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ABSTRACT
Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 
11%. However, very few studies have focused on their stability under illumination and the origin 
of the degradation during the so-called burn-in period. Here, we studied the burn-in period of 
a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 
butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to 
the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour 
is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, 
we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV–
vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the 
crystallinity of BTR affects the performance drop during the burn-in period, the degradation 
is found not to originate from the crystallinity changes of the BTR phase, but correlates with 
changes in molecular conformation – rotation of the thiophene side chains, as resolved by Raman 
spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

1. Introduction

Solution-processed organic small molecule solar cells 
(SMSCs) have a number of advantages over the more 
common polymer solar cells (PSCs), including well- 
defined chemical structure and thus monodisperse 
molecular weight, which allows easier purification and 
better reproducibility [1]. Power conversion efficiency 
(PCE) over 11% has been recently achieved [2,3], which 
is comparable to most of the state-of-the-art PSCs [4]. 
However, the stability of solution-processed SMSCs is 
far less understood than PSCs, even though stability 

remains a critical consideration for their commerciali-
sation [5]. Although many researchers have studied the 
stability of SMSCs with evaporated active materials [6–
9], there are only a few reports focusing on the stability 
of SMSCs with solution-processed active layers [10,11]. 
Apparently, there are several fundamental differences 
between both types of small molecules such as the pla-
narity of the molecules or the inclusion of side chains 
on the molecule leading to the difference in their solu-
bility. Besides, in term of devices, the device architec-
ture of SMSCs are usually different, bilayer structure is 

 OPEN ACCESS
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employed for most evaporated SMSCs and bulk-hetero-
junction structure with solvent vapour annealing (SVA) 
treatment for most solution-processed SMSCs [1,12].

Recently, solution-processed SMSCs using 
BTR:PC71BM have attracted a lot of attention for its 
promising efficiency of 9.3%, and high fill factor (FF) of 
77% with optimal active layer thickness of over 200 nm 
[13]. Even with the thickness of up to 400 nm, which is 
more preferable for up-scaling, the efficiency can still 
be as high as 8% [13]. To achieve high efficiency for 
most of the solution-processed SMSC systems including 
BTR:PC71BM, SVA is a common method for the opti-
misation [1], which can increase/control the degree of 
crystallisation of the small molecule donor in the active 
layers [13]. Besides, it has been demonstrated that mix-
ing BTR with a polymer:fullerene system, forming a 
ternary blend, can boost the PCE as well as increase the 
optimal active layer thickness [14].

Burn-in is a widely observed phenomenon occurring 
at the beginning of the degradation under light and inert 
environment for polymer/small molecule organic solar 
cells, in which the device efficiency drops exponentially 
[15–17]. Overcoming the burn-in effect is a general but 
critical challenge for organic solar cells since the drop 
in efficiency can be up to 50–60% [10,18], where the 
burn-in period can be from hundreds of hours to over a 
thousand hours [18]. However, the origins of the burn-in 
effect are still widely debated [19–28]. Besides, the deg-
radation mechanism of solution-processed SMSCs could 
be different from evaporated SMSCs and PSCs due to 
their intrinsic molecular difference and the variation of 
processing methods. Here, we attempt to understand the 
degradation during the burn-in period of BTR:PC71BM 
devices with different levels of crystallinity of the active 
layers by controlling the SVA time, through studying 
the structural and optical properties of the photo-aged 
films. To minimise the stress factors, both the devices 
and films are degraded at room temperature under irra-
diation from visible light-emitting diodes (LEDs) with 
a constant flow of dry nitrogen for up to 192 h (8 days).

2. Experimental

BTR and PC71BM were purchased from 1-Material 
and Solenne BV, respectively. Chloroform and tetrahy-
drofuran (THF) were purchased from Sigma-Aldrich 
(Gillingham, UK). Poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT:PSS) was purchased 
from Heraeus (Clevios P VP AI 4083; Heraeus 
Conductive Polymers (Europe), Leverkusen, Germany). 
All materials were used as received.

Glass substrates covered with indium tin oxide (ITO, 
15 Ω/) were cleaned sequentially with detergent, deion-
ised water, acetone and isopropyl alcohol in an ultrasonic 
bath. BTR and PC71BM (1:1 weight ratio) were dissolved 
and stirred in chloroform with a total concentration 

of 40  mg/ml at 60 °C in a nitrogen-filled glovebox. 
PEDOT:PSS was spin-coated onto plasma-cleaned 
ITO substrates in air followed by 150 °C annealing for 
10 min. The blend solution was then spin-coated onto 
the PEDOT:PSS-coated substrates at an optimised speed 
of 1500 r.p.m. for 15 s in the nitrogen-filled glovebox 
resulting in active layer thickness of 220 nm as measured 
by a profilometer. SVA treatment was performed in a 
sectioned petri dish with 1 ml THF filled in a section of 
the petri dish. The petri dish was covered with a lid for at 
least 2 min before performing SVA to the active layer. The 
samples were placed in the other sections of the petri dish 
for different exposure times as mentioned in the main 
text. Then, 30 nm of calcium and 100 nm of aluminium 
were evaporated onto the active layer in an evaporator 
with base pressure of 2 × 10−5 mbar, forming devices with 
active area of 0.15 cm2. The devices were encapsulated 
with glass slides using epoxy before the measurements in 
air. J-V scans were performed by a sourcemeter (Keithley 
2400; Tektronix Inc., Bracknell, UK) under a solar simu-
lator (Newport 92193A-1000; Newport Spectra-Physics 
Ltd., Didcot, UK) with intensity of 90 mW/cm2.

Device burn-in measurements were performed with a 
home-built electrical environmental chamber filled with 
dry nitrogen at a controlled temperature of around 25 °C, 
under constant illumination of one-sun equivalent white 
LEDs arrays. The intensity of the LEDs was adjusted to 
one-sun equivalent so that the initial JSC of the devices 
measured in the chamber were matched with the JSC meas-
ured under one-sun illumination. A sourcemeter was used 
to obtain the J-V data during the degradation for every 
15 min. BTR:PC71BM blend films were prepared on quartz 
substrates for the grazing-incidence X-ray diffraction 
(GI-XRD), UV–vis absorbance, Raman and photolumi-
nescence (PL) measurements, using the same prepara-
tion of the active layers of the devices. These films were 
degraded in the same way as the device degradation stated 
above to ensure the relevance to the device stability studies.

GI-XRD measurements were carried out using 
a Bruker D8 Discover instrument (Bruker AXS 
LTD., Coventry, UK) with a CuK α beam (wave-
length = 0.15418 nm), in the range from 1° to 10° with 
scan parameters of 2 s/step, 0.02° step size and fixed 
incidence angle of 1°.

The UV–vis absorbance spectra were measured 
with a Perkin Elmer Lambda 750 spectrophotometer 
(PerkinElmer, Seer Green, UK), using a quartz substrate 
as a reference sample for calibration.

For the Raman and PL measurements, the blend 
films were measured under a dry nitrogen environment 
which was enabled by purging an environmental cham-
ber (Linkam THMS600; Linkam Scientific Instruments, 
Tadworth, UK) with dry nitrogen for ~5 min prior to 
the measurements, and maintaining a positive pressure 
during measurements. The Raman and PL measurements 
were performed with a Renishaw inVia Raman system 
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(Renishaw plc., Wotton-Under-Edge, UK) in backscatter-
ing configuration. A 532 nm laser and 50x objective were 
used (NA: 0.50, spot size ≈ 1 μm). For the micro-Raman 
measurements, a laser power of 0.03 mW and acquisition 
time of 60 s was used. For the micro-PL measurements, 
a laser power of 0.03 mW and acquisition time of 0.01 s 
was used. 1800 l/mm and 300 l/mm gratings were used 
for the Raman and PL measurements, respectively.

Density function theory (DFT) simulations were 
carried out using GAUSSIAN09 [29] on the Imperial 
College High-Performance Computing Service. All 
DFT simulations were carried out at the B3LYP level 
of theory, using the basis set 6311G(d,p) [30–33]. All 
alkyl side chains were simplified to methyl groups to 
reduce computational time. The structure of BTR was 
optimised to an energy minimum and compared to 
other conformations to find the global minimum energy 
structure. Frequency calculations were carried out to 
simulate the Raman spectra, an empirical scaling factor 
of 0.9669 was used for the frequency of vibration [34]. 
The frequency modes calculated were visualised using 
the GAUSSIAN09 software to allow for peak assignment. 
Comparisons with literature have also been conducted 
to aid peak assignment [35–38].

3. Results and discussion

3.1. Device degradation study during burn-in 
period

Figure 1 shows the burn-in degradation of BTR:PC71BM 
devices as a function of SVA time. A moderate treatment 
time of 2 min is found to be optimal for the device per-
formance, generating PCE of over 10%. Details of the 
fresh device performance are listed in Table 1. Long SVA 
times such as 5 and 10 min show slight reductions in the 
PCE probably due to high crystallinity of BTR phase as 
resolved by GI-XRD measurements, which are discussed 
in the next section. Overall, the longer the SVA, the less 
the burn-in is observed (Figure 1(a)). In particular, the 
PCE drops by 54.2% for 0 min SVA, 32.7% for 2 min SVA 
and 29.7% for 10 min SVA. The improvement in stability 
starts saturating for treatment longer than 2 min. Unlike 
a previous report which studies the stability of different 
small molecules with different crystallinity [10], here, 
we control the crystallinity of a material system via 
tuning the annealing time. Hence, the burn-in of the 
devices can be directly correlated to the crystallinity of 
the BTR:PC71BM blend films. The degradation curves of 
other cells in the same samples are available in Figure 

Figure 1. normalised (a) PCE, (b) VOC, (c) JSC and (d) FF (to the initial maximum values) of BTr:Pc71BM devices, with active layers 
which have undergone increasing Sva time, as a function of photo-ageing time under one-sun equivalent illumination at room 
temperature in dry nitrogen.
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~0.80° for 0 min SVA; ~0.68° for 2 min SVA; and ~0.49° 
for 10 min SVA. Both the increase in absolute intensity 
and reduction in FWHM show that the crystallisation 
increases with longer SVA time.

After the photo-ageing, there are only minor differ-
ences in the intensity between the diffraction peaks. 
Moreover, the FWHM of the diffraction peak is another 
way to probe the degree of crystallinity and, as shown in 
Figure 2(b), for all the fresh and photo-aged films, they 
are very similar in terms of the FWHM of the diffrac-
tion peak. These results suggest that photo-ageing of the 
blend films does not considerably affect the crystallinity 
or packing of the BTR.

3.3. UV–vis absorbance study of fresh and photo-
aged films

Photobleaching studies are commonly used to look at 
the degradation of organic materials [39,40]. UV–vis 
absorbance measurements were performed for the fresh 
and photo-aged films. For the fresh films, the intensity 
of the BTR peaks (~564 and ~614 nm) increases with 
longer SVA treatment, which confirms the crystalline/
aggregate nature of these peaks. For all the films (SVA 
for 0 min, 2 min and 10 min), only slight photobleaching 
was observed (see Figure 3(a)), which could be linked 
to light induced degradation (photodissociation) [41]. 
The absorbance spectra also show that there is a small 
reduction in the absorbance at 378  nm (originating 
from PC71BM) for all the samples, suggesting PC71BM 
was degraded, and its degradation was found not to be 
affected by the SVA treatment. For better comparison to 
the change in the BTR absorption peaks (at 565 nm and 
616 nm), all the spectra were normalised to the absorb-
ance at 378 nm as shown in Figure 3(b). It is clear that 
after the photo-ageing, there are stronger reductions at 
the 565 nm peak compared with the 616 nm peak for all 
three blend films, which could be correlated to change 
in local molecular conformation (detailed discussion 
in the Raman section). The absorption spectra tend 
to show less photobleaching for longer SVA time (the 

S1(a) and the degradation trends can be repeated using 
a separate batch of devices as shown in Figure S1(b).

The reduced degradation for longer SVA is mainly 
due to a smaller drop in the short circuit current density 
(JSC) (Figure 1(c)). The drop in FF after 192 h degra-
dation decreases with increasing SVA treatment time 
except the 10 min device (Figure 1(d)). Note that the 
open circuit voltage (VOC) is rather stable (Figure 1(b)) 
for all the devices implying that changes of the effective 
bandgap between the donor and acceptor are minor dur-
ing degradation. Although the stability keeps improving 
with increasing SVA time, for practical use, we should 
also consider the absolute performance by taking the 
initial performance into account.

3.2. Crystallinity study of fresh and photo-aged 
films

To probe if the crystallisation of the BTR phase was 
altered after photo-ageing, we performed GI-XRD on the 
BTR:PC71BM blend films before and after degradation. 
Three representative SVA times were selected, 0  min 
for the untreated, 2 min for the optimal, and 10 min 
for the over treated. As shown in Figure 2(a), there are 
diffraction peaks at 2θ = 4.72° for the treated films, cor-
responding to interlayer spacing of 1.87 nm which agrees 
with the published result [13]. The detailed changes in 
the peak positions are shown in Figure S2. Clearly, the 
absolute intensity of this diffraction peak increases 
with longer solvent treatment time. Furthermore, the 
full width at half maximum (FWHM) of the diffraction 
peak is reduced with increasing SVA time (Figure 2(b)): 

Table 1. Performance of BTr:Pc71BM devices with the active 
layers treated for increasing Sva time.

SVA time (min) JSC (mA/cm2) VOC (V) FF (%) PCE (%)
0 12.2 0.992 53.7 7.12
1 12.7 0.969 67.7 9.16
2 13.1 0.944 74.7 10.14
5 12.5 0.933 76.4 9.81
10 9.5 0.932 67.8 6.59

Figure 2.  (a) gi-Xrd spectra and (b) normalised gi-Xrd spectra, of BTr:Pc71BM films with increasing Sva time, before and after 
photo-ageing.
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should also be noted that vibrations in either the phenyl 
or thiophene part of the BDT unit will induce vibrations 
in the other, when assigning these peaks we have tried to 
discern the predominant stretch but that does not mean 
that this bond vibrates in isolation. Peak D, correspond-
ing to 1537 cm−1, is assigned to the BDT unit, with the 
predominant vibration involving the un-fused phenyl 
bonds adjacent to the bonds with thiophene 4, again this 
assignment is consistent with the literature [36,42,43]. 
It is important to note that peak D is exclusively local-
ised to the main conjugated backbone with clear on-axis 
vibrations of the core phenyl group, whilst peak C has 
a contribution from thiophene 4, which is perpendic-
ular to the backbone. Peak E, assigned to 1582 cm−1

, is 
attributed to the BDT unit, with both the phenyl and 
fused thiophene C=C bonds showing strong vibrations, 
there is also a clear contribution from the C=C bonds 
of thiophene 1. The studies mentioned above [36,42,43], 
assign this mode to just the phenyl stretch of the BDT 
but our simulations show that this peak has clear con-
tributions from the C=C bonds of both thiophene 1 and 
the fused thiophenes. This discrepancy may result from 
the different side chains of the BDT and thiophene units 
in the molecules studied.

The Raman intensity of the 1424  cm−1 peak from 
all the films decreases slightly after the photo-ageing, 
consistent with the slight photobleaching. Looking at 
the changes in absolute intensity is not a very relia-
ble method to probe the degradation, as the inten-
sity depends on sample-to-sample variation and film 
homogeneity. Therefore, the main Raman peak (peak 
B) is normalised and the relative intensity of the other 
peaks is studied. Here, we focus on the second main 
peak (peak C) at 1501  cm−1, as other peaks are too 
noisy to be probed accurately. We find that there is a 
trend where the relative intensity of the 1501 cm−1 peak 
(which also shifts to 1499  cm−1 after the photo-age-
ing) drops less with increasing SVA time (~10.5% 
for 0  min SVA, ~2.39% for 2  min SVA and ~1.46% 
for 10 min SVA) (see Figure 4(c)). The origin of the 

main absorption peak drops by 15.2% for 0 min SVA; 
14.6% for 2 min SVA; and 10.7% for 10 min SVA after 
photo-ageing).

3.4. Raman spectroscopy of fresh and photo-aged 
films

To study the effect of the photo-ageing to the molecular 
conformation of the blend films, Raman spectroscopy 
measurements were performed in which the change in 
Raman spectra could indicate a change in molecule con-
formation [35,36]. As shown in Figure 4(a), there are five 
peaks between 1350 and 1600 cm−1, and these peaks are 
all assigned to the BTR as PC71BM has negligible Raman 
signal in this region with this excitation condition.

Calculated Raman spectra at the B3LYP, 6-311G(d,p) 
level of theory were used to assign the Raman peaks of 
BTR (Figure 4(b) and Table 2). The calculated spectra 
showed a similar peak pattern and similar relative inten-
sities to the experimental spectra but it was observed 
that after applying an empirical scaling factor of 0.9669 
[34], the absolute frequency of the vibrational modes is 
underestimated. The peak at 1377 cm−1, corresponding 
to peak A, is assigned to the C-C stretching mode of the 
three backbone thiophene groups, labelled 1, 2 and 3 
in the chemical structure in Figure 4(e). Peak B, corre-
sponding to 1424 cm−1 is assigned to the C=C stretching 
of these backbone thiophene groups. The assignments 
of these two peaks are further supported by their simi-
larity to the Raman spectra of P3HT [35,42,43]. Peak C, 
assigned to 1501 cm−1, has predominant contributions 
from the C=C stretching modes of thiophene 4 and 
the fused thiophenes in the benzodithiophene (BDT) 
unit which is consistent with several studies which 
assign peaks at a similar frequency to the BDT fused 
thiophene C=C modes [36,42,43]. In our simulations 
there are two peaks that could be assigned to peak C, 
but both clearly correspond to the vibrations above, the 
only difference between the two is the extent at which 
other vibrational modes of the molecule contribute. It 

Figure 3. Uv–vis absorbance spectra of the fresh and photo-aged BTr:Pc71BM films: 0 min Sva, 2 min Sva and 10 min Sva films (a) 
without normalisation and (b) with normalisation to the Pc71BM peak at 378 nm.
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(note that the dihedral angle is not quantitative and is 
used as a guide). The effect of changing this dihedral 
angle on the calculated Raman spectra is investigated 
as peak C is the only main peak with a considerable 

drop of 1501 cm−1 (peak C) relative to the 1424 cm−1 
(peak B) maybe rationalised as follows: The optimised 
geometry shows a dihedral angle of 61° between the 
plane of thiophene 4 and the plane of the BDT unit 

Figure 4.  (a) raman spectra of BTr:Pc71BM films with increasing Sva time, before and after photo-ageing, (b) calculated raman 
spectrum of BTr using B3lyP 6311g(d,p) with all alkyl side chains simplified to methyl groups, (c) normalised raman spectra of 
BTr:Pc71BM films with increasing Sva time, before and after photo-ageing (inset shows zoomed-in of peak c), (d) normalised 
calculated raman spectrum of BTr with different dihedral angle between the BdT and thiophene 4 unit using the same simulation 
method and (e) the chemical structure of BTr with numbered thiophenes for raman peak assignment. The main backbone has 
dihedral angles ranging from ~15° to 25°. The thiophenes numbered as 4 are ~61° out of the plane of the BdT core.

Table 2. assignments of the raman peaks shown in figure 4.

Peak Vibrational mode
a c-c stretching mode in ring of thiophene 1 and 2 (and 3 most likely) (like P3hT)
B c=c of thiophene 1 and 2 and 3 (like P3hT)
c c=c of fused thiophene and thiophene 4
d BdT phenyl stretch (contribution from the fused thiophene – impossible for the phenyl ring to vibrate and the fused thiophene not vibrate as 

well) – (very tiny contributions from other thiophene)
e Whole BdT unit, phenyl and fused thiophene, c=c in thiophene 1 and 2
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0.15  eV which is similar to the energy difference 
between the absorbance peaks of 0.18  eV. However, 
after ageing, the shoulder peaks at 680 nm vanish, con-
sistent with the bigger drop in the lower wavelength 
absorbance peaks (564 nm).

The main PL peaks are normalised to show changes 
in peak position and spectral shape. As shown in Figure 
5(b), after the photo-ageing, the PL peaks of all the films 
shift to longer wavelength (though it can also be due to 
change in relative intensity). The degree of shift of the 
peak position after photo-ageing tends to correlate with 
longer SVA (+ 22 nm for 0 min SVA, + 12 nm for 2 min 
SVA and + 8 nm for 10 min SVA). Overall, the change 
in PL spectra (both the disappearance of the shoulder 
peaks and the red-shift of the spectra after ageing) could 
be related to the change in molecular conformation, in 
particular the rotation of the thiophene 4 unit to the 
BDT core, affecting the photo-physical/chemical prop-
erties. The red-shift could be due to greater reduction in 
the PL intensity at the 680 nm shoulder peak than that 
at the 740 nm peak [44,45].

Figure 6 summarises the drop in PCE (the burn-in 
region), the drop in the absorbance, the drop in the rel-
ative Raman intensity (1501 cm−1 to main peak) and the 
red-shift in PL peak position after the 192 h photo-age-
ing, as well as the FWHM of the GI-XRD diffraction 
peaks of the fresh blend films. Consistent correlations 
are observed between all the data. Such multi-characteri-
sation allows us to compare between different techniques 
for the minor changes of the structural or optical prop-
erties causing the degradation. Here, our study mainly 
focuses on the role of the BTR donor, and further studies 
are needed to understand the role of PC71BM to the deg-
radation. It is also worth noting that care must be taken 
when comparing photo-aged devices and blend films, 
as there are interlayers and electrodes in devices which 
may also affect the degradation even in a dry nitrogen 
environment, although we believe that the effect of inter-
layers and electrodes is likely mitigated under this inert 
environment.

contribution from thiophene 4. It is important to note 
that this method does not provide us with a quantita-
tive understanding but does allow us for understanding 
how relative changes to molecular conformation may 
result in changes to the Raman spectra. It is found that 
reducing the dihedral angle leads to a shift of peak C 
(both peaks assigned to peak C behave similarly) to 
lower wavenumbers and a reduction in the relative peak 
intensity with respect to the peak at 1424 cm−1 (Figure 
4(d)), both correlate well with the experimental data. 
Therefore, it could suggest that degradation of BTR 
results from a molecular conformational change, that 
being a rotation of thiophene 4 towards the plane of the 
BDT. It suggests that increasing crystallisation (with 
longer SVA time) suppresses the rotation of thiophene 
4 and thus improves the stability.

3.5. Photoluminescence study of fresh and photo-
aged films

To gain further insights into the effect of photo-ageing 
to the photo-physical/chemical properties of the blend 
films, micro-PL measurements were performed at the 
same position for each sample as the corresponding 
Raman measurements for direct comparison. Since the 
absorption of the films corresponding to the excitation 
wavelength (532 nm) was changed after degradation, 
the PL spectra were scaled based on their absorption 
at 532  nm as shown in Figure 5(a). The original PL 
spectra are available in the Figure S3. The PL intensity 
of the main peak is relatively stable before and after 
ageing (variations are in the margin of error of PL and 
could be due to slight differences in focus from sample 
to sample). There is a shoulder at lower wavelength 
(680 nm) for the fresh samples that underwent SVA 
treatment. Both the PL main peak (740 nm) and the 
shoulder (680  nm) are in good correlation with the 
absorbance peaks of BTR, which could be ascribed to 
two transitions of the BTR crystalline phase. Moreover, 
the energy difference between the PL peaks is about 

Figure 5. (a) Pl spectra corrected by its absorbance at 532 nm (corresponding to the excitation wavelength) and (b) normalised Pl 
spectra of BTr:Pc71BM films with increasing Sva time before and after photo-ageing.
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