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ABSTRACT

Cross-borehole radar (XBHR) is widely used for the quantification of pore-scale liquid water

in geological materials, inferred from bulk velocity variations caused by differences in electro-

magnetic properties between the water and the surrounding material. XBHR can accurately

and repeatedly measure variation at depth, with sampled material remaining under natural

stresses, whilst maintaining good lateral sampling. However, even small errors in measured

radar velocities result in large errors in water-content estimates, emphasising the need to

both quantify and minimize errors. Here, we rigorously assess the sources of uncertainty

in XBHR surveys undertaken in a glaciological setting. We summarise and quantify the
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three main areas of uncertainty in data collection: [1] instrument time-drift, [2] first-break

picking, and [3] borehole geometry. Our analysis of field data shows that contemporary

acquisition procedures can produce velocity errors of ±3.0% (±0.0050 m/ns), equivalent

to ±0.84 volumetric % water-content. We propose several revisions to produce improved

data acquisition. Through enhancement of existing techniques, the velocity uncertainties

are improved to ±1.5%. We also propose the measurement of borehole diameter when hot-

water drilling, which can hypothetically further reduce the velocity uncertainty to ±0.8%,

equivalent to ±0.2 volumetric % water-content. The need for such precise measurement is

clear because an increase in englacial water-content, from 0 to 0.8%, has been proven to

triple the strain rate and soften the ice. Liquid water between ice crystals has also been

linked to faster velocities in ice streams, and surging events.
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INTRODUCTION

Measurement of pore-scale water is important in geological settings; in glaciological en-

vironments, water is observed within bubbles, or in veins between grains (Mader, 1992)

equivalent to pore-space in rocks (Endres and Knight, 1991). An increase in ice water-

content from 0% to only 0.8% will decrease ice viscosity (Lliboutry, 1976) and triple the

strain rate (Duval, 1977).

Englacial liquid water-content varies greatly, both laterally (Pettersson et al., 2004)

and vertically (Murray et al., 2000a) with typical values between 0.5 and 1.5 volumetric %

water (Zryd, 1991), with some measurements up to 4% in ice (Macheret and Glazovsky,

2000; Moore et al., 1999) and 9% in firn (Arcone, 2002). Direct, thermodynamic meth-

ods measure the speed of propagation of a freezing front, which is directly related to the

water-content and are considered highly sensitive to the quantity of liquid water in an ice

volume (Hutter et al., 1990). However, thermodynamic methods commonly require ice core

removal from the natural stress regime, are non-repeatable, and limit measurements to the

sample point (Duval, 1977; Vallon et al., 1976; Zryd, 1991). Geophysical methods sam-

ple representative in-situ ice volumes, quantifying liquid-water variation through relative

changes in electromagnetic velocity. Surface acquisition provides spatially extensive data,

but the presence of water causes signal loss (attenuation), reducing accuracy at depth, and

requiring knowledge of the near-surface properties (Pettersson et al., 2004). The choice

between thermodynamic and surface geophysical methods requires a compromise between

accuracy and spatial sampling.

Cross borehole radar is widely used for the determination of liquid water-content in many

geological materials, calculated from the velocity variations caused by the extreme differ-
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ences in electromagnetic properties between water and the surrounding material (Alum-

baugh et al., 2002; Binley et al., 2002); tiny changes in water-content (∼0.4%) are repre-

sented by equally minute variations in radar velocity for glacier ice (±0.003 m/ns, Gusmeroli

et al., 2010). Removing the need for knowledge of near-surface properties, borehole surveys

significantly improve the accuracy of measurements at depth relative to surface surveys

(Murray et al., 2007). Sampling can be completed over large depth ranges, at multiple loca-

tions, with several survey orientations at each site (Hubbard and Nienow, 1997; Gusmeroli,

2010); use of each borehole is typically possible in temperate glaciers up to several days

after drilling (Jansson and Näslund, 2009).

Cross borehole radar surveys use transmitter and receiver antennae placed within adja-

cent boreholes, and can be acquired as zero-offset profiles, or multi-offset gathers (Annan,

2005). The radiated electromagnetic energy propagates directly through the subsurface

at a speed determined by the material properties between the two boreholes, e.g. dielec-

tric permittivity (ε) - a measure of a material’s ability to store charge and inhibit current

flow (Turner and Siggins, 1994). For a zero-offset profile, the antennae are positioned at

equal depths, and moved a fixed depth-increment (∆z) between measurements. This is a

quick and simple survey method used to observe a 1D velocity variation with high spatial

resolution and large sampling volume (Huisman et al., 2003; Gusmeroli et al., 2010). For

multi-offset gathers, one antenna location remains fixed and data are recorded while the

other is moved within the adjacent borehole; the fixed depth antenna is then moved by ∆z

and the process repeated. Multi-offset gathers sample the same material volume from a

range of orientations, delivering a 2D heterogeneous property map of the volume between

the boreholes (Binley et al., 2002). Data collection is time consuming (Annan, 2005), and

interpretation of subsurface velocities requires the use of inversion algorithms (Peterson,
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2001; Oberröhrmann et al., 2013). This study focuses on zero-offset profiles, for their po-

tential for greater spatial sampling, while maintaining vertical precision (Murray et al.,

2007). However, the relationship between these different acquisitions means the following

discussion is still highly applicable to data from multi-offset gathers (Oberröhrmann et al.,

2013).

This paper aims to evaluate the uncertainties affecting velocities measured from cross-

borehole radar surveys, during data collection and processing. We quantify the velocity

model uncertainties and assess the impact they have on the water-content estimation. We

evaluate the uncertainties in field data acquired with “standard” data collection, and the

implication this has on property analysis. We find the velocity errors are far smaller than

those calculated for surface data (Barrett et al., 2007; Murray et al., 2007). This study is

motivated by a specific glaciological application, where the uncertainties have a relatively

greater influence due to the large difference in dielectric properties, but its principles are

generic, and applicable to other subsurface settings (although in them, the magnitude of

implied uncertainties may differ).

The presence of temperate ice (containing water inclusions) has been associated with fast

ice velocities at the base and shear margins of ice streams (Lüthi et al., 2002; Schoof, 2012)

and during glacial surging (Murray et al., 2000b; Cohen, 2000). Quantifying englacial water-

content is key to understanding the rheological properties of temperate ice, and improve any

predictions of ice flow rate. The current collection procedure is not sufficient to accurately

determine the water-content for rheological analysis. We suggest improvements to data

acquisition and processing that reduce uncertainties enough to calculate ice properties with

a usable accuracy and precision.
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THEORETICAL VELOCITY ANALYSIS

Improving the accuracy of the water-content calculation first requires consideration of the

data collection procedure, to help minimise uncertainties on the velocity-model. A theo-

retical survey is summarised, quantifying the uncertainty at each step. We also assess the

impact these errors have on estimates of microscale water-content.

Cross borehole radar

Cross borehole radar data are collected in down-hole (antennae moved from the surface to

the base of the borehole) or up-hole (base to surface) directions. This records the time, ta

(Figure 1a), for the electromagnetic energy to propagate between two boreholes. Additional

measurements of the borehole inclination (deviation from vertical), and differential dGPS

locations of the borehole positions on the ice surface are used to interpret their separation.

The main controls on borehole geometry when drilling with hot water are drill speed, water

temperature, and driller experience, hence the borehole geometry (inclination, diameter) can

vary significantly from surface to base. A magnetic inclinometer tool is used to measure

borehole dip and dip-azimuth, calculating deviation from vertical; when combined with

dGPS measurements of borehole surface locations, we can calculate borehole separation

(S), and changes therein with depth.

The radar data acquisition includes collection of the main borehole data (Figure 1a),

as well as calibration data, acquired prior to and after the main survey with antennae

placed at predefined offsets (Xi) on the ice surface (Oberröhrmann et al., 2013). Additional

calibration data can be collected during data acquisition for longer total survey times, e.g.

every 10 traces during a multi-offset gather (Binley et al., 2002; Oberröhrmann et al., 2013).
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Calibration trace arrival times at all offsets should be equal before (TS1) and after (TS2) the

survey (Binley et al., 2002; Alumbaugh et al., 2002). If TS1 6= TS2, a time drift (TD) has

occurred (Gusmeroli, 2010); Sensors & Software Inc. (2006) suggest this may occur due to

dirty optical cables. Some studies apply a linear drift-correction in an attempt to remove

the effect, removing 0 ns from the first trace, and the total drift (TD) on the final trace

(A.Binley, personal communication, 17/11/2014). The velocity of electromagnetic waves

in air (vA) is known (0.3 m/ns), therefore we can calculate the appropriate time shift to

start the data record at the zero-offset time (t0; Gusmeroli, 2010) - a process known as the

Time-Zero Correction:

t0 =
vA
Xi
− TS1 + TS2

2
. (1)

The time-zero correction allows the correct interpretation of energy travel times (ta) within

the main data; when combined with the calculated borehole separation, the velocity at each

depth within the borehole can be inferred.

Uncertainties

Each stage of data collection and processing incurs uncertainty, affecting the calculated

velocity model, which we can separate into spatial and temporal errors. Here we sum-

marise and quantify the significant uncertainties on cross-borehole radar velocity models,

to determine the accuracy in our results, and to attempt to mitigate their effects.
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First-break picking

Radar data are considered minimum-phase, where the amplitude is 0 at the onset of energy,

followed by a rapid increase (the first-break) to an absolute maximum amplitude at the first

peak (Schoenberger, 1974). Picking the first-break (TFB) is standard practice to measure

energy arrival times. In noise-free data, this is relatively easy; in low amplitude, high noise

data, or where multiple arrivals interfere, the first-break may not be clear (Figure 2).

The absolute maximum amplitudes (peaks and troughs in the data) are more consistent

and theoretically easier to pick; they can be used to calculate the first-break by removing

the appropriate portion of the wave period (λt):

TFB = TP −
2n− 1

4
λt, (2)

where TP is the arrival time of nth “peak” of energy. It is also unlikely digital sample times

(dt) coincide precisely with the energy arrival, adding an additional uncertainty of 1
2dt to

temporal error assessment. The consistency between picking first-break (FB) or calculating

first-peak (FP) arrival times can be used to assess data reliability, as does the measurement

of up- and down-hole data. Zero-offset travel time picks have also been used to validate

arrival times calculated in equivalent multi-offset gather data (Oberröhrmann et al., 2013),

which further emphasises the necessity for accuracy.

Instrument drift

We found that time-drift occurs randomly, both gradationally (across many traces) and

instantaneously (within a single trace), in both positive and negative time-jumps. The
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effect of time-drift on the velocity model is difficult to quantify reliably, particularly for an

inadequately defined time-drift distribution. Therefore, we assume maximum error, where

the total drift is applied instantaneously in the first trace affecting the entire model. We

initially create a set of synthetic travel times for a range of borehole separations and ice

radar velocities. We add an instantaneous time-drift (in ns) to the synthetic travel times and

calculate new, drift-influenced velocity models. The difference between the initial, synthetic

velocities, and the drift-influenced velocity models are calculated using a root-mean square

deviation for a range of time-drifts.

Unsurprisingly, large time drifts and/or small borehole separations (S) result in the

greatest uncertainty, e.g. TD = 2 ns produces uncertainties of ±0.0027 m/ns and ±0.0014

m/ns, at S = 20 and 40 m, respectively. This uncertainty is reduced by ∼40% by applying

the linear drift-correction (removing 0 ns from the first trace, and the total drift (TD) on

the final trace). The difference between cold (water-free) and temperate ice can be as little

as ±0.003 m/ns (Gusmeroli et al., 2010), hence we apply an error limit of ±0.002 m/ns.

For example, where S = 20 m, TD > 1.5 ns results in uncertainty > 0.002 m/ns - hence

surveys where TD >1.5 ns are considered unreliable.

Misplaced surface antennae can cause apparent time drift where TS1 6= TS2. The York

et al. (2004) regression method can be applied to travel times for multiple offsets, calculating

a linear fit between points with errors (in time and space), and a more accurate t0. Small

offsets (< borehole separation), where antennae are positioned with a tape measure have

larger associated errors (dX) due to human error. Where offset is equal to borehole sepa-

ration, antennae positioning is effectively recorded by dGPS and highly accurate. Where

surface data collected at a single offset is used to calculate t0, the error (dt0) is calculated

using:
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dt0 =
dX

vA
+

1

2
dt, (3)

where vA is the electromagnetic velocity in air.

Time-drift can have a substantial influence on the output velocity model, as it influences

both the time-zero correction and the main data picks. It is necessary to collect multi-offset

surface data, with at least one large offset (≥ borehole separation) to ensure accurate

determination of TD and t0, and prevent unnecessary rejection of good data.

Borehole geometry: diameter

The significantly lower electromagnetic velocity in water, and the inability of radar to

distinguish between micro- and macro-scale water bodies (e.g. veins between crystals, and

crevasses, respectively) mean the in-borehole energy travel must be calculated to avoid

underestimating the ice velocity. Borehole diameter measurements are currently not a

standard acquisition procedure and there is no indication of how diameter miscalculations

affect the velocity model.

When hot-water drilling, borehole diameter is mainly controlled by water circulation.

During processing, boreholes are generally assumed tubular with a constant diameter. Wa-

ter circulation from steam drilling causes a 1 cm diameter variation over 30 m depth (Heucke,

1999). Schwerzmann et al. (2006) measured borehole diameter with an 8-arm calliper tool

after fixed-width drilling, observing increased borehole diameter and eccentricity in the top

5 - 15 m, relative to the rest of the borehole. We argue diameter variation from hot-water

drilling is even larger.

The total travel time of electromagnetic energy is accumulated from propagation through
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each medium along the path length; the travel time within the borehole is simplified to

1
2DW /vW , where DW is the cross-hole diameter of the borehole (Figure 1). Similarly, the

travel time within ice is (S − DW )/vI , assuming the borehole diameters are equal. The

total travel time can then be calculated:

Ttotal =
DW

vW
+
S −DW

vI
. (4)

Again, synthetic travel times are calculated for a range of borehole separations and

input ice velocities, and a borehole diameter decreasing with depth at the rate measured

by Heucke (1999) - a minimum error when hot-water drilling. The root-mean squared

deviation is calculated between the synthetic-velocities and those calculated for a range of

assumed borehole diameters. Unsurprisingly, the uncertainty is greatest for large diameter

errors, and/or smaller borehole separations, e.g. ±3 cm (20%) diameter error, produces

uncertainties of ±0.0011 m/ns and ±0.0005 m/ns, at S = 20 and 40 m, respectively.

These errors will likely be larger when hot-water drilling, especially for inexperienced

drillers. The diameter can be measured synchronously with the inclinometer survey, main-

taining the tool position in the borehole centre, as shown by Schwerzmann et al. (2006).

This measurement significantly reduces the diameter uncertainty, hence the effect on the

velocity model is considered negligible.

Borehole geometry: inclination

Standard velocity calculations assume a straight, horizontal path between two vertical tubu-

lar boreholes, with centrally positioned antennae. Borehole inclination is measured to in-
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terpret variation in antenna separation and avoid large spatial errors. The difference in

dielectric properties of ice and water implies a small critical angle (θc = sin−1(vI/vW ))

where the energy is refracted along the ice-water interface rather than transmitted in the

second medium. Assuming radial energy dispersion from the antenna, there are only a

small range of angles within the borehole where energy is transmitted, affected by the in-

ternal wall angle and cross-sectional eccentricity. The antenna will probably rest obliquely

to the borehole axis when the latter is not vertical (Figure 1b; Schwerzmann et al., 2006).

Vertical-depth and borehole-depth will also be non-equal for inclined boreholes, resulting in

an angled energy travel path (Figure 2). The borehole antenna can be approximated by a

vertical dipole, with the strongest energy radiated horizontally from the antenna (Tronicke

and Knoll, 2005); this can result in signal loss where the direct energy path is non-parallel

to the surface.

The true energy path will likely be near-perpendicular to the internal borehole edge,

which can incur additional path length within water and ice. The effect is largest in-line

with borehole dip-azimuth, and weakest perpendicular to this. For example, a dip of 45◦

(observed in real data) means an extra 4 cm is travelled in ice, and 0.3 cm in water, assuming

b/a is 1, where a and b are the long and short axes of an ellipse, respectively. Refraction of

energy can also reduce recorded signal strength.

Correcting for the energy refraction requires precise knowledge of the internal borehole

shape, resulting in insignificant improvement of the uncertainties. Realistically, borehole

walls undulate as heterogeneous ice properties result in different melting speeds; we consider

this equivalent to miscalculating the spatial positioning, and incorporate it into the borehole

separation error (dS):
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dS =
[
d2N + d2E + d2I1 + d2I2

]1/2
, (5)

(Topping and Worrell, 1957), where dN and dE are Northing and Easting dGPS location

errors (±5 cm), and dI1 and dI2 are inclination uncertainties calculated for each borehole

relative to the other. Magnetic inclinometers are accurate to ±0.1◦, but it is important to

use a centralizer to accurately measure true borehole deviation.

Revised data acquisition

Standard data collection involves measurement of the borehole inclination and surface loca-

tions, in addition to the radar data, which includes borehole and surface calibration data.

Herein, we propose acquiring surface calibration data at multiple offsets, which will im-

prove accuracy in the time-zero correction and drift calculation. Data acquisition should

be repeated, e.g. up- and down-hole, while avoiding data clipping, ensuring precision in the

calculated first-break times. We also propose measuring borehole diameters during the data

collection synchronously with inclinometer data (Schwerzmann et al., 2006), to account for

diameter variations caused by water circulation and heterogeneous ice properties.

Water-content estimation

Interpreting changes in the subsurface properties (e.g. water-content) from changes in mea-

sured bulk velocity requires various assumptions about the pore-structure geometry, and/or

dielectric properties of the constituent parts. The majority of effective medium models con-

sider variations in the dielectric permittivity (ε), which is inversely proportional to the

radar velocity, v = c/
√
ε, where c is the electromagnetic velocity in a vacuum (≈ vA). For
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example, the Looyenga (1965) model assumes an isotropic arrangement of two phases (En-

dres et al., 2009), appropriate for large concentrations of spherical air and water inclusions,

hence it is used to estimate water-content in snowpack (Heilig et al., 2009). Gusmeroli et al.

(2010) expanded two-phase Looyenga formula for ice, accounting for air by removing the

va component from the measured velocities, to calculate a bulk velocity within just ice and

water.

We employ the three-phase Complex Refractive Index formula, which weights the di-

electric permittivities (ε) of the each material by their respective fractional volumes, to

calculate the total (bulk) permittivity of a mixture:

√
εm = (1− φw − φa)

√
εi + φw

√
εw + φa

√
εa, (6)

(Greaves et al., 1996). With prior knowledge of the fractional air-content, Equation 6 can

be rearranged used to calculate the water-content:

φw =
c/vm −

√
εi + φa(

√
εi −
√
εa)

√
εw −

√
εi

. (7)

The inferred values of φw are the closest approximation of the arithmetic average of the

Hashin-Shtrikman bounds (Mavko et al., 2009), hence produce the best estimate of water-

content without knowledge of the porescale geometry. The radar velocity in ice (vi ≈ 0.168

m/ns) is significantly faster than in water (vw ≈ 0.032 m/ns), but significantly slower than in

air (va), thus ignoring or underestimating air-content will underestimate the water-content.

Based on Equation 7, an uncertainty in the measured bulk velocity (vm) of ±0.034

m/ns (±2%, where vm = 0.168 m/ns) results in a ±0.56% water-content error, assuming
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a known φa. This error is relatively large for low porosities, being a 93% error for a φw of

0.6%, for example. A ±2% air-content uncertainty results in a tiny ±0.05% water-content

error. Although we cannot ignore φa, it does not require a highly precise calculation to

significantly improve the overall water-content error.

In addition, the dielectric permittivity of water (εw) is temperature-dependent. Varia-

tion of εw with temperature (< 0◦C) is approximated by Kaatze (2007), calculated by:

εw = 94.9 exp[−5.63× 10−3 (T − 258.15)], (8)

where T is in Kelvin. Air-content is also temperature- and pressure-dependent, however,

sensitivities to these parameters are very small (5×10−6/◦C and 100×10−6/ atm; Heidary,

2010), therefore can be assumed negligible.

There are several parameters affecting the dielectric permittivity of ice, including tem-

perature, density, crystal orientation, and impurity content (Fujita et al., 2000). The

temperature-dependence of εi is estimated by:

εi = 3.188 + 9.1× 10−4T, (9)

(Mätzler and Wegmüller, 1987), where T is temperature in ◦C. Density changes result from

increased overburden pressure (Fujita et al., 2000); the most significant variations are caused

by air bubbles within the ice - accounted for by using a three-phase model. We estimate the

decrease in air-content with depth using a pressure curve (Bradford et al., 2009). Preferred

crystal fabrics develop in regions of high-shear (Fujita and Mae, 1993), but only changes

ice permittivity (εi) by ∼ 1% (Johari and Charette, 1975; Fujita and Mae, 1993; Bohleber
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et al., 2012), therefore this effect is assumed negligible. Increased impurity concentration is

strongly associated with a linear decrease in εi, measured by the simple relation:

εi = εI +
dεi
dC

C, (10)

(Fujita et al., 2000), where C is the impurity concentration, εI is the dielectric permittivity

of pure ice. At 100 MHz and ∼ 0◦C, dεi
dC is 40, however, this value is strongly temperature-

and frequency-dependent (Fujita et al., 2000; Bohleber et al., 2012). Impurities also affect

the ice conductivity, increasing signal attenuation; the influence depends on the impurity

type, concentration and location e.g. soluble vs insoluble. These properties will vary based

on the location of the study.

RESULTS

We quantify uncertainties in cross-borehole radar surveys, comparing data acquired using

the previously outlined standard field procedure, and through a more detailed data acqui-

sition. We identify the subsequent effect of these uncertainties on the calculated water-

content. We also identify the hypothetical improvement that results from the application

of all our revised field practices on both data examples.

Data collection

The data were collected in summer 2009, in the ablation area of the mountain glacier Stor-

glaciären, Arctic Sweden (67◦54′10”N, 18◦34′32”E). Storglaciären is 3.1 km long, with an

average thickness of 95 m (Jansson, 1996; Holmlund et al., 2005). The glacier is polyther-

mal, consisting mainly of temperate ice, containing water inclusions, with a 20 - 30 m thick,
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insulating cold-ice surface layer (Gusmeroli et al., 2012). The drill sites are located in the

upper (A) and middle (B) ablation area (Figure 3).

The cross-borehole data were collected with 100 MHz MALÅ Geoscience RAMAC GPR

Borehole Antennas. Measurements were taken between five borehole pairs at site A, and four

at site B, in 1 m depth-steps to the maximum borehole depth (46 - 112 m). The boreholes

were drilled using the Stockholm University hot water drill (Jansson and Näslund, 2009),

using heated glacial meltwater ejected at pressure through a conical drill tip at the end of a 2

m long rigid steel drill stem, which helps maintain the vertical borehole. The boreholes were

all terminated englacially to prevent drainage and interaction with the subglacial system

(Gusmeroli et al., 2010). Site A represents a thorough acquisition, closest to the revised

procedure, with surface data collected at multiple offsets, and the borehole data acquired

up- and down hole (Figure 4). Site B represents minimal acquisition, where surface data

are collected at only one offset, and the borehole data in the down-hole direction only.

Borehole surface locations were measured with a Trimble differential GPS system. Bore-

hole dip (γ) and dip-azimuth (Φd) were measured in 2 m depth steps using a MI-3 Magnetic

Inclinometer tool from Icefield Instruments Inc.; these data were collected on a palm device

and processed using Inclin (by Icefield Instruments Inc.). The depth of the inclinometer

is controlled by the user using a marked cable; the deviation in northing and easting is

calculated from the local declination. Incorrect declination creates large inaccuracies for

steeply inclined boreholes because they translate to errors in borehole separation and hence

the velocity model.
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Storglaciären Velocity models

We calculate time-drift in the data prior to the velocity model calculation; one profile from

site A, and two profiles from site B are determined unreliable due to excessive drift (resulting

in velocity model uncertainties >0.002 m/ns). Where data are collected down- and up-hole

(A), if the shift is gradational, and occurs in just the down- OR up-hole data, then it can

be quantified and removed. Where the drift is instantaneous, creating an anomalous time

jump, the correct first-break can be calculated from picking the peaks of the wavelet. If the

data were not repeated (up- and down-hole), this change would not be observed, and we

would be unable to conclude confidently that the calculated velocity model was accurate.

On average, we found that up- and down-hole travel times at site A differed by ±1 ns.

The velocity-depth models are calculated for each site using:

v =
(S −DW )

Ttot − DW
vW

, (11)

where Ttot is the total travel time, calculated by applying the Time-Zero Correction to the

first-break time picks. Average velocity models for each field site are represented in Figure 5

by solid (or dashed) lines, and model uncertainties as shaded regions; the values for each

site are also shown in Table 1 with one standard deviation (σ̃) indicating variation, and the

average error at the site (dv̄m).

The velocity model at site A (Figure 5, A) demonstrates a near-constant (0.169 m/ns)

velocity within the top 30 m, followed by a velocity increase to 0.171 m/ns at ∼60 m depth,

and then a decrease to 0.166 m/ns at ∼105 m. The average velocity for the site is 0.169

± 0.003 m/ns (1.5%). The velocity model at site B (Figure 5, B) demonstrates an average
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velocity of 0.168 ± 0.001 m/ns in the top 20 m, with a decrease to 0.165 m/ns at ∼23 m

depth, followed by a 2.4% velocity decrease down to 84 m. The average velocity for the site

is 0.165 ± 0.005 m/ns (3.0%); the uncertainties are larger at B than for site A.

Storglaciären Water-Content

We use the Complex Refractive Index equation (Equation 6) to estimate the ice properties

on Storglaciären. Thermistor measurements of the ice indicate a temperature variation be-

tween -5◦C to ∼ 0◦C (Gusmeroli et al., 2010), hence we can assume temperature-dependence

is negligible for all constituent parts. We approximate conductivity from ice lenses in snow-

pit data (Ingvander et al., 2013) to be ∼ 25µS/m, which agrees with low frequency mea-

surements made by Walford et al. (1987). We therefore assume the dielectric permittivities

of air and water are equal to 1 and 87.9, respectively (Murray et al., 2000b; Endres et al.,

2009), and ice to be equal to 3.188, as calculated by Bohleber et al. (2012) for ice using

100 MHz radar. We can also interpret any velocity variation on Storglaciären to be due to

changing ice properties.

We estimate the air-content based on the pressure curve from Bradford et al. (2009), as-

suming an exponential decrease from the surface due to pore-space compression; Gusmeroli

et al. (2010) predicted surface air-content between 3 and 4%. We use an iterative approach

to calculate water-content. First, an input air-content (φa, pressure curve) is used to infer

the water-content (φw). At all points where φw < 0, values are shifted to equal 0. A new φa

profile is calculated from the adjusted φw, and the same approach is applied, assuming φa

is not less than 0. This continues until φw, φa ≥ 0 is true at all depths. The final φa profile

is considered more reliable where there is minimal deviation from the original profile; large
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variation implies there are more complicated processes involved.

The average site water-content profiles are outlined in Figure 6a, with the air-content

estimations in Figure 6b. Both φw and φa are expressed as volumetric fractions. The average

water-content for each field site is also outlined in Table 1, with one standard deviation to

indicate variation, and the averaged site error (dΦm).

Site A demonstrates negligible water-content; for most of the profile, φw ≈ 0, with

anomalous increases at 50, 85, and 105 m. It also demonstrates an air-content profile that

significantly differs from the input. Site B produces a water-content with a distinct 2-layer

structure: the top 20 m has a water-content of 0.2%, increasing sharply at 21 m to 0.5%,

and stabilizing at 0.6% near 40 m depth. The profile increases again to 0.75% between

60 and 84 m depth. The top 5 - 10 m of profiles at both sites demonstrate significantly

increased water-content. The average water-contents from each site are: A = 0.06± 0.41%,

and B = 0.51± 1.31%.

DISCUSSION

We assessed uncertainties in velocity and their effect on the proposed water-content model,

finding that a 2% velocity error results in a ±0.56 volumetric % error in water-content.

We evaluated errors in data acquired using minimal (B) and more detailed (A) data collec-

tion procedures. The minimal (standard) data acquisition resulted in an average velocity

uncertainty of 3.0%, equivalent to ±0.84 volumetric % water-content. The detailed acqui-

sition improved on existing data collection techniques, and decreased the average velocity

uncertainty to 1.5%, equivalent to ±0.42 volumetric % water-content. These represent a

significantly improved accuracy compared to surface surveys, which produce a best-case
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velocity error of ∼8% (Barrett et al., 2007).

However, in order to calculate water-content variation to ±0.1%, we require a velocity

accuracy of ±0.5% (<0.001 m/ns). Uncertainties can be reduced through the application

of additional field procedures discussed herein: measuring borehole width, use of multiple

surface offsets in calibration data, and surveying both up- and down-hole. For this study

we analysed how errors in these data would change if these revisions were made.

Using our methods, we observe that an accuracy of ±0.2 ns is possible for the time-

zero correction - calculated from the example in Figure 4, for multiple surface offsets and

measuring negligible time-drift - hence we use this as a “best case” scenario. We assume

borehole width is measured, and hence the uncertainty in this is negligible, and also assume

all data are recorded up- and down-hole. We find the average site errors can be reduced to

±0.0013 m/ns (0.8%) and ±0.0015 m/ns (0.9%), for sites A and B, respectively. With these

uncertainties we are able to quantify volumetric water-content with much higher precision,

to ±0.2%, far exceeding the accuracy we achieve using standard processing routines.

It is also important to consider the interpretation of the polythermal structure from

these data. We expect fast surface velocities (≥0.168 m/ns), followed by a sharp decrease

in velocities at the cold-temperate transition surface, because of increased liquid-water, and,

finally, a further velocity decrease as pressure build-up increases water-content and decreases

air-content. Only site B demonstrates a sharp decrease at 21 m depth - consistent with the

cold-temperate transition surface depth quoted in Gusmeroli et al. (2010). However, this

is also the only site where data collection is not repeated up-hole; sharp time-jumps can

also result from time-drift, and without the up-hole data, we cannot confidently interpret

this as the precise depth of the temperate ice. Both sites also demonstrate an increased
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water-content in the near-surface (top 2-5 m), which we interpret as a transient warm ice

layer (Irvine-Fynn et al., 2011) from summer melting. This effect is observed in the velocity

model, although less pronounced - the water-content profiles are influenced strongly by the

assumed high surface air-content.

The thickness of the surface temperate layer is controlled by air-temperature and varies

temporally, much like the cold ice thickness (Irvine-Fynn et al., 2011). This is also true

for the depth of surface snow, or of the firn-ice transition, which likewise vary spatially

and temporally (Gusmeroli et al., 2012; Pälli et al., 2003). These boundaries are defined by

compaction or density, controlled mainly by the porosity (Cuffey and Paterson, 2010), hence

our discussion is also relevant for accurate measurement of these features. Higher porosities

can result in water drainage (Murray et al., 2000a) resulting in an air-filled borehole. Energy

signals from air-filled boreholes are more attenuated than from water-filled (Dubois, 1995),

which should be considered in survey design, e.g. borehole separation.

We should also note that currently our quantification of error in water-content (φw)

has not considered air-content (φa) errors, and has assumed the profile to be accurate and

precise. Whilst realistically this is not true, we already demonstrated that small (2%)

errors in the φa have a tiny (0.06%) influence on the calculation of φw. We used an iterative

approach, inferring φw from an input φa, and assuming φw, φa ≥ 0 is true at all depths; large

deviation from the input air-content model suggests estimating φa from the pressure curve

is unreliable, which is observed clearly for site A (Figure 6b). Overall faster velocities are

measured at site A, with a velocity increase observed between 40 and 60 m, approximately

equal to the top of the temperate ice layer in Gusmeroli et al. (2012). Fountain et al. (2005)

observed multiple fractures throughout the thickness of Storglaciären, extending to 96% of

the depth; ice fractures cause strong electromagnetic anisotropy (Bradford et al., 2013) - if
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air-filled, this can result in an increased velocity. We interpret the faster velocities as an

indication of underestimated macro-scale air-filled features.

The almost order-of-magnitude difference between εi and εw means (small) changes in

bulk-ice radar velocity caused by air % changes can be overwhelmed by bigger changes

caused by water % change. Furthermore, because εi is intermediate between εa and εw,

there will be [air+water] volume fractions whose bulk velocity appears to be that of ice.

Hence, water and air content cannot both be quantified using radar data alone. To do so, an

accurate determination of the air-content must be achieved, by some independent means,

for both micro- AND macro-scale features. The influence of air appears more significant

in the temperate ice layers and is influenced by stress directions, meaning air-content is

likely to vary spatially. The smaller influence of air-content on the radar velocity means

it does not require a highly accurate calculation to significantly improve the accuracy of

the water-content whilst maintaining a high precision; this could be theoretically calculated

from a co-located Vertical Seismic Profile (Gusmeroli et al., 2013).

CONCLUSION

We have evaluated the uncertainties in a cross-borehole radar survey undertaken in a glacio-

logical setting. We found three main areas of uncertainty, resulting from picking the arrival

times of data, instrument time drift, and borehole geometry - particularly where boreholes

are drilled with hot water. We found that the largest error is caused by instrument drift,

as the effect is random and extremely difficult to measure. We suggest methods to reduce

each of these uncertainties through improvement of the existing data collection procedure.

Surface calibration data, collected prior to and after the survey to calculate time-zero
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correction and any instrument drift, should be acquired at multiple offsets, including one

large offset. This allows a linear fit to be calculated through the measured travel times,

improving the accuracy of the time-zero calculation, and preventing apparent instrument

drift resulting from misplaced antennae. Data with a large time-drift should not be used

for measuring small-scale velocity variations as the data are unreliable. For small (20 m)

borehole separations, “large” drift can be as small as ±1.5 ns; although this increases

for larger borehole separations; the total separation is limited by signal strength. Linear

corrections can be applied to reduce the effect of drift. Data should be repeated, with

measurements taken up- and down-borehole, in order to observe and hopefully remove any

time jumps. When drilling with hot water, borehole width should be measured coincidently

with inclination measurements. The borehole width will vary a minimum of 3 cm between

the top and base of a 90 m borehole, and will not necessarily have a circular cross-section

- depending on the heterogeneity of the ice melt, and englacial pressure.

We present cross-borehole data acquired in summer 2009, on Storglaciären, Arctic Swe-

den. We compared a minimal data collection procedure (site B) with a more detailed

acquisition (site A), closer to our proposed revised survey techniques. We measure an im-

provement in the average velocity uncertainties from 3.0% (±0.005 m/ns) for site B, to

1.5% (0.003 m/ns) for site A. We also recalculate the uncertainties using the revised survey

techniques, improving the model errors to ±0.0013 m/ns (0.8%) and ±0.0015 m/ns (0.9%),

equivalent to a water-content precision of ±0.2 volumetric %.

We demonstrate that our improved cross-borehole data acquisition has the ability to

improve the water-content calculation so that determined values can be used for rheological

analysis. However, it should be cautioned that these estimates are based on the assumption

that the air-content is known. There is evidence of significant macro-scale air-content influ-
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ence on the radar velocity profiles at site A, which biases the water-content interpretation.

It is necessary to calculate the air-content at each site, although not necessarily to the same

precision as the water-content. The dominating influence of water-content on the radar

velocity means that co-located techniques sensitive to density change must be used, e.g. a

Vertical Seismic Profile.
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Hutter, K., A. Zryd, and M. Röthlisberger, 1990, On the numerical solution of stefan

28



problems in temperate ice: Journal of Glaciology, 36, 41–48.

Ingvander, S., G. Rosqvist, J. Svensson, and H. E. Dahlke, 2013, Seasonal and interannual

variability of elemental carbon in the snowpack of Storglaciären, northern Sweden: Annals
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Lüthi, M., M. Funk, A. Iken, S. Gogineni, and M. Truffer, 2002, Mechanisms for fast

flow in Jakobshaven Isbræ, West Greenland: Part III. Measurements of ice deformation,

temperature and cross-borehole conductivity in boreholes to the bedrock: Journal of

Glaciology, 48, 369–385.

Macheret, Y., and A. Glazovsky, 2000, Estimation of absolute water content in Spitsbergen

29



glaciers from radar sounding data: Polar Research, 19, 205–216.

Mader, H., 1992, Observations of the water-vein system in polycrystalline ice: Journal of

Glaciology, 38, 333–347.

Mätzler, C., and U. Wegmüller, 1987, Dielectric properties of fresh-water ice at microwave

frequencies: Journal of Physics D: Applied Physics, 20, 1623–1630.

Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic

analysis of porous media: Cambridge university press.
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LIST OF TABLES

1 Key survey site information for each field season on Storglaciären. The average

calculated instrument drift for each site is shown ±1 standard deviation (σ̃) - a large σ̃

indicates a large range in values - and average velocity (v̄m) with percentage uncertainty

(dv̄m), and the fractional water-content (φw), for each survey site, including 1σ̃.
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1 (a) Cross-borehole survey: receiver and transmitter at equal depth in centre of two

adjacent boreholes (surface separation = S). Each antenna moves a distance (dz) between

measurements in down- (surface-to-base) or up-hole directions. Energy arrival indicated by

sudden increase in amplitude (from 0) on the data record (right, highlighted). (b) Vertical

cross-section: antenna in inclined borehole. Antennae angle (β) depends on the borehole

dip (γ), antenna length (Al) and diameter (AW ), and the borehole diameter (DW ).

2 (a) A simple model of uncertainties in cross-borehole surveys. (b) The effect of

uncertainties changing the energy relative to the predicted wavelet, and shifting the first-

break (ta). (1) Data recorded by near-surface antennae can interfere with and obscure the

first-break. (2) Underestimated borehole diameter results in a smaller ta from less travel

time spent in the slow velocity water; assuming a constant borehole diameter results in an

overestimated ice velocity. (3) Inclined boreholes result in an angled antenna, and inclined

raypath (vertical depth 6= borehole depth); this also decreases ta. The predicted wavelet is

shown as a dotted line in (1), (2) and (3).

3 Ablation area map of Storglaciären (SG), Arctic Sweden, marking the locations of

boreholes drilled for each cross-borehole survey site. The surface contours and approximate

crevasse locations (Jansson and Näslund, 2009) are marked over the glacier for reference.

The data were collected during the summer period, with the survey year marked in the key.

The coordinate system is in RT90, with lateral distances measured in metres. The left inset

photograph of the glacier marks the area of enlarged map (dashed box). The right inset

shows the location of SG in Sweden.

4 (a) An example of a survey at site A. (1) Surface data are collected before and

after the main data, at two offsets: 5m, and the borehole separation (S). (2) The main
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borehole data are collected between 1 and 64 m depth, in down- and up-hole directions.

(b) The antenna separation for the entire survey. This has a strong influence on the pattern

in the main borehole data.

5 Average velocity models for both Storglaciären field sites; cold ice velocity (vi = 0.168

m/ns) marked for comparison. Site A surface velocities close to 0.168 m/ns, followed by

velocity increase to ∼60 m, then a velocity decrease to depth (112 m). Site B shows a two-

layer structure, with a sharp velocity decrease at 21 m and generally larger uncertainties.

Shaded regions indicate the velocity uncertainties at each depth in the model.

6 (a) Average Water-Content (φw) Models for each site, calculated from average ve-

locity profiles; uncertainties are shown by the shaded regions. Site A indicates φw ≈ 0%

for all depths. Site B shows a sharp increase in φw at 21 m depth from 0.25% to 0.6%.

Average φw at each site: A = 0.06 ± 0.35%, and B = 0.51 ± 0.79%. (b) Air-content (φa)

profiles used to calculate the φw in (a), estimated from an input pressure curve (grey line;

Bradford et al., 2009), decreasing from the surface; deviation from the input φa indicates

an incorrect model. The calculation is adapted to assume φw,φa < 0 is not true. Error in

φa are not included in the φw uncertainties.
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Figure 1: (a) Cross-borehole survey: receiver and transmitter at equal depth in centre of two adjacent

boreholes (surface separation = S). Each antenna moves a distance (dz) between measurements

in down- (surface-to-base) or up-hole directions. Energy arrival indicated by sudden increase in

amplitude (from 0) on the data record (right, highlighted). (b) Vertical cross-section: antenna in

inclined borehole. Antennae angle (β) depends on the borehole dip (γ), antenna length (Al) and

diameter (AW ), and the borehole diameter (DW ).

Axtell et al. – Second Revision
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Figure 2: (a) A simple model of uncertainties in cross-borehole surveys. (b) The effect of uncer-

tainties changing the energy relative to the predicted wavelet, and shifting the first-break (ta). (1)

Data recorded by near-surface antennae can interfere with and obscure the first-break. (2) Under-

estimated borehole diameter results in a smaller ta from less travel time spent in the slow velocity

water; assuming a constant borehole diameter results in an overestimated ice velocity. (3) Inclined

boreholes result in an angled antenna, and inclined raypath (vertical depth 6= borehole depth); this

also decreases ta. The predicted wavelet is shown as a dotted line in (1), (2) and (3).

Axtell et al. – Second Revision
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Figure 3: Ablation area map of Storglaciären (SG), Arctic Sweden, marking the locations of boreholes

drilled for each cross-borehole survey site. The surface contours and approximate crevasse locations

(Jansson and Näslund, 2009) are marked over the glacier for reference. The data were collected

during the summer period, with the survey year marked in the key. The coordinate system is in

RT90, with lateral distances measured in metres. The left inset photograph of the glacier marks the

area of enlarged map (dashed box). The right inset shows the location of SG in Sweden.

Axtell et al. – Second Revision
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(a)

(b)

Figure 4: (a) An example of a survey at site A. (1) Surface data are collected before and after the

main data, at two offsets: 5m, and the borehole separation (S). (2) The main borehole data are

collected between 1 and 64 m depth, in down- and up-hole directions. (b) The antenna separation

for the entire survey. This has a strong influence on the pattern in the main borehole data.

Axtell et al. – Second Revision
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Figure 5: Average velocity models for both Storglaciären field sites; cold ice velocity (vi = 0.168

m/ns) marked for comparison. Site A surface velocities close to 0.168 m/ns, followed by velocity

increase to ∼60 m, then a velocity decrease to depth (112 m). Site B shows a two-layer structure,

with a sharp velocity decrease at 21 m and generally larger uncertainties. Shaded regions indicate

the velocity uncertainties at each depth in the model.

Axtell et al. – Second Revision
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Figure 6: (a) Average Water-Content (φw) Models for each site, calculated from average velocity

profiles; uncertainties are shown by the shaded regions. Site A indicates φw ≈ 0% for all depths.

Site B shows a sharp increase in φw at 21 m depth from 0.25% to 0.6%. Average φw at each site:

A = 0.06 ± 0.35%, and B = 0.51 ± 0.79%. (b) Air-content (φa) profiles used to calculate the φw

in (a), estimated from an input pressure curve (grey line; Bradford et al., 2009), decreasing from

the surface; deviation from the input φa indicates an incorrect model. The calculation is adapted

to assume φw,φa < 0 is not true. Error in φa are not included in the φw uncertainties.
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Site
Drift v̄m ± σ̃ (m/ns) φw ± σ̃ (%)

± σ̃ (ns) (±dv̄m) (±dφw)

A 1.0± 0.8
0.169 ± 0.001 0.06 ± 0.07

(± 0.0024) (± 0.41%)

B 0.9± 0.6
0.165 ± 0.002 0.51 ± 0.20

(± 0.0043) (± 1.31%)

Table 1: Key survey site information for each field season on Storglaciären. The average calculated

instrument drift for each site is shown ±1 standard deviation (σ̃) - a large σ̃ indicates a large

range in values - and average velocity (v̄m) with percentage uncertainty (dv̄m), and the fractional

water-content (φw), for each survey site, including 1σ̃.
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