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We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast
switching between two trapping frequencies. The measured phase-space distribution of the center of mass
of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of
squeezing along one motional direction. In these experiments the average thermal occupancy is high and,
even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless,
we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum
regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of
squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.
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While squeezing a quantum state of light [1] has a long
history of experiments, the squeezing of a massive mechani-
cal harmonic oscillator has not seen many experimental
realizations so far. The first demonstration of squeezing in
a classical mechanical oscillator was by Rugar and Grütter
[2]. Squeezing of classical motional states in electromechani-
cal devices by parametric amplification and weak measure-
ments has subsequently been proposed [3], and it has been
experimentally demonstrated in an optomechanical system
[4]. Schemes relying on sinusoidal modulation of the spring
constant have also been proposed and discussed by numerous
authors [5–8]. In optomechanical cavities, Genoni et al.
suggested that squeezing below the ground-state fluctuations
(quantum squeezing, for brevity) may be attainable via
continuous measurements and feedback [9]. Quantum
squeezing of a high-frequencymechanical oscillator has only
been experimentally demonstrated very recently, in a micro-
wave optomechanical device [10,11].Also only very recently,
a hybrid photonic-phononic waveguide device has shown the
correlation properties of optomechanical two-mode squeez-
ing [12].Another interestingmethod of generating squeezing,
of relevance to this Letter, relies on nonadiabatic shifts of the
mechanical frequency. Such a method was initially discussed
in relation to light fields [13,14]. Similar ideas, utilizing
impulse kicks on a mechanical oscillator, have been recently
discussed [15,16]. In this Letter we report the first exper-
imental demonstration of mechanical squeezing via non-
adiabatic frequency shifts, thus realizing a useful tool to
manipulate the state of a levitated optomechanical system.
Theory.—In what follows we shall present a quantum

mechanical treatment of our squeezing protocol, in antici-
pation of future experiments that may achieve quantum
squeezing. Because of the linearity of the Heisenberg
equations of our system, it should be pointed out that

formally identical results may be obtained through classical
statistical mechanics [17]. We consider a nanosphere of
massm trapped in a harmonic potential. Along the z axis, we
can manipulate the system by switching between two
Hamiltonians Ĥ1; Ĥ2, where Ĥj ¼ ðp̂2=2mÞ þ 1

2
mω2

j ẑ
2,

ẑ; p̂ denoting the z components of the canonical position
and momentum operators, and the trapping frequency may
assume either of two distinct values: ω1 or ω2. (In our
experiment, we adoptω2 < ω1.) As we shall see shortly, our
squeezing protocol relies on the rapid (i.e., nonadiabatic)
switching between the two Hamiltonians [13,14]. It is
instructive to write down the annihilation operators—say,
â and b̂—corresponding to the two trap frequencies (ℏ ¼ 1):

â¼
ffiffiffiffiffiffiffiffiffi
mω1

2

r �
ẑþ ip̂

mω1

�
; b̂¼

ffiffiffiffiffiffiffiffiffi
mω2

2

r �
ẑþ ip̂

mω2

�
: ð1Þ

Through simple algebra, one may notice that â and b̂ are
related by a squeezing transformation of the form
b̂ ¼ coshðrÞâ − sinhðrÞâ†, with r≡ 1

2
logðω2=ω1Þ being

the squeezing parameter. We may exploit the mathematical
relationship between modes â and b̂ to generate mechanical
squeezing as follows. Let the particle be initially prepared in
an arbitrary state (in our experiment, this will be a thermal
state of Ĥ1). At time t ¼ 0, we suddenly change the trapping
frequency fromω1 toω2 such that the Hamiltonian becomes
Ĥ2. We then let the system evolve until a time t ¼ τ (the
squeezing pulse duration) before rapidly switching back to
the Hamiltonian Ĥ1. In the Heisenberg picture, this amounts
to a simple harmonic evolution b̂ → b̂e−iω2τ for the operator
b̂. In terms of the quadratures X̂ ¼ ðâþ â†Þ= ffiffiffi

2
p

,
P̂ ¼ −iðâ − â†Þ= ffiffiffi

2
p

, however, the transformation is non-
trivial: ðX̂; P̂Þ⊺ → MðX̂; P̂Þ⊺, where the matrix
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M ¼
�

cosðω2τÞ e2r sinðω2τÞ
−e−2r sinðω2τÞ cosðω2τÞ

�
ð2Þ

embodies a combination of rotation and squeezing in the
phase space of mode â. Note that, in general, the squeezed
quadrature will be a linear combination of X̂ and P̂. The
associated squeezing parameter λðτÞ is encoded in the
singular values of M and can be found as follows. Since
detðMM⊺Þ ¼ 1, we can parametrize the eigenvalues ofMM⊺

as (μ, 1=μ) for some parameter where μ > 0. Note that
ffiffiffi
μ

p
quantifies the deformation of the standard deviations of the
rotated quadratures. The mechanical squeezing parameter
thus reads (in decibels)

λðτÞ ¼ 10jlog10ð
ffiffiffi
μ

p Þj: ð3Þ
The analytical expression for λðτÞ is unwieldy if τ is left
generic. It is, however, readily verified that maximum

squeezing can be obtained by settingω2τ ¼ ðπ=2Þ, in which
case λmax ¼ 10log10ðω1=ω2Þ.
Experiments.—We trap a silica nanosphere of radius 32 nm

(�5 nm) and mass 3.1 × 10−19 kg (�1.4 × 10−19 kg) in an
optical dipole trap. The size of the particle is evaluated from
fitting a Lorentzian to the power spectral density of the
signal, as described in Ref. [19] and shown in Fig. 3(b);
from this, the mass is obtained as well. We use a 1550 nm
laser, directed into a parabolic mirror which focuses the
light to a diffraction limited spot, where the particle is
trapped. Experiments are performed in a vacuum chamber
at a pressure of 1 × 10−1 mbar. In this regime, the damping
of the particle motion by random collisions with back-
ground gas is linear in the pressure pgas, and the related
damping coefficient can be approximated by

Γ ≈ 15.8
r2pgas

mvgas
; ð4Þ
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FIG. 1. Experimental implementation of squeezing levitated optomechanics. (a) Schematic of the squeezing setup. The paraboloidal
trapping system interferes the Ediv divergence field and the Escat Rayleigh scattered field from the trapped particle. The grey region is for
homodyne detection, as well as pulse application. (b) Negative square pulse for squeezing generation, as seen by the photodetector. Two
different pulse durations are shown, τ2 and τ4. (c) Root-mean-square position as a function of time, zrmsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz − hziÞ2i

p
, obtained

from 1500 pulse sequences applied to the same particle. Oscillations for t < 0 are due to bandpass filtering. (d) Time dependence of the
mean position hzi (the center of the thermal distribution). This quantity also shows oscillations at ω1 after the squeezing pulse.
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with m and r being the radius and the mass of the
nanosphere, respectively, and vgas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=mgas

p
the

mean thermal velocity of the background gas of mass
mgas [20]. We evaluate Γ ¼ 2π × 227 Hz (�2π × 9 Hz) for
this experiment, while the main uncertainty in mass comes
from the pressure measurement (∼15%).
As shown in Fig. 1(a), the position of the single nano-

sphere is measured using an optical homodyne method.
More details about the particle trapping and detection can
be found elsewhere [19].
A short squeezing pulse of duration τ is applied by

switching between two different trapping laser powers, P1

and P2 [see Fig. 1(b)], using a free space acousto-optical
modulator (AOM). The trapping frequency is given by
ω ¼ ffiffiffiffiffiffiffiffiffiffiffi

k0=m
p

, where k0 ¼ 8αP=ðcπϵ0w4
fÞ for motion in

the z direction, with α being the polarizability of the particle,
c the speed of light, ϵ0 the electric field constant, and wf the
waist of the laser beam at the focal point. The laser power can
be modulated by changing the voltage applied to the AOM;
we switch between trap frequenciesω1 ¼ 2π × 112 kHzand
ω2 ¼ 2π × 49.3 kHz. The time scale of the switch is
determined by the AOM bandwidth, which is more than
1MHz and therefore much larger than both trap frequencies.
Hence, we model the switch as instantaneous. Here, evi-
dently, ω2 < ω1. The condition ω2 > ω1 may also be used,
and it would result in squeezing of a different quadrature.
Experimentally, we found it more practical to employ the
tighter trapping potential (corresponding to ω1) most of the
time, so as to minimize the probability of losing the particle.
The same signal generator which is used to generate the

squeezing pulse triggers an oscilloscope to record a time trace
with a duration of 1 s. The same single pulse sequence is
repeated 1500 times for the same trapped particle, while
allowing for 1 s between the pulses to restore the initial
thermal state. The recorded time traces initially include
signals from the x, y, and z motional degrees of freedom.
However, the pulse scheme is only optimized for a single

motional frequency, namely, the one in the z direction which
is perpendicular to the mirror surface. This is primarily
because the z motion is predominant in our detection signal.
We filter the signal around theωz frequencypeak to extract the
impact of the pulses on the z motion alone. The root mean
square (rms) of the position of the particle zrms is used to
analyze the state of motion; see Fig. 1(c). The entire experi-
ment takes over 10 h, during which time drifts in laser power
(and hence in trap frequency) may occur. Thus ω2, while
known in principle, is taken as a free parameter in the
fitting model.
Results.—The Fourier transform of the oscillation in the

mean position hzi—i.e., the motion of the center of the
thermal distribution—shows prevalence by the frequency
ω1 before and after the pulse; see Fig. 1(a) and the
Supplemental Material [17]. We can thus infer that our
pulse imparts a small phase-space displacement to the
particle. To correct for this, we subtract the average
displacement from the data, while we try to account for
the remaining effects and experimental imperfections
through an effective dephasing model (see the
Supplemental Material [17]).
Initially, zrms is constant as the phase of the oscillation is

random between the 1500 individual pulse experiments.
After the squeezing pulse, the motion shows damped phase-
coherent oscillations. The rms oscillation decays within
about 680–690 μs, which gives a rate of thermalization to
the temperature of the background gas molecules between
2π × 230 and 2π × 234 Hz. This is in good agreement with
the value for Γ estimated via the Lorentzian fit.
We are operating in the classical regime in that we

observe quadrature variances that are several orders of
magnitude larger than those in the quantum ground state.
Therefore, we may estimate the particle’s momentum by
simply taking the time differential of the position meas-
urement. In passing, we note that, in the quantum regime,
our continuous measurement process would require a more

(a) (b) (c)

−

−

− −

−−

FIG. 2. Experimentally measured phase-space distributions of the mechanical state before and after the squeezing pulse. The average
displacement of the state has been subtracted [see Fig. 1(d)]. (a)–(c) Density plots of the phase-space distributions for z motion, at three
different times, for a pulse duration τ ¼ 3=10T2. (a) State of the particle motion before the pulse is applied. The former is well
approximated by a Gaussian distribution, as is typical for a thermal state. (b) Phase-space distribution shortly after the pulse has been
applied (at the time t0): note how it presents clear signatures of squeezing. (c) Phase-space distribution at the time t0 þ 1

4
T1. The

squeezed state rotates in phase space while squeezing degrades with time, mainly due to background gas collisions that tend to restore
the initial thermal distribution.
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rigorous treatment [21]. Applying the described strategy to
our data set, we generate the phase-space distribution of the
trapped particle motion. Figure 2(a) shows the distribution
of the system before the pulse is applied. Such an initial
distribution is nearly Gaussian, and its small asymmetry
can be attributed to the nonlinear response of the position
measurement at large oscillation amplitudes [22].
Immediately after the pulse, we observe the typical

features associated with squeezing. It is evident that the
applied pulse deforms the phase-space distribution of the
particle, which then displays the typical oblong shape of a
squeezed state; see Fig. 2(b). Following the pulse, the
distribution rotates in phase space according to the har-
monic oscillator evolution—see, for instance, Fig. 2(c).
During such an evolution, the distribution progressively
relaxes back towards a thermal one; we attribute this to
thermalization via collisions with the background gas.
The measured degree of squeezing as a function of pulse

duration is shown in Fig. 3(a). While the theoretical
prediction for the squeezing parameter λðτÞ agrees quali-
tatively with the experimental results, the largest squeezing
factor we achieve experimentally is 2.7 dB, lower than the
expected λmax ≃ 3.56 dB. We can obtain a reasonable fit of
the data by assuming that the squeezing pulse is affected by
some phase noise whose strength is τ independent [17], and
which we assume is associated with the abrupt voltage
changes. In a nutshell, this amounts to rescaling hb̂2i →
ηhb̂2i at the end of the squeezing operation, where 0 ≤
η ≤ 1 quantifies the residual “phase coherence” [17]. For
the best fit, as shown in Fig. 3(a), we obtain ω2 ¼ 2π ×
47.9 kHz (�1.55 kHz) and η ¼ 0.73 (�0.10). We have
assumed that other sources of noise (e.g., thermalization
with the background gas) can be neglected during the pulse,

i.e., that the motion of the particle at short time scales
during the squeezing operation is affected predominantly
by such phase noise.
Conclusion.—The demonstrated squeezing technique

could be used for enhanced sensing and metrology based
on levitated optomechanics, such as for force sensing
applications [23] and nonequilibrium dynamics studies
[22]. Truly quantum squeezing may be approached by
precooling the motional state [24–26]. Center of mass
motion temperatures of trapped nanoparticles of below
1 mK have been experimentally demonstrated [19,20,27]
via parametric feedback, while alternative methods include
quantum measurement techniques [21,28], which have
been successfully applied to membrane and cantilever
optomechanical devices [29,30]. Future work will include
the investigation of multiple pulses to increase the achiev-
able levels of noise reduction [31], and of methods for
probing the nonclassicality of mechanical oscillators.
Finally, we would like to comment on our measurement

scheme, which relies on a continuous monitoring of the
particle’s position. At first, this might appear to be undesir-
able from the future perspective of approaching the quantum
regime, due to the well-known disturbance induced by the
quantum measurement process. Yet, it was recently shown
that, if correctly accounted for, continuous monitoring may
in fact improve the achievable mechanical squeezing [21].
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(a) (b)

d

FIG. 3. Quantitative analysis of the squeezing effect. (a) Squeezing factor λ as a function of pulse duration τ (measured in
microseconds). This is extracted by comparing the minor axes of the phase-space ellipses (see, e.g., Fig. 2) before and after the pulse.
The theoretical fit to the data (the blue line) has been done according to Eq. (10) in the Supplemental Material [17]. (b) Lorentzian fit to
the power spectral density (PSD) of the z motion. This is used to extract the radius and the mass of the particle, as well as the collisional
damping rate Γ according to Eq. (9) in the Supplemental Material [17].

PRL 117, 273601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 DECEMBER 2016

273601-4



Questions Institute (FQXi). M. S. K. thanks Danny Segal
for the discussions and, for financial support, the EPSRC
(Grant No. EP/K034480/1), the Leverhulme Trust (Grant
No. RPG-2014-055), and the Royal Society.

*Tommaso.Tufarelli@nottingham.ac.uk
†j.e.bateman@swansea.ac.uk
‡m.kim@imperial.ac.uk
§h.ulbricht@soton.ac.uk

[1] A. I. Lvovsky, in Photonics, Volume 1: Fundamentals of
Photonics and Physics, edited by D. L. Andrews (Wiley,
New York, 2015), Chap. 5, p. 121.

[2] D. Rugar and P. Grütter, Phys. Rev. Lett. 67, 699 (1991).
[3] A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P.

Bowen, Phys. Rev. Lett. 107, 213603 (2011).
[4] A. Pontin, M. Bonaldi, A. Borrielli, F. S. Cataliotti, F.

Marino, G. A. Prodi, E. Serra, and F. Marin, Phys. Rev.
Lett. 112, 023601 (2014).

[5] A. Mari and J. Eisert, Phys. Rev. Lett. 103, 213603 (2009).
[6] A. Farace and V. Giovannetti, Phys. Rev. A 86, 013820

(2012).
[7] M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C.

Schwab, Phys. Rev. A 78, 062303 (2008).
[8] A. Serafini, A. Retzker, and M. B. Plenio, Quantum Inf.

Process. 8, 619 (2009).
[9] M. G. Genoni, M. Bina, S. Olivares, G. De Chiara, and M.

Paternostro, New J. Phys. 17, 013034 (2015).
[10] E. E. Wollman, C. Lei, A. Weinstein, J. Suh, A. Kronwald,

F. Marquardt, A. Clerk, and K. Schwab, Science 349, 952
(2015).

[11] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and
M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015).

[12] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang,
A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher,
Nature (London) 530, 313 (2016).

[13] J. Janszky and Y. Yushin, Opt. Commun. 59, 151 (1986).
[14] C. Lo, J. Phys. A 23, 1155 (1990).

[15] M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. Di
Giuseppe, and D. Vitali, Phys. Rev. A 89, 023849
(2014).

[16] J. Alonso, F. M. Leupold, Z. U. Solèr, M. Fadel, M.
Marinelli, B. C. Keitch, V. Negnevitsky, and J. P. Home,
Nat. Commun. 7, 11243 (2016).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.273601, which in-
cludes Ref. [18], for more details on the experimental setup
and theoretical modeling.

[18] A. Serafini, M. Paris, F. Illuminati, and S. De Siena, J. Opt.
B 7, R19 (2005).

[19] J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, and H.
Ulbricht, arXiv:1603.02917.

[20] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and
L. Novotny, Phys. Rev. Lett. 116, 243601 (2016).

[21] M. G. Genoni, J. Zhang, J. Millen, P. F. Barker, and A.
Serafini, New J. Phys. 17, 073019 (2015).

[22] J. Gieseler, R. Quidant, C. Dellago, and L. Novotny, Nat.
Nanotechnol. 9, 358 (2014).

[23] G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci,
Phys. Rev. A 93, 053801 (2016).

[24] J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S.
Monteiro, and P. F. Barker, Phys. Rev. Lett. 114, 123602
(2015).

[25] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, Phys.
Rev. Lett. 109, 103603 (2012).

[26] N. Kiesel, F. Blaser, U. Delic, D. Grass, R. Kaltenbaek, and
M. Aspelmeyer, Proc. Natl. Acad. Sci. U.S.A. 110, 14180
(2013).

[27] P. Z. G. Fonseca, E. B. Aranas, J. Millen, T. S. Monteiro,
and P. F. Barker, Phys. Rev. Lett. 117, 173602 (2016).

[28] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642
(1993).

[29] M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer,
Nat. Commun. 4, 2295 (2013).

[30] M. Ringbauer, T. J. Weinhold, A. G. White, and M. R.
Vanner, arXiv:1602.05955.

[31] J. Janszky and P. Adam, Phys. Rev. A 46, 6091
(1992).

PRL 117, 273601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 DECEMBER 2016

273601-5


