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Minimality conditions for wave speed in

anisotropic smectic C∗ liquid crystals

E.C.M. Crooksa, M. Grinfeldb∗and G. McKayb

We discuss minimality conditions for the speed of monotone travelling waves in a sample of smectic C∗ liquid crystal

subject to a constant electric field, dealing with both isotropic and anisotropic cases. Such conditions are important in

understanding the properties of domain wall switching across a smectic layer, and our focus here is on examining how the

presence of anisotropy can affect the speed of this switching. We obtain an estimate of the influence of anisotropy on

the minimal speed, sufficient conditions for linear and non-linear minimal speed selection mechanisms to hold in different

parameter regimes, and a characterisation of the boundary separating the linear and non-linear regimes in parameter space.

Copyright c© 0000 John Wiley & Sons, Ltd.
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1. The Physical Set-Up

Smectics are a mesophase of liquid crystals in which the long axes of the constituent molecules align in layers with a well-defined

interlayer spacing. Mathematically, liquid crystals are normally described in terms of a unit vector n, the local direction of the

average molecular alignment. In the smectic A (or SmA) phase, the molecules tend to align perpendicular to the layers, while in

the smectic C (SmC) phase, the director n is aligned at some angle away from the smectic layer normal. This angle, here denoted

by θ, is usually temperature dependent and is called the smectic cone (or tilt) angle. Chiral smectic C (SmC∗) liquid crystals

have a twist axis perpendicular to the usual smectic layers and are ferroelectric, i.e. they exhibit a spontaneous polarisation P .

As discussed in Kidney et al. [16], surface tension can induce a smectic film at the surface of an isotropic droplet. We consider

the behaviour of a smectic film subject to an in-plane electric field, as shown in Figure 1. The mathematical description of the

smectic layer employs the unit vector a = (0, 0, 1) normal to the layer, and the unit vector c which represent the unit orthogonal

projection of n onto the layer. It follows, therefore, that n = a cos θ + c sin θ. The dynamic rotation of the director n around

the layer normal a can be described via the twist angle φ(x, t) so that c = (cosφ, sinφ, 0). It is convenient to introduce a third

unit vector b = a × c = (− sinφ, cosφ, 0) as this is parallel to the direction of the spontaneous polarisation P , i.e. P = P0b

for some constant P0, typically with a magnitude in the range 10 ∼ 103 µC m−2. We also incorporate a constant electric field
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Figure 1. The geometry of a SmC∗ layer

E = E(1, 0, 0) of strength E applied in the x-direction, as shown in the Figure. If P0 > 0 then the spontaneous polarisation will

prefer to align with any applied electric field, with alignment in the opposite direction when P0 < 0.

Leslie, Stewart and Nakagawa [18] developed a continuum theory for smectic C∗ crystals in terms of a gradient flow of a

suitable free energy density w . This energy has three components,

w = welas + wpol + wdielec,

corresponding to elastic, spontaneous polarisation and dielectric effects. Carlsson et al. [8] show that the elastic energy density

can be constructed from combinations of five basic distortions and their couplings, leading to a total energy involving nine terms

each associated with an elastic constant. These basic elastic deformations are related to bending of the smectic layers, or the

re-orientation of the c vector within or across layers. For the model considered here, in the absence of bending of the smectic

layers as the vector a is assumed constant, the elastic energy density in the bulk of the liquid crystal simplifies significantly to

welas =
1

2
B1(∇ · b)2 +

1

2
B2(∇ · c)2,

where elastic constants B1 and B2 are related to the bend and splay, respectively, of the c-director in each smectic layer,

i.e. within the xy -plane. Typically, the values of the elastic constants lie in the ranges [7]: 1 ≤ B1 ≤ 10 pN, 5 ≤ B2 ≤ 100 pN.

We introduce a dimensionless measure of anisotropy in the elastic constants, ξ, such that B1 = B(1− ξ) and B2 = B(1 + ξ) for

some elastic constant B and with |ξ| < 1. Adopting the vectors b and c described above, we can now write the elastic energy

density as

welas =
1

2
B (1− ξ cos 2φ)φ2

x .

Note that the isotropic case ξ = 0 leads to a semilinear evolution equation for φ(x, t) in (3), while the anisotropic one gives rise

to a quasilinear equation.

The spontaneous polarisation contribution to the free energy density is

wpol = −P0b · E = −P0E sinφ. (1)

Finally, the dielectric energy density for the ferroelectric can be also be expressed in terms of vectors a, c and E,

wdielec = −1

2
ε0εa(n · E)2 = −1

2
ε0εa(E cosφ sin θ)2, (2)

where ε0 is the permittivity of free space and εa is the dielectric anisotropy, typically O(1) and often negative. Combining the

various components, we obtain

w(φ) =
1

2
B(1− ξ cos 2φ)φ2

x + 2P0E

(
1

2
sinφ+

1

4
β cos2 φ

)
,

2 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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where the dimensionless parameter

β = − ε0εaE

P0
sin2 θ

is a measure of the balance between dielectric and ferroelectric effects. As we are interested in understanding switching properties

of a monostable device based on a smectic C∗ liquid crystalline material, here we restrict the range of electric field strengths

in order to examine the case |β| ≤ 1. This range of β is certainly achievable experimentally. For example, typical values of

εa = −1, θ = 22.5◦, P0 = 100µC m−2, E = 10 Vµm−1, and with ε0 = 8.854 pF m−1, would lead to β ≈ 0.130. We will consider

0 < β ≤ 1; the case of −1 ≤ β < 0 is dealt with similarly.

Stewart [28, p. 312] considers a simple example of the dynamics of SmC∗ liquid crystals in a geometry very similar to the one

examined here, albeit in the absence of elastic constant anisotropy. From the analysis in [28], we can show that the evolution

equation for the director twist angle φ(x, t) can be written as

ηφt = −gradw(φ),

where η is a rotational viscosity, while the gradient is taken with respect to the L2 inner product. Non-dimensionalising the x

and t variables, setting v = 1/2− φ/π and rearranging, we finally arrive at the mathematical object that will be our main focus:

vt =
√

1 + ξ cos(2πv)(
√

1 + ξ cos(2πv)vx)x + f (v), (3)

where

f (v) :=
1

2π

[
sin(πv)− 1

2
β sin(2πv)

]
. (4)

The parameter β controls the shape of the reaction term f , whereas ξ controls the diffusion term. Clearly (3) is quasilinear

in the general anisotropic case when ξ 6= 0, but semilinear in the special isotropic case, when ξ = 0.

2. Travelling Waves

Experimentally, upon electrically switching a suitably prepared sample of a smectic C∗ liquid crystal, one observes a wealth of

propagating structures (e.g., Abduhalim et al. [1]). Hence, it is of interest to understand the behaviour of the travelling waves.

Here we focus on only the kink solutions in the monostable regime. If 0 < β < 1, the only rest points of the kinetic equation

vt = f (v)

are at vk = k for all k ∈ Z. From the graph of f (v) versus v , it is clear that v0 = 0 is unstable and v1 is stable.

Setting z = x − ct, we will be looking for monotone travelling waves, that is, solutions v(x, t) that only depend on z , which

we denote by V (z): v(x, t) = V (z) = V (x − ct), such that in addition limz→−∞ V (z) = v1, limz→+∞ V (z) = v0. This means that

in the (V, V ′) phase plane, we are looking for a monotone decreasing heteroclinic connection between the saddle at (1, 0) and

the node at (0, 0).

Under the above assumptions on f , there is a semi-infinite interval of speeds, [c∗(β, ξ),∞), for which we have a monotone

decreasing solution with the correct properties. It is well known that the wave with minimal speed c∗ is of particular interest

because it has good stability properties in the sense of attracting large sets of initial conditions in both semilinear and quasilinear

cases (see, for example, the discussions in [3, 6, 13, 15, 17, 22, 24, 25, 31]); we leave the precise stability results for future

work. This minimal speed satisfies

c∗(β, ξ) ≥ cl(β, ξ) =
√

2(1 + ξ)(1− β),

as for 0 < c < cl the rest point (0, 0) is a stable spiral, so no monotone connection from (1, 0) is possible.

Definition 1 If c∗ = cl , we say that we are in the case of linear selection mechanism and if c∗ > cl , of nonlinear selection

mechanism.

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 3
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Due to the stability properties of travelling waves with minimal speed, the speed c∗(β, ξ) characterises the domain wall switching

behaviour of the liquid crystalline material, i.e. the heterogeneous switching from one state to another across a smectic layer

through rotation of the c-director. Roughly speaking, the larger this minimal speed, the faster the switching will be, and, clearly,

faster switching materials are better candidates for use in liquid crystal devices. Hence the quantitative determination of its value

is of practical importance. In the present paper, we are, in particular, interested in examining whether elastic anisotropy can lead

to a boost in the switching speed for different values of the dielectric/polarisation parameter β.

The ‘linear’ quantity cl(β, ξ), and whether linear or nonlinear selection holds, are key sources of information about the minimal

speed c∗(β, ξ). The value of cl(β, ξ) is easily calculated, always provides a lower bound for the minimal wave speed, and when

linear selection holds, gives the actual value of the minimal wave speed. Furthermore, the precise nature of the stability properties

of minimal-speed waves, in terms of how large is the basin of attraction and in what sense convergence to the wave takes places

as t →∞, typically differ depending on whether linear or nonlinear selection holds (see, for instance, [6, 13, 17, 25, 31, 32]).

There are thus two complementary reasons for studying the question of which selection mechanism holds: (i) to try to determine

the numerical value of the spreading speed; (ii) to obtain information about the precise stability properties of the minimal-speed

wave. The issue of whether linear or nonlinear selection holds for a given equation is well-known to be delicate and has attracted

interesting work over a number of years, mostly dealing with semilinear equations [2, 4, 5, 14, 15, 19, 20, 21, 33]. Here we

address this question as a function of the parameters β and ξ for the particular quasilinear problem (3).

Introducing V (z) into (3), we can write the travelling wave ODE in the form

√
1 + ξ cos(2πV )(

√
1 + ξ cos(2πV ))V ′)′ + cV ′ + f (V ) = 0. (5)

Assuming that a monotone decreasing travelling wave solution exists, we can set

F (V ) = −
√

1 + ξ cos(2πV )
dV

dz
(6)

in order to rewrite (5) as

F
dF

dV
− c F√

1 + ξ cos(2πV )
+ f (V ) = 0, (7)

where f (V ) is given by (4).

3. The Isotropic Case

We begin with a brief discussion of the isotropic case, when ξ = 0 and (3) is actually a semilinear equation, for which we have

a complete characterisation of minimality in (3) thanks to a β-dependent family of explicit travelling-wave solutions of (3) that

exist in this special case. This isotropic characterisation is both of interest in its own right and will provide an important tool for

our study of the anisotropic case in Section 4.

Proposition 2 If β ∈ [0, 1/2], c∗(β, 0) = cl(β, 0) =
√

2(1− β) and if β ∈ (1/2, 1], c∗(β, 0) =

√
1

2β
> cl(β, 0).

Proof: In this case (7) becomes

F
dF

dV
− cF + f (V ) = 0, (8)

and we have

cl(β, 0) =
√

2(1− β) = 2
√
f ′(0). (9)

In (8), taking the ansatz F (V ) = µ sin(πV ) and matching coefficients, we obtain the result [10, 30] that (7) has a solution

F (V ) = µ sin(πV ) if

µ =
1

π

√
β

2
and c =

1√
2β

:= cnl(β, 0). (10)

4 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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We call this value of speed cnl(β,0), as it is not obtained by a linear analysis. It is defined for all β > 0, and goes to infinity

as β → 0. Note that the linear marginal speed cl(β, 0) =
√

2(1− β) is defined for all β ≤ 1. Comparing cnl(β, 0) and cl(β, 0),

we see that of course cnl(β, 0) ≥ cl(β, 0) for all β ∈ (0, 1] and that the equality only holds at β = 1/2.

Suppose first that β ∈ [0, 1/2). It follows from [15, Thm 8] that

c∗(β, 0) = inf
F∈Λ

sup
V ∈(0,1)

{
F ′(V ) +

f (V )

F (V )

}
, (11)

where

Λ = {F ∈ C1([0, 1]) : F (V ) > 0 if V ∈ (0, 1), F (0) = 0, F ′(0) > 0}. (12)

Remark: Note that there is an obvious typo in [15, Thm 8]; they require that F (1) = 0, F ′(1) < 0 for F ∈ Λ, but should

instead require that F (0) = 0, F ′(0) > 0, because they have forgotten to reverse their earlier change of variables v → 1− v in

their definition of Λ.

Define the family Fν(V ) = ν sin(πV ), where ν > 0. Then Fν ∈ Λ, and for each V ∈ (0, 1),

F ′ν(V ) +
f (V )

Fν(V )
= πν cos(πV ) +

sin(πV )

2πν sin(πV )
[1− β cos(πV )]

=
1

2πν
+

(
πν − β

2πν

)
cos(πV ).

So it follows from (11) that for each ν > 0,

c∗ ≤ p(ν, β), (13)

where we define

p(ν, β) :=
1

2πν
+ sup

V ∈(0,1)

(
πν − β

2πν

)
cos(πV ).

Now if ν2 ≤ β
2π2 , then

p(ν, β) =
1

2πν
+

β

2πν
− πν =

β + 1

2πν
− πν,

which is strictly decreasing in ν, and hence

inf
0<ν≤

√
β

2π2

p(ν, β) = p

(√
β

2π2
, β

)
=

1√
2β
. (14)

On the other hand, if ν2 > β
2π2 , then

p(ν, β) =
1

2πν
+ πν − β

2πν
=

1− β
2πν

+ πν,

so since
∂

∂ν
p(ν, β) = π − 1− β

2πν2
= 0 when ν2 =

1− β
2π2

,

and the fact that β ∈ [0, 1/2) ensures that
1− β
2π2

>
β

2π2
,

we have

inf
ν>

√
β

2π2

p(ν, β) = p

(√
1− β
2π2

, β

)
=
√

2(1− β). (15)

Since
√

2(1− β) < 1√
2β

, it then follows from (13)-(15) that

c∗(β, 0) ≤ inf
ν>0

p(ν, β) =
√

2(1− β),

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 5
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and hence c∗(β, 0) = cl(β, 0), because cl(β, 0) =
√

2(1− β) ≤ c∗(β, 0).

Now suppose that β ∈ [1/2, 1). The explicit wave solution with

−dV
dz

= F (V ) =
1

π

√
β

2
sin(πV ), c =

1√
2β

= cnl(β, 0),

satisfies
V ′

V
= −

√
β

2

sin(πV )

πV
.

Hence |V ′/V | ≤
√

β
2

for all V ∈ (0, 1), and

V ′

V
→ −

√
β

2
as V → 0,

so that ∫ ∞
0

e
z√
2β
(
V 2(z) + (V ′)2(z)

)
dz < ∞,

because 1√
2β
< 2
√

β
2

since β > 1/2. Thus [19, Cor. 2.7] yields that c∗(β, 0) = cnl(β, 0). 2

Remark: In [14] and [26], the authors considered essentially the same equation as (3) with ξ = 0. An integral-equation

framework is used to establish Proposition 2 in [14, Appl. 10.13], whereas physical arguments for Proposition 2 are given in [26].

4. The Anisotropic Case

We turn now to the anisotropic case, when ξ 6= 0. Here there is no explicit travelling-wave solution to make use of, and there is

a difference between the cases ξ > 0 and ξ < 0. Let us first collect the tools we need.

4.1. General results

First of all, we show that, for a given wave speed c, there exists a wave front solution of the original quasilinear equation (5),

which is not in divergence form, if and only if there exists a wave front solution of a certain semilinear equation. Part of the proof

of this result, which allows us to obtain some results for (5) from known results for semilinear equations (e.g. from [15], etc),

exploits work of Engler [12] that uses a front-dependent change of variables to relate wave front solutions of a divergence-form

quasilinear equation to wave front solutions of a semilinear equation.

Define hξ(V ) :=
√

1 + ξ cos(2πV ), V ∈ R, and note that

0 <
√

1− |ξ| ≤ hξ(V ) ≤
√

1 + |ξ| for all V ∈ R, ξ ∈ (−1, 1), (16)

and also define a function Yξ : [0, 1]→ R by

Yξ(θ) =

∫ θ

0

1

hξ(s)
ds, θ ∈ [0, 1]. (17)

We have

Proposition 3 For given c ∈ R, there exists a solution V : R→ R of

hξ(V )(hξ(V )V ′)′ + cV ′ + f (V ) = 0 (18)

with

V (z)→ 1 as z → −∞, V (z)→ 0 as z → +∞, (19)

6 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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if and only if there exists a solution U : R→ R of

U ′′ + cU ′ + kξ(U) = 0 (20)

with

U(η)→ Yξ(1) as η → −∞, U(η)→ 0 as η → +∞, (21)

where kξ : [0, Yξ(1)]→ R is defined by

kξ(U) := hξ(Y
−1
ξ (U))f (Y −1

ξ (U)), U ∈ [0, Yξ(1)]. (22)

Proof. First consider functions V : R→ R and W : R→ R related by

W (z) = Yξ(V (z)) ⇔ Y −1
ξ (W (z)) = V (z), z ∈ R,

with V satisfying (19) and W satisfying

W (z)→ Yξ(1) as z → −∞, W (z)→ 0 as z → +∞. (23)

Then, since

W ′(z) = Y ′ξ (V (z))V ′(z) =
V ′(z)

hξ(V (z))

and

hξ(V (z))V ′(z) = h2
ξ(V (z)) · V ′(z)

hξ(V (z))
= h2

ξ(Y −1
ξ (W (z)))W ′(z),

it follows that V is a classical solution of (18) if and only if W is a classical solution of

d

dz

(
p(W (z))W ′(z)

)
+ cW ′(z) + q(W (z)) = 0, z ∈ R, (24)

where

p(W ) := hξ(Y
−1
ξ (W ))2, q(W ) :=

f (Y −1
ξ (W ))

hξ(Y
−1
ξ (W ))

.

Then [12] yields that there exists W satisfying (23) and (24) if and only if there exists a classical solution U : R→ R of the

equation

U ′′(η) + cU ′(η) + p(U(η)q(U(η)) = 0, η ∈ R, (25)

that satisfies (21). Since

p(U)q(U) = hξ(Y
−1
ξ (U))2 ·

f (Y −1
ξ (U))

hξ(Y
−1
ξ (U))

= hξ(Y
−1
ξ (U))f (Y −1

ξ (U)) = kξ(U),

the result follows. 2

We immediately have

Theorem 4 c∗ : (0, 1)× (−1, 1) 7→ R+ is continuous.

Proof: By the equivalence of (5) and (24), this result follows from Theorem 12 of [21]. 2

From the correspondence of Proposition 3, we can also obtain convenient variational characterisations of c∗(β, ξ), as follows.

Proposition 5 The minimal speed c∗(β, ξ) satisfies

c∗(β, ξ) = inf
F∈Λ

sup
V ∈(0,1)

hξ(V )

{
F ′(V ) +

f (V )

F (V )

}
, (26)

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 7
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and

c∗(β, ξ) = inf
F∈Λ

sup
V ∈(0,1)

{
hξ(V )

d

dV
(hξ(V )F (V )) +

f (V )

F (V )

}
, (27)

where Λ is as defined in (12).

Proof. Since the function kξ(U) clearly satisfies kξ(U) > 0 for U ∈ (0, Yξ(1)), kξ(0) = kξ(Yξ(1)) = 0 and k ′ξ(0) > 0, it follows

from [15, Thm 8] that there exists a solution U of (20) and (21) if and only if c ≥ c∗ξ , where

c∗ξ = inf
ρ∈Γ

sup
U∈(0,Yξ(1))

{
ρ′(U) +

kξ(U)

ρ(U)

}
,

and

Γ := {ρ ∈ C1([0, Yξ(1)]) : ρ(U) > 0 if U ∈ (0, Yξ(1)), ρ(0) = 0, ρ′(0) > 0}.

Then by Proposition 3, we also have

c∗(β, ξ) = inf
ρ∈Γ

sup
U∈(0,Yξ(1))

{
ρ′(U) +

kξ(U)

ρ(U)

}
= inf

ρ∈Γ
sup

U∈(0,Yξ(1))

{
ρ′(U) +

hξ(Y
−1(U))f (Y −1(U))

ρ(U)

}
= inf

ρ̂∈Λ
sup

V ∈(0,1)

{
hξ(V )ρ̂′(V ) +

hξ(V )f (V )

ρ̂(V )

}

(using the transformation ρ̂(V ) = ρ(U), U = Yξ(V )), and hence

c∗(β, ξ) = inf
F∈Λ

sup
V ∈(0,1)

hξ(V )

{
F ′(V ) +

f (V )

F (V )

}
,

where Λ is as defined in (12). Note also that F ∈ Λ if and only if F̂ := hξF ∈ Λ, and

hξ(V )
d

dV
(hξ(V )F (V )) +

f (V )

F (V )
= hξ(V )

d

dV
F̂ (V ) +

f (V )hξ(V )

F̂ (V )

= hξ(V )

{
dF̂ (V )

dV
+
f (V )

F̂ (V )

}
,

so that in addition to (26), we have the alternative formula

c∗(β, ξ) = inf
F∈Λ

sup
V ∈(0,1)

{
hξ(V )

d

dV
(hξ(V )F (V )) +

f (V )

F (V )

}
.

2

We also have a Benguria–Depassier type variational principle.

Proposition 6 Let A = {g ∈ C1(0, 1) | g > 0, g′ < 0}. Then

c∗(β, ξ) = max
g∈A

2
∫ 1

0

√
(−g′)f g dv∫ 1

0
g√

1+ξ cos(2πv)
dv
. (28)

Proof: We follow the ideas of Benguria and Depassier [4]. We start with the equation (7), multiply it by g/F , where g is a

positive function, and integrate between 0 and 1 with respect to v . Integrating by parts, and using the fact that F (0) = F (1) = 0,

gives ∫ 1

0

[
f g

F
− g′F

]
dv = c

∫ 1

0

g√
1 + ξ cos(2πv)

dv.
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Now take g′ < 0, so that −g′F > 0. Then
f g

F
− g′F ≥ 2

√
(−g′)f g,

and hence

c ≥
2
∫ 1

0

√
(−g′)f g dv∫ 1

0
g√

1+ξ cos(2πv)
dv
.

As in [4, p. 344] and using Proposition 3, we can show that if c∗(β, ξ) > cl(β, ξ), there exists a g ∈ A for which the equality

holds, and if c∗(β, ξ) = cl(β, ξ), the maximum over A in (28) is cl(β, ξ). Hence the result follows. 2

Finally, we have a bound for the minimal speed of the anisotropic case in terms of the minimal speed in the isotropic case,

Proposition 7 For all β we have √
1− |ξ|c∗(β, 0) ≤ c∗(β, ξ) ≤

√
1 + |ξ|c∗(β, 0).

Proof: For all g ∈ A we have

√
1− |ξ|

2
∫ 1

0

√
(−g′)f g dv∫ 1

0
g dv

≤
2
∫ 1

0

√
(−g′)f g dv∫ 1

0
g√

1+ξ cos(2πv)
dv
≤
√

1 + |ξ|
2
∫ 1

0

√
(−g′)f g dv∫ 1

0
g dv

,

and taking maxima over A, we obtain the result by the Benguria–Depassier variational principle for semi-linear equations [4]. 2

4.2. The case ξ > 0

Proposition 8 If ξ > 0, for β ∈ [0, 1/2), c∗(β, ξ) = cl(β, ξ), whereas c∗(β, ξ) > cl(β, ξ) if

1

2
+

√
ξ

2(1 + ξ)
< β ≤ 1.

So there is a “gap” that we cannot close at present.

Proof: Suppose first that β ∈ [0, 1/2). Then since ξ > 0, it follows from Propositions 2 and 7 that

c∗(β, ξ) ≤
√

1 + ξ c∗(β, 0) =
√

2(1 + ξ)(1− β) = cl(β, ξ),

and hence c∗(β, ξ) = cl(β, ξ). If on the other hand β ∈ (1/2, 1), Propositions 2 and 7 give that

c∗(β, ξ) ≥
√

1− ξ
2β

,

and so

c∗(β, ξ) > cl(β, ξ) =
√

2(1− β)(1 + ξ)

if

β >
1

2
+

√
ξ

2(1 + ξ)
.

The case of β = 1 is again handled by continuity. 2

4.3. The case ξ < 0

For β ∈ (1/2, 1] the situation is simple and we have

Proposition 9 If ξ < 0 and β ∈ (1/2, 1], c∗(β, ξ) > cl(β, ξ).

Proof: By Proposition 7,

c∗(β, ξ) ≥
√

1 + ξ

2β
,
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and hence

c∗(β, ξ) > cl(β, ξ) =
√

2(1− β)(1 + ξ).

2

If β < 1/2, we have a partial result.

Proposition 10 Assume that − 1
9
< ξ < 0 and 0 < β < 1+9ξ

2(1+5ξ)
. Then

c∗(β, ξ) = cl(β, ξ) (29)

(Note that 1+9ξ
2(1+5ξ)

→ 1
2

as ξ→ 0, and if β = 0, the result (29) holds if −1/9 ≤ ξ ≤ 0.)

Proof. Recall from (27) that

c∗(β, ξ) = inf
F∈Λ

sup
V ∈(0,1)

{
hξ(V )

d

dV
(hξ(V )F (V )) +

f (V )

F (V )

}
,

where

Λ = {F ∈ C1([0, 1]) : F (V ) > 0 if V ∈ (0, 1), F (0) = 0, F ′(0) > 0}.

Now, since h′ξ(V ) = −ξπ sin(2πV )/hξ(V ),

hξ
d

dV
(hξF ) +

f (V )

F (V )
= hξ[h

′
ξ(V )F (V ) + hξ(V )F ′(V )] +

f (V )

F (V )

= −ξπ sin(2πV )F (V ) + (1 + ξ cos(2πV ))F ′(V ) +
f (V )

F (V )
,

so that for the family Fν(V ) = ν sin(πV ), ν > 0, we have Fν ∈ Λ, and for all V ∈ (0, 1),

hξ
d

dV
(hξF ) +

f (V )

F (V )
=

1

2πν
+ cos(πV )

[
− β

2πν
+ πν(1 + ξ cos(2πV ))− 2νξπ sin2(πV )

]
=

1

2πν
+ cos(πV )

[
− β

2πν
+ πν(1− ξ + 2ξ cos(2πV ))

]
.

Then
d

dV

{
hξ
d

dV
(hξFν) +

f (V )

Fν(V )

}
= −π sin(πV )

×
[
− β

2πν
+ πν(1− ξ + 2ξ cos(2πV )) + 8νξπ cos2(πV )

]
= −π sin(πV )

[
− β

2πν
+ πν(1− 3ξ + 12ξ cos2(πV )

]
≤ −π sin(πV )

[
− β

2πν
+ πν(1 + 9ξ)

]
for all V ∈ (0, 1),

so that if 1 + 9ξ > 0, the mapping V 7→ hξ
d
dV

(hξFν) + f (V )
Fν (V )

is strictly decreasing on (0, 1) provided

ν >

√
β

2π2(1 + 9ξ)
,

in which case

sup
V ∈(0,1)

[
hξ
d

dV
(hξFν) +

f (V )

Fν(V )

]
= hξ

d

dV
(hξFν) +

f (V )

Fν(V )

∣∣∣∣
V =0

=
1

2πν
+

[
− β

2πν
+ πν(1 + ξ)

]
=

1

2πν
(1− β) + πν(1 + ξ).

10 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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Now

inf
ν>0

[
1

2πν
(1− β) + πν(1 + ξ)

]
=
√

2(1− β)(1 + ξ)

=
1

2πν
(1− β) + πν(1 + ξ)

∣∣∣∣
ν=

√
1−β

2π2(1+ξ)

.

So if β < 1+9ξ
2(1+5ξ)

,

1− β
2π2(1 + ξ)

>
β

2π2(1 + 9ξ)
,

and hence

inf
ν>0

sup
V ∈(0,1)

[
hξ
d

dV
(hξFν) +

f (V )

Fν(V )

]
≤ inf

ν≥
√

β

2π2(1+9ξ)

sup
V ∈(0,1)

[
hξ
d

dV
(hξFν) +

f (V )

Fν(V )

]

= inf
ν≥

√
β

2π2(1+9ξ)

[
1

2πν
(1− β) + πν(1 + ξ)

]

=
√

2(1− β)(1 + ξ)

= cl(β, ξ).

2

Remark: An argument using Jensen’s inequality as in [3] furnishes a smaller region in the (ξ, β) plane where the linear selection

mechanism holds; interestingly, for β = 0 it also suggests that the linear selection mechanism holds for ξ ≥ −1/9.

Proposition 11 Suppose that −1 < ξ < 0 and β ∈ [0, 1). Then c∗(β, ξ) > cl(β, ξ) provided

β > 1−
(−πξ +

√
ξ2π2 + 8(1 + ξ))2

8π2(1 + ξ)
. (30)

In particular, there exists ξ∗ ∈ (−1, 0) such that for each β ∈ [0, 1), c∗(β, ξ) > cl(β, ξ) if −1 < ξ < ξ∗.

Proof. We adapt some ideas from [5]. Let V be a decreasing travelling-wave profile with V (z)→ 1, 0 as z → −∞,∞. First

note that multiplying the equation

hξ(hξV
′)′ + cV ′ + f (V ) = 0, z ∈ R, (31)

by V ′ and integrating over R yields that

c

∫
R

(V ′)2 dz =
1

π2
, (32)

since
∫
R hξV

′(hξV
′)′ dz = 0 and

∫
R
f (V )V ′ dz = −

∫ 1

0

f (V ) dV = −
∫ 1

0

{
1

2π
sin(πV )− β

4π
sin(2πV )

}
dV = − 1

π2
.

On the other hand, multiplying (31) by 1− V and then integrating over R gives∫
R

(hξV
′)2 dz − ξ

2
− c

2
= −

∫
R
f (V )(1− V ) dz, (33)

because ∫
R
c(1− V )V ′ dz = −c

2
,
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and ∫
R
hξ(1− V )(hξV

′)′ dz =

∫
R

(hξV
′)2 dz −

∫
R
hξh

′
ξ(1− V )V ′ dz

=

∫
R

(hξV
′)2 dz + ξπ

∫
R

sin(2πV )(1− V )V ′ dz

=

∫
R

(hξV
′)2 dz − ξπ

∫ 1

0

sin(2πV )(1− V ) dV

=

∫
R

(hξV
′)2 dz − ξ

2
.

Since f (V )(1− V ) > 0 and c > 0, (33) implies that

c2 > 2c

∫
R

(hξV
′)2 dz − cξ, (34)

and since

h2
ξ = 1 + ξ cos(2πV ) ≥ 1− |ξ| = 1 + ξ,

we have ∫
R

(hξV
′)2 dz ≥ (1 + ξ)

∫
R

(V ′)2 dz. (35)

It then follows from (32), (34) and (35) that

c2 >
2(1 + ξ)

π2
− cξ ⇔ c2 + cξ − 2(1 + ξ)

π2
> 0. (36)

Now the quadratic function y(c) := c2 + cξ − 2(1+ξ)

π2 has y(0) < 0 and tends to ∞ as |c | → ∞, so y(c) = 0 has two real

roots, one of each sign. Since we know that c > 0, it thus follows from (36) that c is bounded below by the positive root of

y(c) = 0, and hence

c ≥
−ξπ +

√
ξ2π2 + 8(1 + ξ)

2π
=: q(ξ). (37)

So c∗(β, ξ) ≥ q(ξ) for each β ∈ [0, 1). Thus c∗(β, ξ) > cl(β, ξ) =
√

2(1 + ξ)(1− β) whenever

q(ξ) >
√

2(1 + ξ)(1− β),

which holds if and only if

(
−ξπ +

√
ξ2π2 + 8(1 + ξ)

2π

)2

> 2(1 + ξ)(1− β)

⇔ β > 1−
(−πξ +

√
ξ2π2 + 8(1 + ξ))2

8π2(1 + ξ)
=: p(ξ),

as required. Also, p : (−1, 0]→ R is strictly increasing, tends to −∞ as ξ→ −1, and p(0) = 1− 1
π2 . So there exists a unique

value ξ∗ ∈ (−1, 0) such that

p(ξ∗) = 0, p(ξ) < 0 for ξ ∈ (−1, ξ∗), and p(ξ) > 0 for ξ ∈ (ξ∗, 0],

from which it follows, in particular, that c∗(β, ξ) > cl(β, ξ) for all β ∈ [0, 1) if −1 < ξ < ξ∗. 2

Remarks: 1. Numerically, ξ∗ ≈ −0.698.

2. A qualitatively similar result, giving a poorer estimate of ξ∗, can be obtained using (5.3) of [19] and explicitly calculating

Yξ(1).

3. It is instructive to compare Proposition 11 with Propositions 2 and 7. By Proposition 11, the minimal speed c∗(β, ξ) is

nonlinear for all β ∈ [0, 1) if −1 < ξ < ξ∗. On the other hand, the bounds derived in Proposition 7 and the formulae in Proposition
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Figure 2. Zones in the (ξ, β) plane where linear (dark grey) and nonlinear (light grey) selection has been shown to hold.

2 for the isotropic minimal speeds c∗(β, 0) together imply that the minimal speeds c∗(β, ξ) are uniformly bounded independently

of (β, ξ) ∈ [0, 1)× (−1, 1). Thus for small β and −1 < ξ < ξ∗, the nonlinear minimal speeds c∗(β, ξ) are clearly unrelated to

the existence of the explicit travelling wave solution of the isotropic semilinear equation with speed 1/
√

2β, which tends to ∞
as β → 0.

Figure 2 illustrates the results of Propositions 2, 8, 9 and 11. The linear and nonlinear selection mechanisms hold in the dark

grey and light grey regions respectively. The white regions are where we have not yet been able to determine which mechanism

holds.

In fact, there is a curve γ(t) = (ξ(t), β(t)), t ∈ [0, 1] in the (ξ, β) plane that is monotone in ξ and β, passes through

(ξ, β) = (0, 1
2

), and separates the linear selection regime from the nonlinear selection regime. This claim is proved in the following

two propositions, which illustrate the complementary character of the Hadeler–Rothe and Benguria–Depassier variational

principles.

Proposition 12 If c∗(β
∗, ξ∗) = cl(β

∗, ξ∗), then c∗(β
∗, ξ) = cl(β

∗, ξ) if ξ > ξ∗.

Proof. Since there exists a monotone decreasing travelling wave solution of (5) of speed c = c∗(β
∗, ξ∗), there exists F̂ ∈ Λ

such that

c∗(β
∗, ξ∗) = hξ∗(V )

{
F̂ ′(V ) +

f (V )

F̂ (V )

}
for all V ∈ (0, 1).

Then by (26),

c∗(β
∗, ξ) = inf

F∈Λ
sup

V ∈(0,1)

hξ(V )

{
F ′(V ) +

f (V )

F (V )

}
≤ sup

V ∈(0,1)

hξ(V )

hξ∗(V )
hξ∗(V )

{
F̂ ′(V ) +

f (V )

F̂ (V )

}
= c∗(β

∗, ξ∗) sup
V ∈(0,1)

hξ(V )

hξ∗(V )

=
√

2(1− β)(1 + ξ∗) sup
V ∈(0,1)

hξ(V )

hξ∗(V )
. (38)

Now

hξ(V )

hξ∗(V )
=

√
1 + ξ cos(2πV )

1 + ξ∗ cos(2πV )
,

hξ(0)

hξ∗(0)
=

√
1 + ξ

1 + ξ∗
,

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 13

Prepared using mmaauth.cls



Mathematical

Methods in the

Applied Sciences E.C.M. Crooks et al.

and, since ξ∗ < ξ, we have
1 + ξ cos(2πV )

1 + ξ∗ cos(2πV )
− 1 + ξ

1 + ξ∗
=

(ξ∗ − ξ)(1− cos(2πV ))

(1 + ξ∗)(1 + ξ∗ cos(2πV ))
< 0.

So
hξ(V )

hξ∗(V )
≤ 1 + ξ

1 + ξ∗
for all V ∈ (0, 1),

and hence

c∗(β
∗, ξ) ≤

√
2(1− β)(1 + ξ∗)

√
1 + ξ

1 + ξ∗
=
√

2(1− β)(1 + ξ) = cl(β
∗, ξ),

as required. 2

We also have

Proposition 13 If c∗(β
∗, ξ∗) = cl(β

∗, ξ∗), then c∗(β
∗, ξ∗) = cl(β, ξ

∗) if β < β∗.

Proof. Denote the function f (v) corresponding to a particular value z of β by fz . Suppose that for some β∗ we have

the linear case. Consider β < β∗. We have the Benguria and Depassier variational principle (28), and if we assume that

c∗(β, ξ
∗) > cl(β

∗, ξ∗), there exists gβ ∈ A such that

c∗(β, ξ
∗) =

2
∫ 1

0

√
(−g′β)fβgβ dv∫ 1

0

gβ√
1+ξ∗ cos(2πv)

dv
=

2
∫ 1

0

√
(−g′β)fβgβ

fβ∗
fβ∗
dv∫ 1

0

gβ√
1+ξ∗ cos(2πv)

dv

≤ sup
v∈[0,1]

√
fβ
fβ∗

2
∫ 1

0

√
(−g′β)f ∗β gβ dv∫ 1

0

gβ√
1+ξ∗ cos(2πv)

dv
≤ sup

v∈[0,1]

√
fβ
fβ∗

c∗(β
∗, ξ∗)

= sup
v∈[0,1]

√
fβ
fβ∗

√
2(1− β∗)(1 + ξ∗).

However, as before,

sup
v∈[0,1]

fβ
fβ∗

= sup
v∈[0,1]

1− β cos(πv)

1− β∗ cos(πv)
=

1− β
1− β∗ ,

and hence

c∗(β, ξ
∗) ≤

√
2(1− β∗)(1 + ξ∗)

√
1− β
1− β∗ =

√
2(1− β)(1 + ξ∗) = cl(β, ξ

∗),

which is impossible by our assumption, this concluding the proof. 2

5. Conclusions

In this paper we have considered monotone travelling wave solutions of Equation (3), which governs the dynamics of the director

twist angle of an elastically anisotropic smectic C∗ liquid crystalline material. We have characterised the influence of anisotropy

on the minimal switching speed of the material for certain ranges of parameters (β, ξ) related to the dielectric and ferroelectric

effects (β) and the anisotropy of the elastic constants in the model (ξ), with some regions of parameter space remaining

as open questions at present. We have also given a description of the boundary in parameter space between the linear and

the nonlinear selection mechanisms. Understanding the difference between the linear and nonlinear mechanisms is important

practically because the linear minimal speed cl , which is easy to evaluate, does not necessarily give a good lower bound for the

practically observed speed, and because typically the stability properties of minimal speed waves, which characterise the nature

of domain wall switching, depend on which selection mechanism holds. The precise stability properties of travelling waves for

the quasilinear equation (3) are left for future work.

The mathematical interest in the current paper is in showing how a variety of ideas previously developed for semilinear parabolic

equations can be exploited, adapted and extended to obtain information about a novel quasilinear equation (not in divergence

form) (3). In particular, we emphasise the complementary nature of information obtained from the Hadeler–Rothe type and the
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Benguria–Depassier type variational principles given in Propositions 5 and 6, respectively. Note that the change-of-variable ideas

of Engler [12], which are employed in the proof of Proposition 3, yield some preliminary information and tools, such as existence

of fronts and the variational characterisation in Proposition 5, about the anisotropic case with ξ 6= 0. However, careful application

of these tools combined with other ideas, such as the Benguria-Depassier type variational principle and the Berestycki-Nirenberg

approach used in the proof of Proposition 11, is needed to establish our rigorous results about selection mechanisms in the

anisotropic case.

As seen from Figure 2, there are two regions in (β, ξ) parameter space where there still are gaps in our knowledge. It is an

interesting question what additional tools need to be employed or developed to close these two gaps. It is also tempting to

conjecture that for all ξ ∈ (−1, 1) the minimal speed c∗(β, ξ) is a monotone decreasing function of β, which we know to be the

case if ξ = 0 or when c∗(β, ξ) = cl(β, ξ).

Note that in the isotropic case, we have only considered electric field orientation in the x-direction (see Figure 1). The

influence of the orientation angle on the minimal speed is considered numerically in [27]; it would be interesting to reproduce

their results using the variational methods of [3, 4, 15, 19], and extend this to include anisotropy in the system.

Another interesting point is that in the proof of Proposition 2 we used an explicit solution. A priori it is not clear that an

explicit solution should provide the minimal speed solution for any value of parameter β. A similar example occurs in Theorem

11 of [15], and a discussion of how explicit solutions can help to determine minimal wave speed is given on page 97 of [14].

Note that the value β = 1/2 at which the explicit wave Vβ, given by (10), switches from giving the minimal-speed wave to

being just one of the many waves of super-critical speed can be interpreted in terms of the linearisation of the travelling wave

equation (5) about the wavefront, in the following sense. For each β ∈ [0, 1), the derivative of the explicit wave profile dVβ/dz ,

with respect to the travelling-wave variable z , is a solution of the linearisation of the travelling wave equation about the explicit

wave Vβ. A wave profile that travels at a speed c that is strictly larger than the linear speed cl(β, 0) can converge to 0 at +∞
at one of two possible rates, which are

(
−c ±

√
c2 − 2(1− β)

)
/2; the derivative of the profile will converge to 0 at the same

rate as the profile itself. Whether the explicit solution is the wave of minimal speed (1/2 < β < 1) or has a super-critical wave

speed (0 ≤ β < 1/2) corresponds precisely to whether the wave, and its derivative decay to 0 at ∞ at the faster or slower of

these rates; see also [19, Cor. 2.7] and [14, Thm. 10.12]. This can be viewed as whether or not the derivative dVβ/dz belongs to

the weighted space Ξc of functions y : R→ R with supz∈R |(1 + exp( cz
2

))y(z)| <∞, and thus whether or not the linearisation

about the explicit travelling wave Vβ has a zero eigenvalue in this weighted space. Whenever the speed c is strictly larger than

the linear speed cl(β, 0), local stability properties of the wave in the weighted space Ξc hold (see [32, Chp. 5, Sec. 2.1 ], [11,

Lem. 4.4, Thm. 4.8]) and qualitatively depend on whether this linearisation has a zero eigenvalue in Ξc or not.

It is possible that the structural stability considerations [23] and renormalization group arguments [9] would also be useful in

clarifying the rôle of explicit solutions in determining minimal wave speeds.
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