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Abstract 

 Assessing levels of equity inherent in the distributions of the public open spaces that 

they manage is an important responsibility of park and recreation agencies. Multivariate 

regression offers one way of conducting such assessments. However, traditional ordinary least 

squares (OLS) techniques fail to explore important local variations in relationships among 

variables. This study explored the utility of geographically weighted regression (GWR) in an 

equity analysis of public beaches in the Detroit Metropolitan Area. The GWR models exhibited 

substantial improvements in model performance over the OLS models. GWR offers public 

leisure agencies a powerful technique via which to better understand local patterns of access 

and equity, ultimately leading to the formulation of more effective and efficient recreation 

planning and management policies.  
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Introduction 

 Green and blue spaces such as parks, playgrounds, trails, golf courses and lakes are 

public open spaces (POSs) that can provide local communities with recreation settings in 

addition to various other environmental, social, health, and economic benefits (Porter, 2001; 

Taylor, Floyd, Whitt-Glover, & Brooks, 2007). Concerns regarding inequities in the 

distribution of POSs have risen over the last few decades (Byrne, Wolch, & Zhang, 2009; Deng, 

Walker, & Strager, 2008; Tarrant & Cordell, 1999; Taylor et al., 2007). As a result, multiple 

studies have attempted to determine levels of equity across various demographic and 

socioeconomic groups for parks (Byrne et al., 2009; Maroko, Maantay, Sohler, Grady, & Arno, 

2009; Moore, Diez Roux, Evenson, McGinn, & Brines, 2008; Nicholls, 2001; Nicholls & 

Shafer, 2001; Omer, 2006;Talen, 1997; 1998), trails (Estabrooks, Lee, & Gyurcsik, 2003), 

playgrounds (Smoyer-Tomic, Hewko, & Hodgson, 2004), golf courses (Deng et al., 2008), 

recreational forests (Tarrant & Cordell, 1999), and campsites (Porter & Tarrant, 2001).  

 To measure the degree of equity inherent in the distribution of POSs, multivariate 

linear regression using the ordinary least squares (OLS) method has recently been employed. 

OLS regression uses a global predictive model to capture the strength and significance of the 

statistical relationship between dependent and independent variables over an entire study area 

(Gilbert & Chakaraborty, 2011). However, spatial data such as the geographic locations of 

POSs, measures of access to POSs (e.g., distance or travel time between origin and destination), 

and spatially referenced census data, may exhibit spatial effects such as spatial dependence and 

spatial heterogeneity that can lead to biased estimation results using traditional multivariate 

techniques (Fotheringham, Brunsdon, & Charlton, 2002). The equity of POSs, as represented 

by the relationship between level of access and spatially referenced census data, should ideally 
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be examined using specialized research methods that explicitly account for spatial location and 

therefore differ from those used to analyze non-spatial data. To date, however, this has not 

typically been the case. 

 The purpose of this study is to demonstrate the value of geographically weighted 

regression (GWR) as an equity analysis tool. Specifically, the relative benefits of GWR 

techniques relative to traditional OLS methods are demonstrated via a case study of public 

beaches in the Detroit Metropolitan Area. 

Literature review 

Previous Approaches to the Measurement of POS Equity 

 To measure the degree of equity inherent in the distribution of parks and recreation 

facilities, previous studies have investigated the existence and extent of relationships between 

levels of access to these facilities and residents’ demographic and socioeconomic status. A 

variety of different methods such as non-parametric difference of means tests (Nicholls, 2001; 

Nicholls & Shafer, 2001), linear correlation (Omer, 2006; Smoyer-Tomic et al., 2004), equity 

mapping (Talen, 1997; 1998), and multivariate linear regression (Deng et al., 2008; Porter & 

Tarrant, 2001; Tarrant & Cordell, 1999) have been utilized. Among these methods, multivariate 

linear regression using the OLS method has been recognized as the most powerful. Those 

studies that have employed multivariate techniques have tended to utilize a logistic approach, 

which categorizes level of access to POSs as a dichotomous outcome (e.g., 1: has access; 0: 

does not have access). Deng et al. (2008), for example, used logistic regression to examine the 

distributional equity of golf courses relative to Chinese residents in Calgary, Canada, over a 10-

year time span. Results indicated that Chinese residents were concentrated in several parts of 

Calgary during this time, and that they were more likely than Anglo-Canadians to reside in 
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census tracts that did not contain, or were not near to, golf courses. However, distributional 

inequity decreased during the study period, primarily due to the construction of new golf 

courses in or near Chinese communities. Tarrant and Cordell (1999) determined the 

relationships between the distribution of outdoor recreation sites and census variables in 

northern Georgia, finding inequity with regard to household income, but no evidence of any 

inequity with respect to race, occupation or ethnic heritage. Porter and Tarrant (2001) 

investigated socioeconomic and racial inequities with respect to the distribution of federal 

tourism sites and campsites in southern Appalachia; findings showed that the distribution of 

these sites was advantageous to White populations and disadvantageous to minority 

populations. This study uses a two-pronged, finer approach – based on the number of public 

beaches within a specified distance of each census unit and the distance between each census 

unit and the closest public beach – thereby providing a far more comprehensive portrayal of the 

extent to which access varies across the study area than a dichotomous (access versus no access) 

analysis can provide.  

Ordinary Least Squares (OLS) Regression and Spatial Effects 

OLS is the most widely known and used regression method to model a dependent 

variable’s association with a set of independent variables. OLS is based on two critical 

assumptions: (1) the observations are independent of one another; and (2) there is a stationary 

relationship among variables, meaning a spatially constant relationship between dependent and 

independent variables that can be interpreted by average (global) parameter estimates across an 

entire study area (Fotheringham et al., 2002). However, “spatial is special” (Longley, 

Goodchild, Maguire, & Rhind, 2005, p. 5); spatial data exhibits spatial dependence (also 

known as spatial autocorrelation) and spatial heterogeneity (spatial non-stationarity) that make 
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it difficult to meet the assumptions and requirements of traditional OLS regression and can bias 

OLS results (Fotheringham, Charlton, & Brunsdon, 1998; Fotheringham et al., 2002).  

 Spatial dependence is the extent to which the value of an attribute in one location is 

more likely to be similar to the value of the attribute in a nearby location than in a distant 

location (Mennis & Jordan, 2005). Spatial dependence is a function of Tobler’s (1970) First 

Law of Geography, which stated that “everything is related to everything else, but near things 

are more related than distant things” (p. 236). Spatial dependence “is determined both by 

similarities in position, and by similarities in attributes” (Longley et al., 2005, p. 517). 

According to Anselin (1988), large residuals are likely to occur if geographic features are 

spatially autocorrelated when using non-spatial statistical methods such as OLS regression.  

 Spatial heterogeneity or non-stationarity refers to the tendency for “the relationships 

among the independent and dependent variables [to] vary over space” (Mennis & Jordan, 2005, 

p. 249). In other words, every location has an intrinsic level of uniqueness with regard to the 

causal relationship between variables that may not be described by constant global parameter 

estimates (Gilbert & Charkraborty, 2011; Fotheringham et al., 2002). When a lack of spatial 

uniformity or homogeneity is caused by the effects of spatial dependence and/or varying 

relationships between variables, spatial heterogeneity is likely to occur (Anselin, 1988).  

 Spatial heterogeneity can thus be regarded as a special case of spatial dependence, and 

spatial dependence and heterogeneity often occur jointly (Longley et al., 2005). Ignoring 

spatial heterogeneity gives rise to inaccurate regression results, such as biased parameter 

estimates and misleading significance tests (Anselin, 1988). Equity research based on linear 

statistical analyses has failed to account for these spatial effects, leading to violation of the 

basic assumptions of OLS, including linearity, homoscedasticity, and independence and 



Exploring equity using geographically weighted regression 

6 
 

normality of residuals. Meanwhile, research methods that address these spatial effects have 

remained underexploited by POS researchers and practitioners. This study provides a powerful 

demonstration of the improvements possible using spatially explicit regression techniques.  

Geographically Weighted Regression (GWR) 

 GWR has recently become a popular means of modeling local spatial heterogeneity 

between variables. GWR assumes that relationships between variables may differ from location 

to location (Fotheringham et al., 2002). In other words, GWR generates a set of local 

regression coefficients for each observation point in the study area.  

 The traditional multiple linear regression model can be expressed as follows:  

yi = a0 + ∑ akxik
k
j=1  + ei, k = 1, ……, k, 

where yi is the vector of the estimated parameter for observation i, a0 is the intercept parameter, 

ak is the regression coefficient for the kth independent variable, xik is the value of the kth 

independent variable for observation i, and ei is a random error term for observation i. As noted 

above, this model is based on assumptions of independence and homogeneity such that the 

residuals should be both independent and drawn identically from a normal distribution with a 

mean of zero (Fotheringham et al., 1998). GWR extends the traditional multiple linear 

regression framework by allowing local parameters to be estimated as follows:  

yi = aio (ui, vi) + ∑ aik 
k
j=1 (ui, vi)xik + ei, k = 1, …., k, 

where (ui, vi) is the coordinate of the ith point in the study area, aio (ui, vi) is the intercept 

parameter at point i, aik (ui, vi) is the local regression coefficient for the kth independent variable 

at point i, and aik is the value of the kth independent variable at point i. Thus, unlike linear 

multiple regression models, GWR considers important local variations in relationships.   



Exploring equity using geographically weighted regression 

7 
 

 Based on Tobler’s (1970) First Law of Geography, all observed data points in GWR 

are weighted by their spatial proximity to the regression point, with observed data points closer 

to the regression point weighted more heavily than those located farther away (Fotheringham et 

al., 2002). The weight of an observed data point is thus at a maximum when it shares the same 

location as the regression point, and decreases as the distance between the two points increases.  

 In GWR, the weights of observed data points depend on the kernel chosen and that 

kernel’s bandwidth (Fotheringham et al., 2002). A kernel can be defined as a circle of influence 

or circular area with a given radius around one particular regression point; the given radius is 

called the bandwidth (Zhang & Shi, 2004). The Gaussian and bi-square kernel functions are 

commonly used in GWR. The Gaussian kernel function is also referred to as a kernel with a 

fixed bandwidth because it is based on the assumption that the bandwidth at each regression 

point is consistent across the study area, and is applied when the observed data points are 

regularly spaced in the study area (Fotheringham et al., 2002). The weight for the Gaussian 

kernel function is estimated as follows:  

wij= exp [-(dij/ b)2], 

where dij is the Euclidean distance between the regression point i and the data point j, and b is 

the bandwidth. At the regression point, the weight of a data point is unity; weights decrease as 

the distance from the regression point increases. However, the weights of all the data points are 

non-zero, no matter how far they are from the regression point.  

 The bi-square kernel function is called a kernel with adaptive bandwidth because it 

permits use of variable bandwidth, and is used when the observed data points are clustered in 

the study area (Fotheringham et al., 2002). For example, the size of the bandwidth increases 
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when the observed data points are widely spaced and decreases when they are closer. The 

weight for the bi-square kernel function is estimated as follows: 

wij = [1 - (dij / b)2]when dij ≤ , wij = 0 when dij >  

At the regression point i, the weight of the data point is unity and falls to zero when the 

distance between i and j equals the bandwidth. When the distance is greater than the bandwidth, 

the weight of the data point is zero. The bandwidth is selected so that there is the same number 

of data points with non-zero weights at each regression point.  

 Bandwidth has a substantial influence on GWR results (Gilbert & Charkraborty, 2011). 

Bandwidth can be thought of as a smoothing parameter; a larger bandwidth can cause greater 

smoothing. If the estimated parameters are similar in value across the study area, an over-

smoothed model is applied, and if the estimated parameters include much local variation, an 

under-smoothed model is adopted. Somewhere between these two extremes is regarded as the 

best bandwidth (Fotheringham et al., 1998, 2002).  

 Three methods have commonly been used to determine the best bandwidth: (1) 

providing a user-supplied bandwidth; (2) selecting a bandwidth that minimizes a cross-

validation (CV) function, and (3) selecting a bandwidth that minimizes the Akaike Information 

Criterion (AIC). The latter has most commonly been employed (Fotheringham et al., 2002). 

The AIC is a measure of relative model performance and is helpful for comparing different 

regression models. AICc is AIC with a correction for finite sample sizes (Bozdogan, 1987). 

This takes the following form: 

AICc = 2nloge (σˆ) + nloge(2π) + n[(n + tr(S)/(n—2 - tr(S)] 

where n is the number of observations in the dataset, σˆ is the estimate of the standard deviation 

of the residuals, and tr(S) is the trace of the hat matrix. AICc values can be used not only to 
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compare models with different independent variables but also to compare the global model 

with a local GWR model (Bozdogan, 1987).  

 Compared to traditional OLS models, GWR offers two important benefits: (i) it yields 

error terms (residuals) that are considerably smaller and less spatially dependent than residuals 

from corresponding OLS models; and (ii) the ability to visualize spatial variations in regression 

diagnostics and model parameters (Gilbert & Charkraborty, 2011). Mapping regression 

diagnostics such as standardized residuals, local r-square, and parameter estimates can play an 

important role in exploring how statistical relationships and their significance vary over space.  

GWR in the Context of Equity 

 GWR has been employed to analyze environmental inequities in the distribution of a 

variety of undesirable land uses and their outcomes, including toxic air releases (Gilbert & 

Chakraborty, 2011; Mennis & Jordan, 2005) and air pollution (Jephcote & Chen, 2012). To 

date, however, only one study has used GWR to explore inequities in the distribution of 

desirable land uses such as POSs. Maroko et al. (2009) used both OLS and GWR to examine 

the statistical relationship between level of access to parks and residents’ racial and ethnic 

status in New York City, US. The results indicated that the OLS model found a weak 

relationship with lower R2 and higher AIC, while GWR suggested spatial non-stationarity, 

indicating disparities in accessibility that vary over space with higher R2 and lower AIC.  

Method 

Study Area: Detroit Metropolitan Area (DMA), Michigan 

 The Detroit Metropolitan Area (DMA), also referred to as Metro Detroit, is located in 

southeast Michigan and includes three counties (Oakland, Wayne, and Macomb). The 12th 

largest metropolitan area in the US, the DMA had a population of 3,863,924 and an area of 
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1,958.96 square miles (3,463.2 km2) in 2010 (U.S. Bureau of the Census, 2010). The DMA was 

chosen as the study area for two reasons. First, the DMA contains a high number and density of 

public beaches. According to the Michigan Department of Environmental Quality (MDEQ, 

2013), almost 14.5% (n=178) of all public beaches in Michigan (n=1,224) are located in the 

DMA. Second, the DMA is home to the highest population density and most diverse population 

in Michigan. Whereas the population density of Michigan is 174.8 inhabitants per square mile 

(67.5/ km2), the population density of the DMA is 2,792.5 inhabitants per square mile 

(1,078.2/km2). The DMA’s racial and ethnic composition is as follows: White (70.1%), African 

American (22.8%), Hispanic (6.2%), Asian (3.3%), Native American (0.3%), and Pacific 

Islander (0.02%) (U.S. Bureau of the Census, 2010). 

Unit of Analysis 

 The choice of areal unit is critical in any spatial analysis; this study employed the 

census tract (CT). A CT is defined as a subdivision of a county with “a mean population of 

approximately 4,000 people that are relatively homogeneous in socioeconomic characteristics” 

(Moore et al., 2008, p. 17). There are 1,164 CTs in the DMA. Figure 1 shows the locations of 

the 178 public beaches and the CT boundaries within the study area.  

Figure 1 about here 

Variable Definitions and Data Acquisition 

 Level of access to public beaches served as the dependent variable. Access was 

measured in two manners: (1) the number of public beaches within 20 miles of each CT 

centroid, and (2) the shortest road network distance from each CT centroid to the nearest public 

beach. These two measures reflect the container and minimum distance approaches as 

explained by Talen and Anselin (1998). The container approach is simple and efficient. Haas 
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(2009) estimated that residents were willing to travel 20 miles for beach-based recreation 

activities such as boating, fishing, and swimming. The number of public beaches within 20 

network-distance miles of each CT centroid was therefore utilized as the container measure.  

Use of the minimum distance approach recognizes that, although an individual could 

theoretically interact with all the POSs in his or her local environment, most POSs such as 

parks are, in reality, mainly used by nearby residents. Use of two approaches enabled the equity 

findings to be compared and contrasted at each step of subsequent analysis. Due to its far 

superior representation of the actual landscape, only network distance was employed.  

 Multiple conceptualizations of equity exist, e.g., Wicks and Crompton (1986) 

identified the four equity models – equality, compensatory (or need), demand (or preferences), 

and market (or willingness to pay) – that have most commonly been employed in the parks and 

recreation profession. As described above, a compensatory or need-based model of equity has 

typically been employed to measure the equity of LDLUs, based on the assumption that in the 

public realm disadvantaged residents or the most needy groups or areas should be awarded 

(compensated with) extra services. A need-based definition of equity was therefore adopted. A 

variety of demographic and socioeconomic variables were considered to represent residents’ 

need with regard to access to public beaches: (1) population density; (2) age; (3) race/ethnicity; 

(4) income; (5) housing value; (6) educational attainment; (7) language; (8) vehicle ownership; 

(9) housing occupancy; and (10) economic status. Groups considered most likely to be in need 

of better than average access to public beaches were those residing in more densely populated 

areas, the young and elderly, non-Whites, those earning low incomes and living in lower value 

housing, those having lower educational attainment, those with non-English spoken at home, 

those without a vehicle, and those residing in areas with lower proportions of occupied housing 
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and higher poverty rates. Table 1 summarizes the variables and their operational definitions; it 

also indicates how an increase in the value of each dependent variable should be interpreted 

with respect to the need-based definition of equity employed. 

Insert Table 1 about here 

 Geographic data such as CT boundaries and the street network were gathered from the 

Michigan GIS data library (http://www.mcgi.state.mi.us/mgdl/). Public beach locations were 

acquired from the MDEQ (http://www.deq.state.mi.us/beach/). Racial/ethnic and 

socioeconomic data for 2010 were obtained from the U.S. Bureau of the Census.  

Data Analysis 

 Data analysis was conducted using ArcGIS (version 10.0), the ArcGIS Network 

Analyst extension, SPSS (version 20.0), and GWR (version 4.0). Network analysis was 

employed to calculate the two dependent variables for each CT. Next, multivariate regression 

analysis using OLS was conducted to investigate the relationship between level of public beach 

access and residents’ demographic and socioeconomic status. GWR was then conducted to 

explore spatial variations using the same dependent and independent variables. A bi-square 

kernel function was used due to the varying size and shape of CTs as well as varying density of 

public beaches in the DMA. The optimal kernel size was determined through an iterative 

statistical optimization process to minimize the AICc. Statistical diagnostics (e.g., local 

parameter estimates and local R2) from GWR were mapped to explore spatially varying 

relationships among variables; R2, AICc, and Moran’s I of regression residuals were compared 

to quantify any improvement in model fit of GWR over OLS.  

Results 

Estimated OLS Parameters  
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 Two separate OLS regression analyses were performed to examine the effects of 

residents’ demographic and socioeconomic status on the number of public beaches accessible 

within a 20-mile journey of each CT centroid (container approach, Model 1), and the minimum 

distance to the nearest public beach from each CT centroid (minimum distance approach, 

Model 2). Results of the two OLS models are presented in Table 2. Because the VIF values 

associated with MHI were greater than 7.5 (Model 1: 10.25; Model 2: 10.22), MHI was 

removed from the pool of independent variables due to the existence of collinearity.  

 For Model 1 (container approach), both the Joint F- and Joint Wald statistics indicated 

statistical significance for the overall model (Joint F: 55.59, p < 0.01; Joint Wald: 1,008.19, p < 

0.01).The value of adjusted R2 (0.379) indicated a moderate goodness-of-fit. Five of thirteen 

independent variables (BLACK, ASIAN, POPD, EDU, and VEHIC) were statistically 

significant at the 0.05 level, suggesting equitable access to public beaches with respect to 

proportions of Black and Asian population but inequitable access with respect to population 

density, educational attainment, and vehicle ownership. These interpretations are due to the 

positive sign on the coefficients BLACK (0.190) and ASIAN (0.951) indicating an increase in 

proportion Black or Asian with the number of parks within 20 miles, the positive sign on the 

education coefficient (1.247) indicating an increase in the proportion of the population holding 

a four-year university degree or higher with an increasing number of parks, and the negative 

signs on the population density (-0.005) and vehicle ownership (-0.435) coefficients indicating 

a decrease in population density and proportion of households without a vehicle with an 

increasing number of parks. In all other cases the lack of significance associated with the 

coefficient indicated that no statistically meaningful relationship existed between the level of 

each independent variable and level of public beach access. The Koenker (BP) statistic (163.46, 
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p < 0.01) indicated that Model 1 exhibited spatial non-stationarity, thus warranting GWR 

analysis. 

 For Model 2 (minimum distance approach), both the Joint F and Joint Wald statistics 

indicated statistical significance for the overall model (Joint F: 45.17, p < 0.01; Joint Wald: 

365.42, p < 0.01) while the value of adjusted R2 (0.185) indicated a lower level of model 

performance than that of Model 1. Three of thirteen independent variables (POPD, AGE64, and 

EDU) were statistically significant at the 0.05 level, suggesting inequitable access to public 

beaches respect to population density, proportion of elderly population, and educational 

attainment, i.e., that as population density and proportion elderly increase, minimum distance to 

the nearest public beach also increases, whereas as proportion of the population holding a four-

year university degree or higher increases, minimum distance to the nearest public beach 

declines. The Koenker (BP) statistic (97.63, p < 0.01) indicated that Model 2 exhibited spatial 

non-stationarity, again suggesting additional GWR analysis. 

Insert Table 2 about here 

Estimated GWR Parameters  

 Results of the two GWR models are presented in Table 3. For GWR Model 1 

(container), the local adjusted R2 varied over the study area from a minimum of 0.02 to a 

maximum of 0.92 (mean: 0.69). The local condition index ranged from a minimum of 9.7 to a 

maximum of 24.8, indicating the absence of local collinearity among the independent variables. 

The ranges of the local coefficients for the variables significant in the OLS model were -126.40 

to 67.72 with a mean of -1.98 (BLACK), -21.79 to 27.46 (mean:-1.39, ASIAN), -18.55 to 

26.81 (mean: -1.36, POPD), -8.09 to 58.92 (mean: 4.87, EDU), and -25.34 to 19.55 (mean: -

1.12, VEHIC), respectively. This variability in the local coefficients suggests that the 
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relationships between the number of public beaches accessible within a 20-mile journey from 

each CT centroid, and residents’ demographic and socioeconomic status, are not stationary. 

 For GWR Model 2 (minimum distance), the local adjusted R2 varied over the study 

area from a minimum of 0.27 to a maximum of 0.92 (mean: 0.70). The local condition index 

(which ranged from 8.6 to 24.4) indicated the absence of local collinearity among the 

independent variables. The ranges of the local coefficients for the variables significant in the 

OLS model were -1.29 to 1.40 (mean: 0.14, POPD), -1.01 to 2.85 (mean: 0.12, AGE64), and -

3.25 to 2.73 (mean: -0.02, EDU), respectively, again suggesting non-staionary relationships 

between the variables. 

Insert Table 3 about here 

Spatially Varying Relationships Explored by GWR 

 Although Table 3 suggests the existence of spatial variations in the local coefficients 

and goodness-of-fit of the two GWR models, it does not show how the relationships between 

level of access to public beaches and residents’ demographic and socioeconomic status vary 

across the study area. Figures 2-11 map the spatial distribution of local coefficients and local 

R2 for those independent variables that were statistically significant in the two OLS models; 

lighter colors indicate negative values, whereas darker colors indicate positive values. These 

maps are also summarized in Table 4. 

Insert Table 4 about here 

 Model 1 BLACK (Figure 2). The OLS coefficient for BLACK was 0.145 (p < 0.05), 

indicating equitable access to public beaches with regard to Black population across the study 

area (Table 3). However, Figure 2 and Table 4 show that both positive (n = 523, 44.9%) and 

negative (n = 641, 55.0%) correlations occur. The local coefficients for BLACK ranged from -
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126.39 to 67.72 (mean: -1.98). Strong positive correlations (local coefficient > 31.7 [2 standard 

deviations above the mean]), indicating equitable access to public beaches with respect to 

Black population, were observed in parts of Oakland and Macomb counties. Strong negative 

correlations (local coefficient <-35.66 [2 standard deviations below the mean]), indicating 

inequitable access, emerged in parts of Macomb county. While 492 (42.2%) of the CTs had 

local coefficients greater than the OLS coefficient, 672 (57.7%) had lower local coefficients. 

This variability in the model parameters suggests that the relationship between number of 

public beaches accessible within a 20-mile journey and proportion of Black population is not 

stationary.  

Insert Figure 2 about here 

 Model 1 ASIAN (Figure 3). The OLS coefficient for ASIAN was 0.092 (p < 0.05), 

indicating equitable access to public beaches with regard to Asian population (Table 3). 

However, Figure 3 and Table 4 show that both positive (n = 678, 58.2%) and negative (n = 486, 

41.7%) correlations occur. The local coefficients for ASIAN ranged from -21.79 to 27.46 

(mean: -1.39). Strong positive correlations (local coefficient >10.55), indicating equitable 

access to public beaches with respect to Asian population, were observed in parts of Oakland 

and Macomb counties. Strong negative correlations (local coefficient < -13.33), indicating 

inequitable access, emerged in parts of Oakland and Wayne counties. While 411 (35.3%) of the 

CTs had local coefficients greater than the OLS coefficient, 488 (41.9%) had lower local 

coefficients, indicating a non-stationary relationship between variables. 

Insert Figure 3 about here 

 Model 1 POPD (Figure 4). The OLS coefficient for POPD was -0.270 (p < 0.05), 

indicating inequitable access to public beaches with regard to population density (Table 3). 
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However, Figure 4 and Table 4 show that both positive (n = 446, 38.3%) and negative (n = 718, 

61.6%) correlations occur. The local coefficients for POPD ranged from -18.55 to 26.81(mean: 

-1.36). Strong positive correlations (local coefficient > 9.12), indicating equitable access to 

public beaches with respect to population density, were observed in parts of Oakland county. 

Strong negative correlations (local coefficient < -11.84), indicating inequitable access, emerged 

in parts of Oakland, Macomb, and Wayne counties. While 447 (38.4%) of the CTs had local 

coefficients greater than the OLS coefficient, 717 (61.5%) had lower local coefficients, 

indicating a non-stationary relationship between variables. 

Insert Figure 4 about here 

 Model 1 EDU (Figure 5). The OLS coefficient for EDU was 1.247 (p < 0.01), 

indicating inequitable access to public beaches with regard to level of educational attainment 

(Table 3). However, Figure 5 and Table 4 show that both positive (n = 749, 64.3%) and 

negative (n = 415, 35.6%) correlations occur. The local coefficients for EDU ranged from -8.09 

to 58.92 (mean: 4.87). Strong positive correlations (local coefficient > 15.95), indicating 

equitable access to public beaches with respect to educational attainment, were observed in 

parts of Oakland and Macomb counties. Strong negative correlations (local coefficient < -6.21), 

indicating equitable access, emerged in parts of Oakland, Macomb, and Wayne counties. While 

598 (51.3%) of the CTs had local coefficients greater than the OLS coefficient, 566 (46.6%) 

had lower local coefficients, indicating a non-stationary relationship between variables. 

Insert Figure 5 about here 

 Model 1 VEHIC (Figure 6). The OLS coefficient for VEHIC was -0.101 (p < 0.05), 

indicating inequitable access to public beaches with regard to vehicle ownership (Table 3). 

However, Figure 6 and Table 4 show that both positive (n = 480, 41.2%) and negative (n = 684, 
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58.7%) correlations occur. The local coefficients for VEHIC ranged from -29.34 to 58.92 

(mean: 19.55). Strong positive correlations (local coefficient > 8.86), indicating equitable 

access to public beaches with respect to vehicle ownership, were observed in parts of Oakland 

and Macomb counties. Strong negative correlations (local coefficient < -11.1), indicating 

inequitable access, emerged in parts of Oakland, Macomb, and Wayne counties. While 630 

(54.1%) of the CTs had local coefficients greater than the OLS coefficient, 534 (45.8%) had 

lower local coefficients, indicating a non-stationary relationship between variables. 

Insert Figure 6 about here 

 Model 1 R2 (Figure 7). The global value of R2 was 0.379 but the local value of R2 

varied over the study area from 0.2 to 0.92 (mean: 0.690). The majority of the CTs (n = 1,120, 

96.2%) had local R2 values greater than the global value of R2 while only 44 (3.7%) had local 

R2 values lower than the global value (Table 4). The local model had the best explanatory 

power across the study area (in excess of 80.0%). However, the local model had very low 

explanatory power in parts of Macomb andWayne counties (as low as 20.0%), indicating that 

level of access to public beaches in these areas is not explained adequately by the set of 

explanatory variables. These findings indicate that the explanatory power of the local model is 

not stationary, i.e., that model performance is spatially heterogeneous across the study area.  

Insert Figure 7 about here 

 Model 2 POPD (Figure 8).The OLS coefficient for POPD was 0.180 (p < 0.05), 

indicating inequitable access to public beaches with regard to population density (Table 3). 

However, Figure 8 and Table 4 show that both positive (n=771, 66.2%) and negative (n=393, 

33.7%) correlations occur. The local coefficients for POPD ranged from -1.29 to 1.40 (mean: 

0.14). Strong positive correlations (local coefficient > 1.04), indicating inequitable access to 
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public beaches with respect to population density, were observed in parts of Oakland and 

Macomb counties. Strong negative correlations (local coefficient <-0.76), indicating equitable 

access, emerged in parts of Oakland, Macomb, and Wayne counties. While 770 (66.1%) of the 

CT had local coefficients greater than the OLS coefficient, 394 (33.8%) had lower local 

coefficients, indicating a non-stationary relationship between variables. 

Insert Figure 8 about here 

 Model 2AGE64 (Figure 9).The OLS coefficient for AGE64 was 0.084 (p < 0.05), 

indicating inequitable access to public beaches with respect to elderly population (Table 3). 

However, Figure 9 and Table 4 show that both positive (n=628, 53.9%) and negative (n=536, 

46.0%) correlations occur. The local coefficients for AGE64 ranged from -1.01 to 2.85 (mean: 

0.12). Strong positive correlations (local coefficient > 1.06), indicating equitable access to 

public beaches with regard to elderly population, were observed in parts of Oakland county. 

Strong negative correlations (local coefficient < -0.82), indicating inequitable access, emerged 

in parts of Macomb, Oakland, and Wayne counties. While 550 (67.5%) of the CTs had local 

coefficients greater than the OLS coefficient, 614 (52.7%) had lower local coefficients, 

indicating a non-stationary relationship between variables. 

Insert Figure 9 about here 

 Model 2EDU (Figure 10).The OLS coefficient for EDU was -0.257 (p < 0.05), 

indicating inequitable access to public beaches with regard to educational attainment (Table 3). 

However, Figure 10 and Table 4 show that both positive (n=536, 46.0%) and negative (n=628, 

53.9%) correlations occur. The local coefficients for EDU ranged from -3.25 to 2.73 (mean: -

0.02). Strong positive correlations (local coefficient > 1.82), indicating equitable access to 

public beaches with respect to educational attainment, were observed in parts of Macomb and 
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Wayne counties. Strong negative correlations (local coefficient < -1.86), indicating inequitable 

access, emerged in parts of Macomb and Wayne counties. While 566 (48.6%) of the CTs had 

local coefficients greater than the OLS coefficient, 598 (51.3%) had lower local coefficients, 

indicating a non-stationary relationship between variables. 

Insert Figure 10 about here 

 Model 2R2 (Figure 11). The global value of R2 was 0.185 but the local value of R2 

varied over the study area from 0.27 to 0.92 (mean: 0.70). All CTs (n=1,164, 100.0%) had local 

R2 values greater than the global value. The local model had the best explanatory power in 

parts of Wayne, Oakland, and Macomb counties (in excess of 80.0%), though it performed less 

well in parts of Oakland county (as low as 27.0%) 

Insert Figure 11 about here 

Comparison of Spatial Autocorrelations of Residuals between OLS and GWR  

 Given the statistically significant spatial clustering of high and low residuals, global 

Moran’s I of residuals from each of the OLS and GWR models were computed to compared the 

degree of spatial autocorrelation between them (Table 5).Although significant positive spatial 

autocorrelation was found for both OLS models (Moran’s I statistic [Model 1: 0.36; Model 2: 

0.61] and p-value [Model 1: p < 0.05; Model 2: p < 0.05]), and both GWR models (Moran’s I 

statistic [Model 1: 0.10; Model 2: 0.15] and p-value [Model 1: p < 0.05; Model 2: p < 0.05]), 

the global Moran’s I statistics for the two GWR models were much lower than those for the 

OLS models. These findings show that GWR models can improve model fit by reducing the 

spatial autocorrelation in the residuals.  

Insert Table 5 about here 

Comparison of Model Performance between OLS and GWR 
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 Model performance was evaluated by comparing the R2 and the AICc values for the 

OLS and GWR models. The lower the AICc and higher the R2 value the better (Gilbert & 

Chakraborty, 2011). If the adjusted R2 value of the GWR model is higher and the AICc value is 

at least three points lower than that of the OLS, the GWR model is considered to significantly 

improve upon its corresponding OLS model. For Model 1, the adjusted R2 value dramatically 

increased from 0.379 (OLS) to 0.693 (GWR). AICc decreased from 11,839.75 (OLS) to 

8,679.89 (GWR). For Model 2, the adjusted R2 value dramatically increased from 0.185 (OLS) 

to 0.702 (GWR). AICc decreased from 6,300.11 (OLS) to 4,085.73 (GWR). These findings 

indicate that GWR models provide significantly better goodness-of-fit than OLS models when 

assessing the spatial distribution of access to public beaches in the DMA. 

Discussion and Implications 

 This study has demonstrated the utility and feasibility of GWR when measuring the 

degree of equity inherent in the distribution of access to POSs. It is one of the first papers in the 

recreation/parks field to employ GWR, thereby making both methodological and practical 

contributions to the literature. As seen in Table 3, the two GWR models produced great 

improvements in model performance (as measured by R2, AICc, and Moran’s I statistics of 

standardized residuals) over the corresponding OLS models. Although the OLS R2 values 

(Model 1: 0.379; Model 2: 0.185) were generally on par with those of previous POS equity 

studies (Deng et al., 2008 [R2: 0.28]; Maroko et al., 2009 [R2: 0.23]; Porter & Tarrant, 2001 [R2: 

0.18]; Tarrant & Cordell, 1999 [R2: 0.27]), those relatively low levels of explanatory power 

imply that the OLS models may not have been properly specified due to (i) model mis-

specification and/or (ii) spatial effects. First, there may be some missing determinants of level 

of access to POSs that could improve model performance. Second, local variations might exist 
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in the relationships between level of access and residents’ demographic and socioeconomic 

status that reduce the explanatory power of the global model. Several authors such as Anselin 

(1988) and Fotheringham et al. (2002) have shown that local variations between variables can 

reduce the explanatory power of models when employing traditional multivariate techniques. 

However, as anticipated, the GWR models in this study provided more desirable statistical 

results, including higher R2, lower standardized residuals, and lower AICc, than the OLS 

models (Table 3). Thus, this study provides strong evidence in support of the suggestion that 

GWR models can provide better goodness-of-fit than OLS models when assessing the spatial 

distribution of access to POSs such as public beaches in the DMA. This statement is consistent 

with previous equity studies of locally unwanted land uses (Gilbert & Charkraborty, 2011; 

Mennis & Jordan, 2005) and urban parks (Maroko et al., 2009). These findings not only 

indicate the need for researchers to realize the utility of GWR, but also suggest the desirability 

of additional data collection at the individual level, e.g., via a resident survey or qualitative 

methods, to identify missing explanatory variables that might even further improve model 

performance (whether using OLS or GWR). 

 The GWR models identified spatially varying relationships between level of access to 

public beaches and residents’ demographic and socioeconomic status, highlighting the intricate 

patterns of access and equity that simply cannot be identified using global OLS techniques 

(Figures 2-11). This finding is consistent with those of Maroko et al. (2009), the only other 

known POS equity study to employ GWR, which indicated local variations between level of 

access to POSs and residents' demographic and socioeconomic status across New York City. 

As noted by Fotheringham et al. (1998), “there are spatial variations in people’s tastes or 

attitudes or there are different administrative, political, or other contextual issues that produce 
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different responses to the same stimuli across space” (p.1906). While this study clearly 

demonstrates both the variations in statistical relationships between the level of public beach 

access and residents' demographic and socioeconomic status across the DMA, and the utility of 

GWR as an exploratory spatial data technique, the findings also represent a starting point for 

future quantitative or qualitative investigations into the various social, political, economic, and 

historical factors associated with, i.e., that might help explain, the inequities of access to POSs 

observed in specific areas. The study suggests that a more detailed analysis of the 

interrelationships between residents’ characteristics and attitudes, the layout of road networks, 

and land use and settlement patterns, should be conducted to understand how and why 

analytical results for variables differ across a study area.  

 The GWR models also provided insight with respect to the sign and magnitude of the 

parameter estimates. As shown in Table 2, OLS Model 1 indicated that equitable access to 

public beaches exists with respect to the Black and Asian populations. These findings were 

unexpected in this study area and are inconsistent with previous studies (Abercrombie et al., 

2008; Bryne et al., 2009; Deng et al., 2008; Moore et al., 2008; Talen, 1998); further analysis 

using GWR indicated the influence of local variations between the variables caused by spatial 

dependence and spatial heterogeneity. Specifically, GWR Model 1 indicated equitable access 

to public beaches with respect to Black population in parts of Oakland and Macomb counties, 

but inequitable access in parts of Macomb county (Figure 2). Similarly, though equitable 

access to public beaches with respect to Asian population was observed in parts of Oakland and 

Macomb counties, inequitable access emerged in parts of Wayne county (Figure 3). Ignoring 

local variations between variables can lead to biased estimation results (Anselin, 1988). OLS 

Model 1 failed to explore important local variations between variables. As a result, the positive 
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global coefficients of BLACK (0.190) and ASIAN (0.951) were obtained through a linear 

combination of the independent variables without any consideration of spatial effects. However, 

the mean GWR coefficients of BLACK (-1.98) and ASIAN (-1.39) for Model 1 indicated 

inequitable access to public beaches among the Black and Asian populations, by exploring 

local variations between the variables (Table 3). These results are consistent with those of 

previous POS equity studies and clearly demonstrate the additional insight and detail provided 

when using GWR. Though neither method allows for cause-and-effect relationships to be 

established, the findings can be considered in the context of several relevant theories. First, the 

market-based equity approach (Wicks & Crompton, 1986) suggests that an inequity in goods 

and services distribution occurs if minority groups cannot afford the necessary market price. 

The median household income (MHI) of Oakland county ($65,636) is substantially greater than 

those of Wayne ($41,504) and Macomb ($53,628); similarly, the median housing value (MHV) 

of Oakland county ($177,600) exceeds those of Wayne ($97,100) and Macomb ($134,700). 

Not only do the residents of Oakland county exhibit higher levels of purchasing power (e.g., 

higher incomes and housing values), but they are able to use that purchasing power to acquire 

properties in more attractive areas close to desirable amenities. Authors such as Nicholls and 

Crompton (2005a, 2005b, 2007) have demonstrated the premiums associated with properties 

adjacent to or nearby a variety of land- and water-based recreation opportunities. Also of 

relevance is MacIntyre’s (2000) model of “deprivation amplification,” which refers to a pattern 

of diminished opportunities related to the features of the local environment. As noted by Taylor 

et al. (2007, p. 55), “deprivation amplification indicates that in places where people have 

limited resources (e.g., money, private transportation), there are fewer safe, open green spaces 

where people can walk, jog, or take their children to play.” Lastly, the theory of “marginality,” 
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which identified a variety of socio-cultural, political, and economic constraints that tend to 

influence disadvantaged groups’ difficulties in gaining access to resources (Park, 1928), may 

also be implied. As noted by West (1989, p. 11), “because of lower incomes, minorities are 

seen as having constraints on their ability to afford the cost of participation, or of transportation 

to recreation sites.”  

 The findings of this study also suggest significant methodological and practical 

implications for community recreation planning and management. Methodologically, the GWR 

approach described here constitutes a substantial advance over the use of traditional OLS 

methods to measure the equity of POSs. Specifically, the GWR approach dealt with spatial 

effects such as spatial dependence and spatial heterogeneity that can lead to biased estimation 

results, thereby providing more accurate estimation results with better model performance 

compared to the traditional OLS approach. 

 The application of GWR also enables broadening of the scope of the research question. 

Traditionally, the fundamental goal of equity-related research in the urban service delivery 

literature has been limited to identifying “who gets what” in the context of environmental or 

territorial justice (Talen, 1998, p. 22). This study, however, widened the focus from “who gets 

what” to “who gets, what, where, and to what extent/how significantly,” allowing identification 

of neighborhoods with inequitable access to public beaches specific to particular demographic 

and socioeconomic variables (Table 6 lists these locations). Such results can guide those state 

and local leisure agencies whose missions include concern for the provision of equitable access, 

by identifying the people and places most in need of increased public service delivery. This 

information can also assist local advocacy groups, community organizations, and minority 

populations in their attempts to provide or gain equitable access to POS-based recreation 
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opportunities. Besides methodological development of an improved approach to the 

identification and measurement of equity, this study also offers parks and recreation agencies a 

tool via which they can better understand local patterns of access and equity and thus facilitate 

the formulation of locally appropriate policy solutions as and where needed, i.e., such findings 

may be used by leisure agencies to allocate limited budgets more efficiently by accurately 

pinpointing the most disadvantaged or needy areas and populations. Given that the existence of 

a natural beach is dependent on the presence of a water body, and that the construction of new 

water bodies is likely unrealistic, more feasible options in the Detroit case are the installation of 

spray parks at existing public park facilities, or the consideration of partnerships with local 

transportation providers to facilitate access to existing beaches. Moreover, the results of this 

study may facilitate a more informed decision making process because active stakeholder 

involvement, an essential part of the participatory approach, can be influenced positively by 

increased access to and interaction with information, especially when it is provided in visual, 

e.g., map, form (Yang, Madden, Kim, & Jordan, 2012). Information regarding spatial patterns 

of access to public beaches, residents’ demographic and socioeconomic characteristics, and 

knowledge of the local variations in relationships among these variables could contribute to a 

spatial decision support system through the integration of Web-based GIS for more open, 

effective and efficient community-based leisure planning. Such systems also allow for 

improved accountability and openness on the part of public agencies.     

Limitations and Future Studies 

 Despite the many promising aspects of GWR, several limitations should be 

acknowledged. First, when measuring the level of access to public beaches, this study did not 

consider other objective and subjective factors, such as awareness of the location of POSs, POS 
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size, environmental quality, and perceived or actual levels of crowding and safety, all of which 

can impact residents’ recreation destination choice. To provide more comprehensive 

assessments of overall accessibility, future studies should incorporate one or more of these 

variables into their analyses. Second, findings are limited to a single POS type and geographic 

location (public beaches in the DMA) and are likely not generalizable. Additional studies of 

other geographic regions and POS types should be conducted to further demonstrate the utility 

and applicability of GWR, and to provide useful access/equity data to the POS providers in 

those communities. Third, this study does not consider the modifiable areal unit problem, a 

statistical bias that can radically affect the results of statistical tests due to the choice of district 

boundaries (Longley et al., 2005). Future studies should identify the sensitivity of multiple 

scales when measuring the accessibility and equity of public beaches. Lastly, while the GWR 

models do better capture spatial autocorrelation patterns in the dataset than their OLS 

counterparts, they do not control for all of it, as shown in Table 5. Better diagnostic tools and 

remedial methods to address this limitation are still required and should be integrated into 

future investigations; alternatively, the impacts of using different weighting systems could be 

explored.    
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Figure 1. Study area 
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Figure 2. Spatial distribution of local parameter estimate for proportion (%) of Black 

population by census tract, DMA (Model 1) 
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Figure 3. Spatial distribution of local parameter estimate for proportion (%) of Asian 

population by census tract, DMA (Model 1) 
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Figure 4. Spatial distribution of local parameter estimate for population per square mile by 

census tract, DMA (Model 1) 
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Figure 5. Spatial distribution of local parameter estimate for population with a four-year 

university degree or higher by census tract, DMA (Model 1) 
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Figure 6. Spatial distribution of local parameter estimate for proportion (%) of households 

without a vehicle by census tract, DMA (Model 1) 
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Figure 7. Spatial distribution of local R2 by census tract, DMA (Model 1) 
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Figure 8. Spatial distribution of local parameter estimate for population per square mile by 

census tract, DMA (Model 2) 
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Figure 9. Spatial distribution of local parameter estimate for proportion (%) of population over 

age 64 by census tract, DMA (Model 2) 
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Figure 10. Spatial distribution of local parameter estimate for population with a four-year 

university degree or higher by census tract, DMA (Model 2) 
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Figure 11. Spatial distribution of local R2 by census tract, DMA (Model 2) 

 



Exploring equity using geographically weighted regression 

43 
 

Table 1. Dependent and independent variables   

Variable Operational definition 
Abbreviatio

n 

Increasing level of equity associated with 

independent variable indicated when 

dependent variable.... 

Level of access to  

public beaches (DV) 

(1) Number of public beaches within 

   20 miles of each CT 

(2) Shortest road network distance 

   from CT to the nearest public 

   beach (in miles) 

(1) NOPB 

 

(2) DISTPB 

 

 

 

 

 

 

Population density (IV) Population per square mile POPD Increases (NOPB); Decreases (DISTPB) 

Age (IV) 

(1) Proportion (%) of population under 

age 18 

(2) Proportion (%) of population over age 

64 

(1) AGE18 

 

(2) AGE64 

 

Increases (NOPB); Decreases (DISTPB) 

 

Increases (NOPB); Decreases (DISTPB) 

 

Race/ethnicity (IV) 

(1) Proportion (%) of Black population 

(2) Proportion (%) of Asian population 

(3) Proportion (%) of Hispanic 

population 

(1) BLACK 

 

(2) ASIAN 

 

(3) HISPAN 

 

Increases (NOPB); Decreases (DISTPB) 

 

Increases (NOPB); Decreases (DISTPB) 

 

Increases (NOPB); Decreases (DISTPB) 

 

Housing value (IV) Median housing value ($) MHV Decreases (NOPB); Increases (DISTPB) 

Income (IV) Median household income ($) MHI Decreases (NOPB); Increases (DISTPB) 

Educational  

attainment (IV) 

Proportion (%) of population with a four-

year university degree or higher 
EDU Decreases (NOPB); Increases (DISTPB) 

Language (IV) 
Proportion (%) of population with non-

English spoken at home 
LAN Increases (NOPB); Decreases (DISTPB) 

Vehicle ownership (IV) 
Proportion (%) of households without a 

vehicle 
VEHIC Increases (NOPB); Decreases (DISTPB) 

Housing occupancy (IV) Proportion (%) of occupied housing units HO Decreases (NOPB); increases (DISTPB) 

Economic status (IV) 
Proportion (%) of population below the 

poverty line 
ECON Increases (NOPB); Decreases (DISTPB) 

Note: DV (dependent variable), IV (independent variable) 
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Table 2. Results of two OLS regression models 

Variable 

Model 1 (container) Model 2 (minimum distance) 

Unstandardized  

Coefficient 

Standardized 

Coefficent t p VIF 

Unstandardized  

Coefficent 

Standardized 

Coefficient t p VIF 

β SE β β SE β 

Intercept 45.683 25.692  1.77 0.07  3.792 2.39  1.59 0.11  

BLACK 0.190 0.062 0.145 3.06 < 0.01 4.16 0.011 0.006 0.099 1.83 0.06 4.16 

ASIAN 0.951 0.435 0.092 2.18 0.02 3.33 0.054 0.041 0.064 1.32 0.18 3.33 

HISPAN 0.087 0.213 0.016 0.41 0.68 2.75 0.01 0.020 0.003 0.07 0.94 2.75 

POPD -0.005 0.000 -0.270 
-

9.54 
< 0.01 1.50 0.0002 0.000 0.180 5.55 < 0.01 1.50 

MHV 0.000054 0.000 0.091 1.89 0.06 4.28 -0.000005 0.000 -0.098 -1.79 0.07 4.28 

AGE18 -0.258 0.320 -0.029 
-

0.80 
0.42 2.40 -0.002 0.030 -0.003 -0.07 0.93 2.40 

AGE64 -0.544 0.299 -0.057 
-

1.81 
0.06 1.85 0.065 0.028 0.084 2.32 0.02 1.85 

EDU 1.247 0.124 0.471 
10.0

8 
< 0.01 4.07 -0.054 0.012 -0.251 -4.70 < 0.01 4.07 

LAN 0.038 0.135 0.009 0.28 0.77 2.04 -0.003 0.013 -0.010 -0.27 0.78 2.04 

ECON 0.055 0.170 0.018 0.32 0.74 5.92 -0.008 0.016 -0.033 -0.51 0.60 5.92 

HO -0.085 0.248 -0.015 
-

0.34 
0.72 3.57 0.036 0.023 0.079 1.57 0.11 3.57 

VEHIC -0.435 0.186 -0.101 
-

2.33 
0.01 3.50 -0.023 0.017 -0.066 -1.32 0.18 3.50 

N = 1,164 

R2 = 0.386, Adjusted R2 = 0.379  

AICc = 11,839.75 

Joint F-statistic = 55.59 (p-value<0.01) 

Joint Wald statistic = 1,008.19 (p-value<0.01) 

Koenker (BP) statistic = 163.46 (p-value<0.01) 

N = 1,164 

R2 = 0.194, Adjusted R2 = 0.185  

AICc = 6,300.11 

Joint F-statistic = 45.17 (p-value<0.01) 

Joint Wald Statistic = 365.42 (p-value<0.01) 

Koenker (BP) statistic = 97.63 (p-value<0.01) 

Note: β (Beta): regression coefficient;SE: standard error; t: t-value; p: p-value; VIF: variance inflation factor; AICc: corrected 

Akaike’s information criterion
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Table 3. Results of two GWR models 

Variable 

Model 1 (container) Model 2 (minimum distance) 

OLS 

Coefficient   
GWR Coefficients 

Range 

OLS 

Coefficient 
GWR Coefficients 

Range 

β Minimum Mean Maximum β Minimum Mean Maximum 

Intercept  -36.64 41.68 151.21 187.85  1.29 6.90 16.13 14.84 

BLACK 0.145 -126.40 -1.98 67.72 194.12 0.099 -5.55 0.31 7.77 13.32 

ASIAN 0.092 -21.79 -1.39 27.46 49.25 0.064 -2.81 0.09 4.71 7.52 

HISPAN 0.016 -104.82 -2.30 205.51 310.33 0.003 -7.54 0.17 8.64 16.18 

POPD -0.270 -18.55 -1.36 26.81 63.91 0.180 -1.29 0.14 1.40 2.69 

MHV 0.091 -21.24 0.90 29.69 50.93 -0.098 -4.10 -0.17 2.84 6.94 

AGE18 -0.029 -15.71 -1.33 8.53 24.24 -0.003 -1.57 0.04 4.58 6.15 

AGE64 -0.057 -11.18 0.07 12.14 23.32 0.084 -1.01 0.12 2.85 3.86 

EDU 0.471 -8.09 4.87 58.92 67.01 -0.251 -3.25 -0.02 2.73 5.98 

LAN 0.009 -21.43 0.93 19.28 40.71 -0.010 -1.66 -0.09 4.30 5.96 

ECON 0.018 -20.37 1.07 47.97 68.34 -0.033 -2.51 0.02 4.15 6.66 

HO -0.015 -29.58 -0.57 13.80 43.38 0.079 -1.61 0.21 4.89 6.50 

VEHIC -0.101 -25.34 -1.12 19.55 44.89 -0.066 -1.85 0.05 2.20 4.05 

Adjusted R2 0.379 0.02 0.69 0.92 0.90 0.185 0.27 0.70 0.92 0.65 

Condition 

Index 
 9.7 14.6 24.8 15.1  8.6 16.3 24.4 15.8 

N = 1,164 

AICc (OLS) = 11,839.75 

AICc (GWR) = 8679.89 

Neighbors = 147 

N = 1,164 

AICc (OLS) = 6,300.11 

AICc (GWR) = 4,085.73 

Neighbors = 147 

Note: β (Beta): standardized OLS coefficient; AICc: corrected Akaike’s information criterion
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Table 4. Classification of census tracts by values of local coefficient and local R2 

Model 1 

Variable Number of census tracts (N = 1,164) 

 LC > 0 (%) LC < 0 (%) LC > GC (%) LC < GC (%) 

BLACK 523 (44.9%) 641(55.0%) 492 (42.2%) 672 (57.7%) 

ASIAN 678 (58.2%) 486 (41.7%) 411 (35.3%) 488 (41.9%) 

POPD 446 (38.3%) 718 (61.6%) 447 (38.4%) 717 (61.5%) 

EDU 749 (64.3%) 415 (35.6%) 598 (51.3%) 566 (46.6%) 

VEHIC 480 (41.2%) 684 (58.7%) 630 (54.1%) 534 (45.8%) 

R2 
Adjusted R2 (OLS): 0.379 

Adjusted R2 (GWR): 0.690 

GWR > OLS (%) GWR < OLS (%) 

1,120 (96.2) 44 (3.7) 

Model 2 

POPD 771 (66.2%) 393 (33.7%) 770 (66.1%) 394 (33.8%) 

AGE64 628 (53.9%) 536 (46.0%) 550 (47.2%) 614 (52.7%) 

EDU 536 (46.0%) 628 (53.9%) 566 (48.6%) 598 (51.3%) 

R2 Adjusted R2 (OLS): 0.185 

Adjusted R2 (GWR): 0.700 

GWR > OLS (%) GWR < OLS (%) 

1,164 (100) 0 (0.0) 

Note: LC: local coefficient by GWR; GC: global coefficient by OLS; LC > GC: census tract in 

which the value of the local coefficient is greather than the value of the global coefficient; 

LC < GC: census tract in which the value of the local coefficient is less than the value of 

the global coefficient  
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Table 5. Comparison of spatial autocorrelations of residuals between OLS and GWR 

 
Model 1 Model 2 

OLS GWR OLS GWR 

Moran’s I 

(residual) 
0.36 0.10 0.61 0.15 

z-score 63.87 18.5 105.83 26.34 

p-value < 0.01 < 0.01 < 0.01 < 0.01 
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Table 6. Neighborhoods with inequitable access to public beaches by census variable  

Model 1 

 

Variable 
Inequitable Neighborhood 

City (County) Township (County) 

BLACK Sterling Heights (M) Shelby (M), Washington  (M) 

ASIAN Troy (O) Canton (W), Plymouth (W) 

POPD 
Livonia (W), Rochester (O), 

South Lyon (O), Troy (O) 

Macomb (M), Ray (M),  

Shelby (M), Washington (M) 

EDU Rochester (O), Rochester Hills (O) 
Addison (O), Armada (M), 

Bruce (M), Oakland (O),  

VEHIC 
Novi (O), Sterling Heights (M),  

Troy (O)  

Brandon (O), Groveland (O), 

Independence (O), Plymouth (W), 

Model 2 

 

POPD Rochester Hills (O), Troy (O) 
Bloomfield (O), Shelby (M), 

Washington (M) 

AGE64 
Detroit (W), Ferndale (O),  

Livonia (W), Warren (M) 

Addison (O), Armada (M), 

Bruce (M), Oakland (O),  

EDU 

Detroit (W), Eastpointe (M),  

Romulus (W), Sterling Heights 

(M), Warren (M) 

Armada (M), Bruce (M),  

Ray (M), Richmond (M), 

Shelby (M), Wahsington (M) 

Note: O: Oakland county; M: Macomb county; W: Wayne county  

 

 

 

 

 

 

 

 

 

 


