. It is surprising that the
problems reported in the present paper were not highlighted
by this original 1980s research. In fact, HCI techniques seem
insufficient to identify safety problems. Moreover, the devices
that are studied in HCI are often devices that the experimenters
are very familiar with, and therefore there is a possibility
that both experimenters and experimental participants share
the same blindspots.

Thimbleby and Cairns [3] showed that many user interfaces
for numeric data entry ignore syntactic issues (for exam-
ple, allowing numbers with more than one decimal point).

They showed that restricting user input to syntactically valid
numbers would reduce unnoticed errors. The numeric syntax
of [3] was later generalised to arbitrary regular expressions
[43]. Thimbleby [36], [35] reviewed problems with calculators
specifically, and with W Thimbleby [46], [45] proposed novel
solutions that overcome many of the identified problems with
calculators.

A. Formalising user interfaces

Since the 1980s there have been attempts to formalise user
interface requirements [11], but these have not become main-
stream because the level of mathematical sophistication seems
out of proportion to the potential gains in user interface design
quality. More recently developments in automated reasoning
tools, such as theorem provers, have meant that original user
interface program code can be semi-automatically checked
for user interface properties like “predictability” [21], [22].
There is an important conference series on formal methods and
user interfaces, the ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems [27] and its predecessor
DSVIS [8]. While exciting that user interface properties can
be formally verified, the skill required is still considerable and
the resulting research remains opaque to many practitioners.

The present paper focuses on formal reasoning for number
entry user interfaces. It identifies and solves many problems
that both the preceding HCI literature and the formal methods
literature has missed. This is an interesting blindspot: if
people cannot see problems, it does not matter whether formal
methods or empirical methods are used — there is still a
blindspot!

Our present interest in number entry user interfaces arose
through very detailed examination of user interfaces for hos-
pital infusion pumps, “simple” devices that deliver drugs
automatically to patients after nurses have entered relevant
dosages. After our first study [38], we have found that almost
all infusion pumps have number entry problems, and the
problem extends to almost all number entry interfaces of all
sorts [3]. While our previous papers identified the problem and
discussed its impact, we did not present a way to reason more
reliably about user interfaces so the problems would not arise
in the first place.

B. Human error

Reason’s Human Error [29] is a landmark book. He tax-
onimises human error: violations are actions that should not
happen (for example, the user sets out to perform a criminal
activity); then other forms of error can be broadly classified
as intentional or unintentional. An intentional error occurs
when the user mistakenly intends to do the wrong thing; in
the context of the present paper, intending to set an infusion
pump to 28.8 mL per hour and successfully doing so — when
the correct rate should have been 1.2 mL per hour — is an
intentional error.

Mistakes occur when the user correctly does the wrong
thing, perhaps due to a misunderstanding or lack of knowl-
edge. For example, a user might mistakenly believe that DEL

10

deletes the last key they press. They would then be mistaken
on many (but not all) devices — see section II-B for examples.

In contrast, slips and lapses are unintentional errors that the
user is unaware of. If a user performs the wrong operation,
this is a slip (e.g., pressing the wrong key because their finger
slipped); and if the user omits an action (e.g., by oversight)
then this is a lapse.

These are human taxonomies; from the engineering perspec-
tive, the issue is whether the errors can be blocked or managed,
and if so, whether the computer or other agent manages the
error. For example, a violation is typically a security problem
that can be mitigated by requiring passwords and keeping
logs (if the latter, so that if a user chooses to perform a
violation they know they will have to face recorded evidence).
Accidental errors can be mitigated by practice, redundancy,
safety checks, undo functions, and so on. An example of
redundancy would be to require two users to enter a critical
number, and to have a reconciliation process if the numbers
do not agree. Another example would be setting an infusion
pump not just to a rate, but also specifying the drug, the patient
weight, the concentration and the intended duration, etc; if the
infusion pump can work out that a drug is to be infused at an
inappropriate rate for a patient it can block it.

An intentional error can follow an unintentional error and
vice versa. For example, making a slip or lapse while using
a calculator will result in the calculator showing the wrong
result. This result may then be the number that is subsequently
used. The use of the incorrect number is then an intentional
error.

Reason additionally defines latent errors, oversights in a
design that “wait” for unanticipated conditions. Program bugs
are obvious latent errors, but many are more subtle and lie in
the requirements.

Many human errors occur predictably. For example, if we
say we will see you at 7:00, that is all we need to say to
you. But if we tell our alarm clock “the same thing” namely
to ring at 7:00 it will take additional steps for it to register
the instruction. The alarm clock cannot tell the difference
between entering 7:00 and entering 7:00 and finishing. As it
were, it might be “thinking” that we might still adjust the
time so we have to explicitly confirm it, even though it is an
unnecessary step in human-human interaction. Similarly, on
most calculators, one cannot calculate 4 + 5 by just pressing

4 + 5 , as a final step = is required. There is evidence
that “device oriented steps” are more error prone [1], but this
research does not define device oriented steps (e.g., is pressing

= a requirement of the task, or a device oriented requirement
of a calculator?). Avoiding the step makes users more accurate
[45].

In this paper, focusing specifically on number entry, viola-
tions and intentional errors are out of scope (they are typically
handled either before or after a number has been entered);
slips and lapses, on the other hand, occur frequently during
number entry, and we need engineering techniques to help the
user detect and manage them.

C. Error correction

While human factors research focuses on the sources of
error, what happens next is often more important. A user may
make a slip for any reason, but if it is noticed and there is
a way to correct it, the final outcome will be correct. Hence
designers should focus on reducing adverse outcomes (e.g.,
patient harm) [42]. Viewed from this perspective, an important
distinction is whether error is noticed or not and whether the
user or the system first notices it, and if so, what can be done
about it.

An error may lead to a bad outcome. How this may be
quantified to inform design trade-offs depends on the domain.
For example, an incorrect bank account number is either
invalid or another account number (see section II-F) whereas if
the number is a drug dose the relative error or a measure of the
patient outcome (e.g., in quality adjusted life years, QALYs) is
more insightful. Elsewhere we have compared user interfaces
using expected relative error [4], [25], [3].

V. RULES FOR NUMBER ENTRY

A computer program executes a sequence of statements,
much like a user executes a sequence of commands to control
a user interface, typically by pressing keys or tapping a screen.
The program code A; B; C behaves like the user “program”

A B C . Hoare’s insight [13] was that a formalised
process can be used to prove that if certain conditions P
hold and a program Q is executed and terminates, then
certain conditions R will hold. The relation may be written
{P}Q{R} in the modern Hoare triple notation. Depending on
the application, we may wish to prove R holds, we may wish
to derive a correct program Q, or we may want to weaken P
in some way so the program can be used in more situations
(so it is more robust), and so on. Notably, the triple notation
defines the relation between program code and logic, and all of
formal methods follows: one can refine a formal specification
to a program, one can talk about invariants, assertions and so
on with rigor and clarity.

We introduce the use of Hoare triples to help designers,
developers and programmers to reason about user interfaces.
Now note that the precondition P is a fact the user “knows”
and the goal the user wishes to achieve is a postcondition
R. More precisely what the user knows should imply P ,
and R should imply what the user wishes to achieve. In
general the user will have to learn (mainly by experimenting
with interactive systems) how to translate their tasks into
sequences of Q to incrementally achieve subgoals that col-
lectively achieve their tasks. There is a lot of complex human
factors qualifying all those claims [18] — including the fact
that the user may not often look at the display so will rely
on keystroke rules alone [25] — but the converse can be
expressed without qualification: if the designer does not know
the triples, the user has no grounds for valid reasoning, and the
user interface cannot be used dependably. It cannot be relied
on to accomplish the intentions of its user [13].

User actions Q are simple but P and R are complex:
Hoare’s notation then becomes hard to read as Q, often being
just a single keystroke, gets lost in the details. Therefore

11

we use an equivalent notation, inspired by the elegant visual
layout of Z schemas [32], [11], but with a wavey line to avoid
confusion with Z itself:

Hoare triple Equivalent schema notation

{P}Q{R}

Q

P

::::::

R

We will occasionally need local definitions to declare names
and types, and we write these below the schema, e.g.:

Q

P

::::::

R

s ∈ String

These definitions are not visible to the user: they allow us
to write triples concisely.

Next we show a very simple example, defining what hap-
pens when the user presses 5 when the display shows 0. :

5

display = 0.

::::::

display = 0.5

Few devices behave like this. Instead, to remain faithful to
what real devices typically do, we must tighten the precondi-
tion:

5

display = 0. ∧ decimal point pressed after last AC

::::::

display = 0.5

or relax the postcondition:
5

display = 0.

::::::

display = 0.5 ∨ display = 5.

Complex preconditions or postconditions show how the
notation highlights uncertainty that can cause confusion for
users. In the example here, the confusion can easily be
prevented by better design.

Most program code uses variables. Thus considering max =
a[i] as an example: while the program code does not change,
its meaning changes depending on the values of the variables
a and i. In contrast, users always execute a concrete sequence
of actions or commands with no variables. A user cannot do x
as they have to do something specific; so a variable like x can
be used in our notation to represent what a user could do. In

particular, the user pressing x and the user pressing X are
different — in the former case, the notation means that user
presses some key, namely the key that is the value of x, and
in the latter case, the notation means that the user presses the
specific key X itself.3

In user interfaces, we are looking for the meanings of user
actions such as X and programming language concepts like
“scope” become concepts like “mode” and “window.” In the
present paper, we focus on the mode of number entry. More
general analysis must be left for further work — except to
note that a reason for the success of object orientation is
that programming scope becomes tightly related to modes
that make sense to the user. For example, a user interface
field in which the user enters numbers will also be a program
object that encapsulates the implementation of user actions in
that field: that is, the meaning of, say, a := b in the object
determines the semantics of X in the field.

We will often want to be more specific than “any key” as a
user action Q. Typically we will write x ∈ {0123456789}, for
example, requiring x to be any digit key. For convenience we
define numerickey = {0123456789•}, so a numeric key (as
defined) is a decimal digit or a decimal point. More generally
we could use Hartson’s User Action Notation (UAN) [12], but
it would introduce a notational complexity beyond the needs
of the present paper. The generality of UAN is not needed
here, nor explained here, though if the notation used in this
paper was implemented in a tool it would make sense to use
such an existing standard.

We distinguish between mathematical variables, which are
written in italics (like x, y, z) and user interface properties
(like Display, Error, On), which are capitalised and written
in Roman. A mathematical variable anywhere in the triple
{P}Q{R} denotes the same value everywhere in the triple.
However, a user interface property mentioned in P means its
state before the action Q, and mentioned in R means its state
after the action. It would be counter-intuitive to refer to, for
example, the display after the user’s action in a precondition
before it has occurred, and our notation makes this complex
idea impractical to express. Hence what might have been
written using just a postcondition, On′ = ¬On (meaning On
is flipped by Q, say by pressing an On/Off button), has to
be written as a precondition On = s and a postcondition
On = ¬s.

Further conventions are familiar from programming lan-
guage notations:
’x’ means the literal symbol x. The notation

generalises in the usual way: ’abc’ means the
sequence of symbols a then b then c.4 We use the
term string to be the type of a sequence of
symbols, of any (natural number) length, including
’’ which is the string of length 0.

3A user interface might be used to edit a computer program that has
variables, or a web form might have fields whose values can be changed, or a
user might refer to a knob as “variable” — but turning it cannot be variable,
it has to be turned a specific angle. Thus applications may have variables, but
user actions are never variables; they are always concrete instances.

4Invisible symbols, like tabs, and symbols such as ’ are conventionally
represented using backslash notations (e.g., ’\’’) but this paper is not
concerned with these lexical issues.

12

On (i.e., written in Roman) are variables representing
the state of persistent objects in the user interface.

x (i.e., written in italic) is a local variable
representing a value used in the specification of a
user action. The variable has no significance
beyond of the scope of the specification.

|x| means the string x has this number of symbols;
hence |’’| = 0 and |’900’| = 3. (In the Java
program code above, the notation was x.length.)

∈. . . finally we take some liberties. Generally e ∈ S
means the element e is in the set S or is of type S
(a type can be thought of as the set of every
possible value of that type), but we will use ∈ on
collections that are not sets, such as strings.

Sequences of symbols ’abc’ can either mean the user
pressed these keys or that these symbols are displayed for
the user to read. It is mnemonic to represent keys the user
pressed as a b c , and symbols the user sees displayed
as abc . Hence we may write Display = 3 as a way of
writing Display = ’3’ or Display = meaning the display
is initially blank (showing ’’).

The display on a typical device for number entry will
be composed of a numeric display (the main display) and
various indicators, such as error flags. We will refer to these
as Display, Error, etc, and treat them as variables; for example
a precondition Display = d means it is true that the display is
showing d before the user starts pressing keys.

In this paper we are not concerned with various ergonomic
issues, even though they are clearly important; for example:
• The difference between zero, nothing and space is

complicated. The display notation would be
inappropriate if the user interface has a space key (or
uses spaces instead of commas to separate digit groups).
One might use the conventional representation of space,
but it is unlikely a user would understand as
“nothing” — without a symbol for nothing a user
cannot distinguish a display that is off or broken from
one that is on but displaying nothing. Some user
interfaces blink zeros when they are showing “nothing.”

• We assume that if we write Display = d we mean the
display shows d and the user actually sees d. In some
cases, however, the display may be truncated or have
some sort of scrolling feature so that the user sometimes
sees a substring of d — the display 456 may mean
123456 or 456789, or almost anything. We consider this
unacceptable, but there are clearly conditions where
showing less than d is unavoidable. Some
ergonomically-designed cue should be used to indicate
that there is additional information that is not displayed.

• The decimal point may be different on the keys and on
the display (e.g., • and . or , in some countries).

• Decimal digits after a decimal point may be smaller
[41].

VI. RULES FOR COMMON DESIGN DECISIONS

We now create rules that represent typical properties of
number entry user interfaces. If we were developing or

analysing an actual system we would create rules for each
possible action. Here we will discuss representative rules for
a range of real devices to explore what they say users must
know and whether they may be poor design decisions as a
result.

A. Doing nothing — time-outs

If the user does nothing, then usually nothing happens. Our
convention will be that if nothing changes we do not need to
say so. Thus the following

Nothing

Display = x

::::::::::

Display = x

x ∈ String
is unnecessarily cluttered, and is more satisfactorily repre-

sented by
Nothing

::::::::::

which looks much more like a definition of doing nothing!
For some user interfaces, if the user does nothing for five

minutes (or so) something happens, which might be expressed
informally as:

Nothing for 5 minutes

::::::::::::::::::::::

¬On

In this example, the precondition is true under all circum-
stances so it does not need specifying explicitly, and it has been
left blank. The postcondition ¬On means that after completion
of the action, “nothing for 5 minutes,” it will be the case that
the device is not on (On is false). Switching the device off
(¬On) may be a safer choice than the design choice of the
Graseby 3400 (section II-L), where the device remains on but
the number displayed is set to zero without warning the user.

While we do not think time-outs are necessarily a good idea,
not reasoning about them and their applicability to the domain
the number entry is intended for is worse; here, the time-out
has an explicit rule designers can consider carefully.

B. Clear rule

The next simplest rule is that pressing the All Clear key AC

clears the display; on most calculators, pressing AC makes the
display show 0. . Hence

{true} AC { Display = 0. }

or in our notation (and simplifying the true precondition):

13

AC

::::::

Display = 0.

In fact, AC also switches the device on — perhaps it seems
obvious that if the display shows something the device is on,
but we should make it clear:

AC

::::::

Display = 0. ; On

The semicolon above is an useful way of writing “and”
with a low operator precedence; had ∧ been used, brackets
would have been needed to write (Display = 0.) ∧On. The
semicolon does not mean the display shows 0. then the
calculator is on; it means that after AC has been pressed,
then the post conditions — the display shows 0. and the
calculator is on are both true.

C. Basic append rule

If the user presses a numeric key x (a digit or decimal point)
we would expect the key to appear in the display. Expressed
more formally:

x ∈ numerickey

Display = d

::::::::::::::::

Display = dx

This simple rule does not capture what most devices do. If
the device is off, then it will display nothing and after pressing
x it will still display nothing. Hence:

x ∈ numerickey

On; Display = d

::::::::::::::::

Display = dx

This is still incomplete. If the display is full when it shows
d, it cannot show d and x together. Let us suppose max is
the maximum capacity of the display (for example, max = 8
characters on the HS-8V), then we can consider two possible
solutions for the rule:

(a.1)

x ∈ numerickey

On; Display = d; |d| < max
::::::::::::::::

Display = dx

(a.2)

x ∈ numerickey

On; Display = d; |d| ≥ max
::::::::::::::::

or

(b)

x ∈ numerickey

On; Display = d

::::::::::::::::

Display =
{
|d| < max : dx
|d| ≥ max : d

In form (a), two rules are required, whereas (b) combines
the two rules into a single rule where the ambiguity is more
obvious. The bracket notation is syntactic sugar: a : b

c : d
. . .

≡ (a ∧ b) ∨ (c ∧ d) ∨ . . .

The point of the schemas is to help us reason clearly about
a user interface, analogously to how a user would think —
certainly if we cannot express our thoughts precisely, the user
will not be able to! In particular, if a user wishes to think
clearly, the notation captures everything that is in principle
relevant to their reasoning. We notice than in case (a) we are
assuming the user knows whether the display is full before
pressing a key; we suspect that is unlikely. Case (b) is preferred
as it makes clear that when the user presses x, there may be
either of two outcomes. Whether these are desirable outcomes
we will return to in a moment.

We ignored that on many displays the decimal point oc-
cupies no extra space. On the EasyCalc, the seven segment
display is large enough for 12 digits and 12 decimal points,
one per digit (though it displays only one decimal point at
any given time). If we wanted to be precise about the size of
the display and the ability to include an “extra” decimal point,
instead of using the notation |d| we should define a function
like width(d). This would also be useful for displays that use
variable-width digit fonts (e.g., where 1 is narrower than 2).

D. Numeric append rule and ambiguity

A number entry user interface displays numeric values, and
the append rule described above is naı̈ve. For example in the
special case that the initial display is the 0 , we have

x ∈ numerickey

On; Display = 0

::::::::::::::::

Display = x

This is correct even in the special case x is 0 , though
if x = • then the final display would probably be 0.

As we explained above, assumptions in the precondition are
awkward. The rule is complex and better expressed as follows:

14

(c)

x ∈ numerickey

On; Display = d

::::::::::::::::

Display =
{
|z| ≤ max : z
|z| > max : d

where z = canonicalise(d, x)

Here canonicalise(string, keypress) is a function that takes
a displayed string and a key press and yields a string repre-
senting the canonical numerical value of its argument. Here
are some examples of its behaviour:

• canonicalise(0 , 0) = 0

• canonicalise(0 , 1) = 1

• canonicalise(0.00 , 0) = 0.000

• canonicalise(12 , 3) = 123

The function canonicalise is not only a function that could
be implemented as some program code but it also represents
rules in the user model. The user models the device as
“if the display is x and I press y then the display will
become canonicalise(x, y).” Of course the user model won’t
be expressed in such words, but the meaning will be — or
should be — equivalent.

What does canonicalise do with repeated decimal points?
Many calculators ignore extra decimal points, so we have cases
like:

• canonicalise(1.2 , •) = 1.2

Unfortunately the display 0. is ambiguous; we do not
know, for instance, whether

• canonicalise(0. , 0) =
{

0.0

0.

In other words, canonicalise is not functional. Being non-
functional means that what canonicalise does depends on more
than its parameters (the display and the key pressed) — in
other words, it becomes non-deterministic or unpredictable.
Therefore the triple (c) above needs correcting.

The reason the ambiguity occurs is that when Display =
0. the user cannot tell whether • has already been pressed

or not. If a decimal point has been pressed, the next digit is
a fractional decimal digit, whereas if the decimal point has
not been pressed yet, the next digit will be a units digit. The
following two triples make this clear:

5

Display = 0. ; Decimal pressed = false
::::::::

Display = 5.

5

Display = 0. ; Decimal pressed = true
::::::::

Display = 0.5

As mentioned above, hiding ambiguity in the preconditions
is poor practice, not least because it creates two rules for one

user action in this case;5 a clearer formalisation is as follows:
5

Display = 0.

::::::::

Display =
{

Decimal pressed = true : 0.5

Decimal pressed = false : 5.

Now we have one rule, and the now obvious choice in the
postcondition highlights a problem for a user. Most calculators
always display a decimal point, which is the cause of this
ambiguity. Ambiguity is bad [24], and it is encouraging to
see how easy it is to avoid in this case. There is an obvious
solution: do not display a decimal point when one has not been
pressed. If we do this, Display = 0. implies the decimal point
has been pressed, and hence the condition “decimal pressed”
is true, and conversely when Display = 0 then the condition
“decimal pressed” is false.

E. Persistent error

The HS-8V and the EasyCalc behave differently when the
display is full. When the display is full on the HS-8V, further
keystrokes are ignored and there is no error; on the EasyCalc
E is displayed to indicate an error. We can represent this thus:

x ∈ numerickey

On; Display = d; ¬Error
::::::::::::::::{

|z| ≤ max : Display = z
|z| > max : Error = true

where z = canonicalise(d, x)

The EasyCalc is somewhat more sophisticated than this:
if a decimal point has been entered, then the excess digits
(or further decimal points for that matter) are treated as
“insignificant” and ignored (as would happen on the HS-8V
too) but if a decimal point has not been entered, an error
occurs since discarding a digit would display a number that
was wrong by a factor of about 10.

We could write either Error = true or Error = E , etc,
meaning more specifically that a region of the display reserved
for error notifications is displaying E. We prefer to use the
logic form as it does not presuppose a particular way of
representing errors to the user (E or Error etc), and it
allows the variable Error to appear in logical expressions
directly without referring to the concrete choice of warning.

Now we have introduced Error in the modelling, all previous
rules for the EasyCalc need modifying:

x except AC

On; ¬Error; . . .
::::::::::::::

. . .

5In fact, if written in this style, there are lots of rules for 5 because these
are only the two rules for when the display is 0. , and they say nothing
about what happens when it displays other values.

15

and the rule for AC more specifically becomes:
AC

::::::

On; ¬Error; Display = 0.

So on the EasyCalc, when an error is detected, the user is
warned and the warning is persistent until the user clears the
error condition by pressing AC . Or so it seems . . .

F. Delete rule

The EasyCalc has a delete key, ← , which deletes numeric
keys. One would imagine its behaviour is as follows:

←

On; ¬Error; Display = zd

::::::

Display = z

z ∈ String; d ∈ numerickey
Notice that in this triple we had to specify the types of

z and d since they cannot be inferred from the context. The
triple does not specify what happens when Display cannot
be partitioned as zd — which happens when the display is
showing nothing — but in fact if the EasyCalc is switched on
it always can be.

However, the EasyCalc does not work like this: the delete
key ignores the decimal point. Its definition is therefore more
complex, and at a first attempt might first be written as follows:

←

On; ¬Error; Display = z

::::::

Display = delete(z)

We illustrate the behaviour of the Easycalc delete() with a
few cases:
• delete(0.) = 0.

• delete(1.) = 0.

• delete(1.2) = 1.

• delete(23.) = 2.

This quirky behaviour has the result that a sequence of
keystrokes xd ← for any digit d will be equivalent to x
(i.e., the single digit d was deleted), as expected, but that any
sequence equivalent to xd • n ← will be equivalent to x
too. In other words, the delete key deletes more than the last
keystroke if the last keystroke was a decimal point. If the user
tries to correct the slip of keying n = 2 decimal points instead
of the single one intended by pressing ← once, the preceding
digit will disappear! Even pressing a single decimal point in
error cannot be corrected. Ironically, the delete key is there to
correct errors, not add to them.

Delete on the EasyCalc is quirky in another way too. If the
display is full, then the delete key resets the error — however,
others types of error are not reset by the delete key.

←

On; Display = z

::::::{
¬Error : Display = delete(z)

Error : Error = false

The EasyCalc does not count how many excess keystrokes
the user keyed. So for example if the user keyed 15 keystrokes
(much larger than max = 12) then a single ← is sufficient
to clear the error — yet strictly the user should have pressed
delete at least 3 = 15− 12 times to clear the error.

G. Rules for consistency

While the schemas bring out the meanings of individual
user actions, they have the disadvantage that they do not help
describe consistent features across an interface. We might want
error handling to be consistent, but if it is repeated in every
schema then there is a danger that clerical errors will slip in.

There are two solutions, to use theorem proving tools (to
establish the consistency properties) or to use abstraction.
We have already used abstraction in using features like the
function canonicalise: it appears in many places but in each
case has the same meaning. Abstraction introduces named
features that can be instantiated in multiple schemas.

If a user performs any action, presumably they want an
effect, or possibly the action was in error (say, pressing a
letter key during number entry) and they want assurance there
was no effect. Instead of repeating this rule in many schemas,
it could be stated once:

define warnNoEffect(action)

Display = d

::::::::::::::::::::::::::::

Warn = (Display = d)

This says Warn is true if the user’s action does not change
the display.

Earlier (section VI-E) we proposed persistent errors: when
an error flag is set, actions are inhibited. Whatever choice is
made, it should be consistent. For example:

define persistentErrorBlock(action)

¬Error
::::::::::::::::::::::::::::::::

false

This schema also asserts that if a device is off nothing
happens anyway, regardless of whether there is an error.

In section VI-E there were two rules for errors, one for AC

and one for all other keys. Instead, the rules can be combined:
define persistentErrorBlock(action)

action = AC ∨ (On ∧ ¬Error)
::::::::::::::::::::::::::::::::

action 6= AC ∨ (On ∧ ¬Error ∧ Display = 0.)

16

In contrast to a definition of a function like canonicalise,
this definition has pre and post-conditions. The rule can now
be applied to any action:

persistentErrorBlock:x

. . .
::::::::::::::::::::::

. . .

The definition {Pa}define Qa(x){Ra} applied in a triple
{P}Qa:Q{R} means {P ∧ Pa}Q{R ∧ Ra}, with the usual
renaming of x as Q within Pa and Ra.

H. A rule for sequence

In many programming languages, the semicolon separates
statements that are executed in sequence. The Hoare triple for
it, {P}Q;S{T}, follows from the premises {P}Q{R} and
{R}S{T}, sharing the midterm R. The rule of inference for
semicolon is written out in standard form as:

{P}Q{R} ∧ {R}S{T}
{P}Q;S{T}

Now consider a program

readAndDo(Q); readAndDo(S)

which uses the standard ; operator to implement a program
enabling a user doing Q followed by doing S. Hence, the rule
for the meaning of the user doing Q then S must be

Q

P
::::::

R
∧

S

R
::::

T

QS

P
::::::

T

This rule states that a properly specified user interface
remains properly specified as the user performs a sequence
of actions.

VII. DISCUSSION

Section III argued that it is deceptively easy to write
program code to find the maximum value of an array. Bugs
in program code can be avoided using formal methods, a
familiar point that has been widely presented in the literature
(e.g., [6]), however the advantages are only achieved if we
have formal requirements. For maximum the requirements
are so obvious we did not define maximum! But in user
interface design, the requirements are often implicit, complex,
and partially unknown. Unsurprisingly, there are numerous
bugs and inconsistencies in user interfaces (section II), for
the same reasons as any other bugs in programs (section III)

— lack of clear requirements combined with lack of formal
reasoning. Section V then showed how formal reasoning can
be used in user interface design, hence helping avoid bugs.
The formalisation made requirements and trade-offs between
requirements explicit, but it left begging the question what
requirements do we really want?

A. What do we want?

User interfaces seem simple because one cannot see every-
thing that can happen: this is a problem for users, designers
and programmers. It is not clear we really know what we want
to do, nor that we can reliably implement it. Often users cannot
articulate exactly what they want to do, and even if they did, it
might be different from what they need since many properties
of human behaviour are unavailable to consciousness.

We were critical of user interface design defects because
we claimed they were obviously the consequences of poor
programming practices, needing but showing little evidence of
formal reasoning. This is a superficial stance. We could equally
have tried to formally specify what numeric user interfaces
actually do, and then we could have presented these specifi-
cations as correctly implemented. Indeed, formal methods has
no value system it imposes: it does not judge what the right
system is, merely that if you decide what the right system
is you can more reliably obtain the system you wanted. It is
therefore useful to distinguish between epistemology (knowing
what we want to do) and logic (knowing we are reasoning
correctly about what we want to do) [31]. Indeed Aristotle
would go further: knowledge is only useful if we act on it.
Hence, how do we persuade others to do good (rhetoric) and
how do we act appropriately in the communities of designers
and developers (politics) so better user interfaces are designed
and manufactured (and out-sell the worse ones)? These critical
topics build on the foundation of formal methods, reliable
reasoning about user interfaces.

Evidently, our discussion glossed the value system. We
took it as self-evident and not needing elaboration that a user
interface for number entry should be predictable. Having made
that value judgment, we can then refine it into some logical
framework, then design user interfaces that are predictable in
the chosen sense. A formal methods approach then facilitates
this second process: correctly implementing what one wants
to implement.

What, then, is predictability? We have discussed predictabil-
ity and its variations at length elsewhere and successfully
linked it to formal reasoning [34], [21], [22], [11]. For our
present purposes we can summarise predictability informally
[33]:

Predictability: A user can successfully use the
system with their eyes shut right until the moment
they want answers.

This simple formulation is consistent with eye tracking
experiments [25]: users infrequently fixate on (look at) the
display because they need to fixate on finding and pressing
the right keys. Effectively, their “eyes are shut” in terms of
reading information on the display.

17

If the user thinks “ X does something,” it should always
do that thing; otherwise they would have to open their eyes
to see the difference. In other words the user interface has no
modes that change the meaning of the user’s actions, and there
must be features like a key C that completely resets the user
interface so that the user can start fresh without having to read
the display. Realistically, we also know users will make slips,
occasionally pressing the wrong keys. When they press the
wrong key, they will want to correct what they have done.
Thus, the delete and clear keys must be predictable, and not
depend on the last or previous keystrokes (e.g., whether they
were decimal points or not). If the user makes a slip that they
do not notice, then the device should (if possible) keep track
of the error until the users metaphorically open their eyes.
This form of predictability favours the string interpretation of
number entry user interfaces (section II-A).

Predictability does not apply only to isolated devices: pre-
dictability is with reference to what the user knows, and
what the user has learned from use of other related systems.
We need to reduce transfer errors, which occur when a
user performs the right actions on the wrong device. We
should be developing a new, more dependable and predictable
user interface standard. Perhaps there should be a conformity
certificate or badge with all new, improved user interfaces? The
certificate or other identifying markings should be indelible so
that they are present not just during purchase or procurement,
but to reassure users any time in the future life of the product
[44]. Ideally, in critical domains, only certified improved user
interfaces should be used.

B. Completeness of requirements

Always, the completeness of what we want must be ques-
tioned. Requirements and specification may seem correct and
consistent, but there are often additional factors that have not
been considered — “unknown unknowns.” They will be imple-
mented following arbitrary and often unnoticed choices. For
example, on many devices, when the delete key is pressed the
display content visually moves right. In the special case that
all digits displayed are the same, “moving right” is visually
indistinguishable from deleting the left-most digit, which is
unfortunate because the right-most digit has been deleted. This
confusion is eliminated by left-justifying the display, or by
animating it moving right (which is not possible on seven
segment displays). Indeed, the Hewlett-Packard 20S (produced
1988–2003) had a left-justified display and a delete key, so
there is a precedent. The point is that a design choice can be
made with no representation in the program or requirements.
Too often design decisions are justified after the fact for no
reason better than avoiding the cost of improving them.

When a program fails to work this cannot be denied: the
program code must be wrong; but when a user interface fails
there is a temptation to say the user is wrong, then the program
behind the user interface does not need correcting, since the
user needs to learn how to use it properly. Neither users nor
designers want to be told they are “wrong” and it is easy to see
that a culture of denial arises. Moreover, people do not make
mistakes they notice — mistakes happen because the errors

are unnoticed: all of us are therefore very weakly aware of
problems with user interfaces.

Another reason for denial is that finding user interface bugs
is tedious, and few users (or empirical experiments) are per-
sistent enough to uncover bugs thoroughly — and when bugs
are found they may be hard to notice and are certainly hard to
reproduce from memory. Often users think bugs are their own
fault and having problems with computers is embarrassing,
so bugs are under-reported and hence requirements persist in
being incomplete.

C. Misconceptions of usability

After just programming and not thinking about user inter-
face properties, the next most common problem is confusing
speed, error tolerance and flexibility for usability. For example,
allowing a user to change the sign of a number anywhere might
appear to be more usable than a more restictive approach.
However, occasionally, the user (and, as we have seen, the
programmer too) will get confused and the consequence is an
error which might result in a catastrophe. The minor delay
treating change sign properly is negligible compared to the
delay of sorting out a catastrophe. In other words, usability
has to be seen in a larger context: speeding up number entry
should not be confused with usability.

D. The need for experiments and standards

The HR-150TEC has a double zero key 00 that probably
speeds up number entry. It reduces keystrokes needed for
numbers with consecutive zeros, but it slows down the user
because there are more keys to choose from and the user has
to be more careful to press the correct key from the larger
number of keys. It also introduces a new uncertainty: what
does 00 ← do? Potentially, correcting errors is so slow
that on average any gain is lost; we do not know.

The HR-150TEC implements delete as deleting digits ig-
noring decimal points, so 00 ← = 0 (except when the
display is too small to display all the zeros). I happen to think
this is wrong, but the HR-150TEC is marketed to accountants,
and I am not an accountant and I have insufficient insight into
how they expect numbers to work. One should do experiments
to establish how the intended users actually work: find out
which design lowers errors; secondly, establish whether the
potential confusion of a feature warrants removing the feature
from the design. One should also conform to standards: for
medical devices, placing 0 next to • is known to be a
bad design choice [10]; the HR-150TEC places 00 next to it
(see figure 2 and section II-M), and may be a worse decision.

VIII. CONCLUSIONS

User interfaces for number entry present a confusing variety
of inconsistent design decisions, even across models from the
same manufacturer. One imagines that user interface design
for number entry is thought to be so easy that it is “just” pro-
grammed, and what happens happens without further thought.

User interface design has long emphasised “user centred
design” where improvements are sought through experiments

18

with users [20]. Our example of number entry shows that for
at least 30 years, user experiments with many number entry
systems have failed to identify easily-fixed defects.
• User interface design — HCI, human computer

interaction — needs to mature and include formal
methods in its armoury of tools.

This paper introduced a notation to help do this. Moreover,
the solutions suggested here can be implemented with little
disruption, little more than upgrading firmware.

There is nothing special about number entry, other than fre-
quently occurring in safety critical applications. Number entry
seems simple, but few user interfaces manage to implement
it well, even though the syntax for Arabic numerals is theo-
retically sorted out. Many other types of user interface, from
TV remote controls to spreadsheets, from wifi to document
processing, all have defective user interfaces, but their bugs
are harder to articulate and perhaps much harder to reach
consensus over: it is easy to say that 2 7 • 5 should
behave like 27.5, but it is much more tedious to write down
rules for a user’s wifi configuration. The user interface should
not be ignored by formal methods.
• Formal methods needs to develop notations and tools to

help specify and manage user interaction.
If we do this, and in particular design out errors users are

unlikely to notice, then we will get closer to Hoare’s vision,
“it will be possible to place great reliance on the results of the
program” [13].

Acknowledgements: This research was funded by the UK
Engineering and Physical Sciences Research Council (EPSRC)
Grant numbers [EP/G059063, EP/K504002, EP/L019272/1].
Paul Cairns, Abigail Cauchi, Michael Harrison, Paolo Masci,
Gordon Pace and Richard Young all made many very valuable
comments for which the author is grateful. The Medical De-
vice PnP group at Massachusetts General provided laboratory
facilities for which we are grateful.

REFERENCES

[1] M. G. A. Ament, A. L. Cox, A. E. Blandford & D. P. Brumby,
“Making a Rask Difficult: Evidence that Device-oriented Steps are
Effortful and Error-prone,” Journal of Experimental Psychology:
Applied, 19(3):195–204, 2013.

[2] P. Cairns, M. Jones and H. Thimbleby, “Usability Analysis with
Markov Models,” ACM Transactions on Computer-Human Interaction,
8(2):99–132, 2001.

[3] P. Cairns & H. Thimbleby, “Reducing Number Entry Errors: Solving a
Widespread, Serious Problem,” Journal Royal Society Interface,
7(51):1429–1439, 2010.

[4] A. Cauchi, A. Gimblett, P. Curzon, P. Masci & H. Thimbleby, “Safer
“5-key” Number Entry User Interfaces using Differential Formal
Analysis,” Proceedings BCS Conference on Human-Computer
Interaction — BCS-HCI, XXVI:29–38, 2012.

[5] R. L. Deininger, “Human Factors Engineering Studies of the Design
and Use of Pushbutton Telephone Sets,” Bell System Technical
Journal, 39(4):235–255, 1960.

[6] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
[7] K. Fu. “Trustworthy Medical Device Software,” in Public Health

Effectiveness of the FDA 510(k) Clearance Process, Institute of
Medicine, National Academies Press, 2011.

[8] S. W. Gilroy & M. D. Harrison, Interactive Systems, Design
Specification, and Verification: 12th International Workshop, DSVIS
2005, Lecture Notes in Computer Science, 3941, Springer-Verlag New
York, 2005.

[9] F. G. Halasz & T. P. Moran, “Mental Models and Problem Solving in
Using a Calculator,” Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems, CHI’83, 212–216, 1983.

[10] S. Halls, Design for patient safety: A guide to the design of electronic
infusion devices, National Patient Safety Agency, 2010.

[11] M. D. Harrison & H. Thimbleby, Formal Methods in Human
Computer Interaction, Cambridge University Press, 1990.

[12] H. R. Hartson, P. D. Gray, “Temporal Aspects of Tasks in the User
Action Notation,” Human-Computer Interaction, 7(1):1–45, 1992.

[13] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Communications of the ACM, 12(10):576–580 & 583, 1969.

[14] International Standards Organization, Ergonomics of Human-system
Interaction — Part 210: Human-centred Design for Interactive
Systems, ISO 9241–210, 1st ed., 2010.

[15] Institute for Safe Medication Practices, “ALERT: Potential for “Key
Bounce” with Infusion Pumps,” ISMP Canada Safety Bulletin,
6(6):September 7, 2006. www.ismp-canada.org

[16] Institute for Safe Medication Practices, Fluorouracil Incident Root
Cause Analysis, 2007. www.ismp-canada.org

[17] Institute for Safe Medication Practices, List of Error-prone
Abbreviations, Symbols and Dose Designations,
www.ismp.org/tools/abbreviations, (Accessed December 2013).

[18] P. N. Johnson-Laird, Human and Machine Thinking, Lawrence
Erlbaum Associates: Hillsdale, NJ. 1993.

[19] J. C. Knight & N. G. Leveson, “A Reply to the Criticisms of the
Knight & Leveson Experiment,” SIGSOFT Software Engineering
Notes, 15:24–35, 1990.

[20] T. K. Landauer, The Trouble with Computers, MIT Press, 1995.
[21] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P.

Curzon & H. Thimbleby, “The Benefits of Formalising Interactive
Number Entry Case Studies with Drug Infusion Pumps,” Innovations
in Systems and Software Engineering, 1–21, 2013.

[22] P. Masci, Y. Zhang, P. Jones, P. Curzon & H. Thimbleby, “Formal
Verification of Medical Device User Interfaces Using PVS,”
Proceedings 17th International Conference, Fundamental Approaches
to Software Engineering, FASE 2014, Lecture Notes in Computer
Science, 8411:200–214, 2014.

[23] R. E. Mayer & P. Bayman, “Psychology of Calculator Languages: A
Framework for Describing Differences in Users’ Knowledge,”
Communications of the ACM, 24(8):511–520, 1981.

[24] D. A. Norman, “Design Rules Based on Analyses of Human Error,”
Communications of the ACM, 26(4):254–258, 1983.

[25] P. Oladimeji, A. Cox & H. Thimbleby, “Number Entry Interfaces and
their Effects on Errors and Number Perception,” Proceedings IFIP
Conference on Human-Computer Interaction — Interact 2011,
178–185, 2011.

[26] K. A. Olsen, “The $100,000 Keying Error,” IEEE Computer,
41(4):1005-108, 2008.

[27] F. Paternò, C. Santoro & J. Ziegler, eds., EICS’14: Proceedings of the
2014 ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, ACM, New York, NY, USA, 2014.

[28] K. R. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge, Routledge, 2nd ed, 2002.

[29] J. Reason, Human Error, Cambridge University Press, 1990.
[30] C. Runciman & H. Thimbleby, “Equal Opportunity Interactive

Systems,” International Journal of Man-Machine Studies,
25(4):439–451, 1986.

[31] , J. Rushby, “Logic and Epistemology in Safety Cases,” SafeComp
2013: Proceedings of the 32nd International Conference on Computer
Safety, Reliability, and Security, Lecture Notes in Computer Science,
8153:1–7, Springer-Verlag, 2013.

[32] J. M. Spivey, Z. Notation: A Reference Manual, Prentice Hall
International series in Computer Science, 1988.

[33] H. Thimbleby, “Guidelines for ‘Manipulative’ Text Editing,”
Behaviour and Information Technology, 2(2):127–161, 1983.

[34] H. Thimbleby, User Interface Design, Addison-Wesley, 1990.
[35] H. Thimbleby, “A New Calculator and Why it is Necessary,”

Computer Journal, 38(6):418–433, 1995.
[36] H. Thimbleby, “Calculators are Needlessly Bad,” International Journal

of Human-Computer Studies, 52(6):1031–1069, 2000.
[37] H. Thimbleby, “Permissive User Interfaces,” International Journal of

Human-Computer Studies 54(3):333–350, 2001.
[38] H. Thimbleby, “Interaction Walkthrough: Evaluation of Safety Critical

Interactive Systems,” Proceedings Design, Specification, and
Verification of Interactive Systems — DSVIS, Lecture Notes in
Computer Science, 4323:52–66, 2007.

[39] H. Thimbleby, Press On, MIT Press, 2007.

19

[40] H. Thimbleby, “Heedless Programming: Ignoring Detectable Error is a
Widespread Hazard,” Software—Practice & Experience,
42(11):1393–1407, 2012.

[41] H. Thimbleby, “Reasons to Question Seven Segment Displays,”
Proceedings ACM Conference on Computer-Human Interaction —
CHI, 1431–1440, 2013.

[42] H. Thimbleby, “Improving safety in medical devices and systems,”
Proceedings of the IEEE International Conference on Healthcare
Informatics (ICHI 2013), 1–13.

[43] H. Thimbleby & A. Gimblett, “Dependable Keyed Data Entry for
Interactive Systems,” Proceedings FMIS 2011, 4th International
Workshop on Formal Methods for Interactive Systems, Electronic
Communications of the EASST, 45:1/16–16/16, 2011.

[44] H. Thimbleby, A. Lewis & J. G. Willians, “Making Healthcare Safer
by Understanding, Designing and Buying Better IT,” Clinical
Medicine, 2015 (in press).

[45] W. Thimbleby, “A Novel Pen-based Calculator and its Evaluation,”
Proceedings third Nordic Conference on Human-Computer Interaction,
NordiCHI’04, 445–448, 2004.

[46] W. Thimbleby & H. Thimbleby, “Mathematical Mathematical User
Interfaces,” Proceedings Engineering Interactive Computer Systems —
EICS2007/DSVIS, Lecture Notes in Computer Science, 4940:519–535,
2008.

[47] R. M. Young, “The Machine Inside the Machine: Users’ Models of
Pocket Calculators,” International Journal of Man-Machine Studies,
15(1): 51–85, 1981.

Harold Thimbleby PhD, CEng, FIET, FLSW,
FRCP (Edinburgh), Hon. FRSA, Hon. FRCP is
at Swansea University, Wales. His research focuses
on human error and computer system design, partic-
ularly for healthcare.

In addition to over 388 peer reviewed publica-
tions, Harold has written several books, including
Press On (MIT Press, 2007), which winner of the
American Association of Publishers best book in
computer science award. He won the British Com-
puter Society Wilkes Medal. He is emeritus Gresham

Professor of Geometry (a chair founded in 1597), and has been a Royal
Society-Leverhulme Trust Senior Research Fellow and a Royal Society-
Wolfson Research Merit Award holder. He has been a member of the UK
Engineering and Physical Sciences (EPSRC) research council Peer Review
College since 1994.

See his web site, www.harold.thimbleby.net, for more details.

BRIEF DESCRIPTION OF USER INTERFACE MODELS

In addition to common PC user interfaces, a variety of
devices were referenced in the body of the paper. All devices
discussed in this paper, summarised in the table below, have
number entry user interfaces with numeric keys very similar to
that shown in figure I, except the BBraun Infusomat (which
has four arrow keys) and the GE Dash 4000 (which has a
knob).

Infusion pumps and syringe drivers are medical devices
used for automatically delivering drugs to patients. They may
contain calculators to calculate doses and delivery rates. A
syringe driver holds a syringe whereas an infusion pump is
typically used to deliver drugs from a bag. A syringe driver
typically knows the length, diameter and make of the syringe
and possibly the drug itself, whereas with an infusion pump
the drug bag is separate, so typically an infusion pump only
knows the rate of flow, not the volume or drug.

Device Type
Abbott Gemstar Infusion pump
Abbott AimPlus Infusion pump
Alaris PC Infusion pump
Apple iPhone Smart phone (touch screen)
Baxter Colleague 3 Infusion pump
BBraun Infusomat Infusion pump (arrow keys)
BBraun Vista Basic Infusion pump
Canon F-502G Calculator
Casio DJ-120D Calculator
Casio fx-85GT Calculator
Casio HR-150TEC Calculator (paper roll record)
Casio HS-8V Calculator
Casio MU-120T Calculator
Casio OfficeCalc 100 Calculator
CME BodyGuard 545 Infusion pump
DRE Avanti Plus Infusion pump
DRE SP1500 Plus Syringe pump
GE Dash 4000 Patient monitoring system (knob)
Graseby 500 Infusion pump
Graseby 3400 Syringe driver
Graseby Omnifuse Syringe driver
HP 20S Calculator
HP EasyCalc 100 Calculator
HP SmartCalc 300s Calculator
Samsung Android Tablet (touch screen)
Sigma 6000 Plus Infusion pump
Sigma 8000 Plus Infusion pump
Sigma Spectrum Infusion pump
SK Medical SK-500III Syringe driver
SK Medical SK-600III Infusion pump
Upreal UPR-900 Infusion pump
Upreal CTN-TCI-V Syringe driver

