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ARTICLE

Antihydrogen accumulation for fundamental
symmetry tests

M. Ahmadi', B.X.R. Alves?, C.J. Baker3, W. Bertsche*®, E. Butler® ©, A. Capra’, C. Carruth®, C.L. Cesar®,

M. Charlton3, S. Cohen'©, R. Collister’, S. Eriksson3, A. Evans'', N. Evetts'?, J, Fajans 8 T. Friesen?,

M.C. Fujiwara7, D.R. Gill/, A. Gutierrez'3, J.S. Hangstz, W.N. Hardy12, M.E. Haydenm, C.A. Isaac3, A. Ishida'®,
M.A. Johnson*>, S.A. Jones3, S. Jonsell® '6, L. Kurchaninov’, N. Madsen® 3, M. Mathers", D. Maxwell3,
J.T.K. McKenna’, S. Menaryw, J.M. Michan’'® T. Momose'?, J.J. Munich', P. Nolan!, K. Olchanski’,

A. Olin® 71°, P. Pusa', C.@. Rasmussen?, F. Robicheaux® 29, R.L. Sacramento®, M. Sameed3, E. Sarid?!,
D.M. Silveira®, S. Stracka??, G. Stutter® 2, C. So'!, T.D. Tharp23, J.E. Thompsonw, R.I Thompson”,

D.P. van der Werf324 & J.S. Wurtele®

Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and
properties are expected to mirror those of the hydrogen atom. Prospects for precision
comparisons of the two, as tests of fundamental symmetries, are driving a vibrant pro-
gramme of research. In this regard, a limiting factor in most experiments is the availability of
large numbers of cold ground state antihydrogen atoms. Here, we describe how an improved
synthesis process results in a maximum rate of 10.5 + 0.6 atoms trapped and detected per
cycle, corresponding to more than an order of magnitude improvement over previous
work. Additionally, we demonstrate how detailed control of electron, positron and
antiproton plasmas enables repeated formation and trapping of antihydrogen atoms, with the
simultaneous retention of atoms produced in previous cycles. We report a record of 54
detected annihilation events from a single release of the trapped anti-atoms accumulated
from five consecutive cycles.
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normous progress in antihydrogen (H) synthesis and

trapping has been made in recent years!~ and transitions

between internal states have been induced and observed® °.
While the results of measurements conducted to date are
consistent with the charge-parity-time invariance theorem, the
field is still very much in its infancy. Significant work will be
needed to achieve the levels of measurement precision obtained
in the study of matter atoms. Ultimately, precision studies of
antihydrogen properties complement, and are complemented by,
experiments that probe the foundations of the standard model
including studies of antiprotons®, antiprotonic Helium’, muonic
atoms® and positronium, the electron-positron-bound state’.

Antihydrogen is synthesised from antiprotons (p) and
positrons (e*); the most widely employed method starts with cold
plasmas of both species, which are brought together in
Penning-Malmberg traps, where axial magnetic fields provide
radial confinement and electric fields provide axial confinement
(see ref. 1 for a review). Antihydrogen atoms in states where the
magnetic moment is anti-aligned with the magnetic field are then
confined in a magnetic minimum trap, provided their kinetic
energy is low enough!~3. This is typically <0.5K in temperature
units for Tesla-scale trapping fields (multiplication by the
Boltzmann constant kp to obtain energy units is implicit).
Trapped antihydrogen is detected by ramping down the currents
in the magnetic trap over 1.5s and detecting the annihilation of
the antiproton when the released atoms hit the wall of the trap.
We employ a three-layer silicon vertex detector!! to image
the annihilation vertex position of each detected atom. Event
topology is used to distinguish antiproton annihilations from
cosmic rays.

Here we report a breakthrough in the efficiency of
antihydrogen trapping and a method for accumulating or stack-
ing anti-atoms trapped during consecutive production cycles.
These advances are realised through the development of a
number of techniques that yield both more and colder
antihydrogen. Improved methods to produce cold antihydrogen
are critically important to most experimental initiatives in the

a

field, and hence the results presented here are of broad relevance;
see refs. > 1012 for examples.

Results

Antiproton and positron preparation. The ALPHA apparatus
comprises three systems that allow antiproton capture, positron
accumulation and antihydrogen synthesis. The central apparatus
in which antihydrogen is formed is called ALPHA-2. It has been
designed to allow the overlap of laser light and microwaves with
trapped antihydrogen; a schematic view of the device is shown in
Fig. 1. Antiprotons from the CERN antiproton decelerator!®
(AD) are captured'* in a high voltage (4 kV) Penning-Malmberg
trap that we refer to as the catching trap (CT, not shown).
Once captured they are sympathetically cooled by a batch of
pre-loaded electrons which self-cool by the emission of cyclotron
radiation in the cryogenic (~6 K) environment of the trap. For
this purpose we use a large (radius ~9 mm) plasma comprising
~8.5x 107 electrons, which reduces the kinetic energy of about
73% of the antiprotons to below 100 eV in 20 s (this efficiency is
not a fundamental limitation'>; it is merely a practical compro-
mise adopted to realise the demonstrations reported here, without
excessive fine-tuning of electron plasma and sequence timing
parameters). Any uncooled antiprotons are subsequently
ejected by reducing the depth of the potential well. To secure an
efficient transfer to the ALPHA-2 apparatus, the combined
electron-antiproton plasma is then radially compressed using the
rotating wall technique!® in the strong drive regime!®. In this
regime, the rotating wall achieves a plasma density proportional
to the applied frequency up to a maximum. Since the radial extent
of the plasma is limited by this maximum, fewer electrons allow
for a smaller final size. Prior to applying the rotating wall most of
the electrons used for cooling are therefore ejected; ~10°
are retained. After compression, the antiprotons are allowed to
re-cool for ~10 s before the remaining electrons are ejected. This
protocol, which takes 100 s to complete, typically yields a plasma
of 1.1 x 10° antiprotons with a radius of 0.2 mm at ~400 K. These
antiprotons are then ejected from the CT with 25 eV of kinetic
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Fig. 1 The ALPHA-2 central apparatus. a ALPHA-2 geometry, drawn to scale except for the radial extent of the annihilation detector. The inner diameter of
the Penning-Malmberg electrodes is 44.35 mm in the central region of the atom trap and 29.6 mm at either end. Antiprotons enter from the left in this
view, while positrons and electrons are loaded from the right. b Magnetic field strength on axis with the atom trap energised (the external solenoid

responsible for producing a uniform 1T field is not shown). The solid curve (red) shows the flattened atom trap field used in ref. 5. The dashed curve (blue),
shows the on-axis field during stacking; the left and right solenoids a, b increase the field from 1to 3 T for enhanced capture, cyclotron cooling and rotating

wall efficiency of, as appropriate, positrons, electrons and antiprotons
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Fig. 2 Antihydrogen synthesis sequence. Dashed and solid curves represent electrostatic potentials before and after each step in the process. Filled regions
indicate self-potentials and physical extents of antiproton and positron plasmas. a Potential before evaporative cooling. Positron well depth 3.31V. b

Evaporative cooling, during which energetic positrons escape to the right (duration 600 ms). Final positron well depth 0.91V. ¢ Potential realignment in
preparation for mixing (duration 10 ms). Final positron well depth 0.91V. d Potential merge mixing (duration 1s). Positrons escape to the left during mixing,
resulting in further evaporative cooling. Final positron well depth 0.27 V. Remaining positrons are ejected to the right for a temperature measurement;

remaining antiprotons are ejected to the left

energy by momentarily (~2 ps) dropping the confining potential.
Antiproton (and positron) temperatures are obtained from
destructive measurements of the axial energy distribution!’~1%,
Positron temperatures are measured after each mixing cycle, as
part of the process in which charged particles are removed from
the trap. Radial distributions are determined by ejecting particles
to an externally located multichannel plate/phosphor detector'®,

Antiprotons ejected from the CT move ballistically to the
ALPHA-2 apparatus (Fig. 1), guided only by static axial magnetic
fields. Upon arrival, they are manipulated in a manner analogous
to the treatment they received in the CT described above. The
recapture process is accomplished using an electrostatic potential
well pre-loaded with electrons and the compression, cooling,
electron ejection and re-cooling sequences employed in the CT
are repeated without antiproton loss, resulting in a plasma with a
radial extent of 0.4mm and a temperature of ~100K. This
preparation takes about 100s. These p are then evaporatively
cooled! to 40K over 10 to leave around 9 x 10* of them in a
cloud with a radial extent of 1 mm.

In parallel with the antiproton manipulations described above,
positrons are prepared in the opposite end of ALPHA-2. The
positrons originate from a radioactive 2>Na source that feeds a
Surko-type buffer-gas accumulator?®. Plasmas comprising
between 10° and 10° positrons are generated, depending on the
details of the experimental sequence, and transferred to ALPHA-
221, In order to control the positron number and density, which
would otherwise drift (driven by conditions in the accumulator
that evolve on a timescale of days), a combination of evaporative
cooling and strong drive rotating wall compression is now used??;
this protocol reduces variations to <1%. Subsequently the
positrons are left to thermalise with their surroundings in a deep
(117 V) well before eventually being transported to a shallow
(3.31V; Fig. 2a) well in the mixing region (see below). The
increase in plasma length associated with the transfer to a shallow
well causes the positron plasma to cool adiabatically to about 30 K
(cf. ~50 K if this step is omitted)?.

The key drivers underlying the positron and antiproton
preparation protocols outlined above can be elucidated as follows;
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first, overlap during mixing is optimised by ensuring that the p
and e* plasma radii are similar. Second, plasma temperatures as
low as achievable are targeted, since this results in improvements
in both synthesis and trapping. Finally, small plasmas are
prepared to avoid deleterious influence of the octupole field of
the magnetic minimum trap. Further discussion of this last point
will follow when we describe the stacking procedure.

Antihydrogen synthesis. Before the final preparation and mixing
steps, the magnetic minimum trap is energised. The sequence of
electrostatic potentials used in these final stages is shown in Fig. 2.
Following the adiabatic cooling step (potential not shown), the
positrons are evaporatively cooled (Fig. 2a, b) by lowering the
potential barrier on the right from 3.31 to 0.91 V over 600 ms (the
electrostatic self-potential of the positrons is initially about 1.8 V).
At this point, the positrons start to re-thermalise with their sur-
roundings, and so the potentials are quickly (in 10 ms; Fig. 2c)
modified to the point where the antiprotons are on the verge
of entering the positron plasma. Finally, the antiprotons and
positrons are merged by lowering the potential barrier between
them over about 1s; during this process antiprotons are free to
enter the positron plasma and positrons are free to drift to the left
(Fig. 2d). While it may seem counter-intuitive to intentionally
release positrons from the trap when synthesising antihydrogen,
this technique offers two advantages. The potential difference
between the antiprotons and the positrons is minimised without
accelerating the former, while the latter are continuously cooled
via evaporation during the merging process. This effect helps
check the heating we observe when the positrons are held in a
static well after evaporative cooling. A significant reduction in the
post-mixing positron temperature is observed relative to the
autoresonant (AR) antiproton injection technique employed
previously, in agreement with simulations®*. As shown in Table 1,
typical temperatures after AR injection mixing were 50-70K,
whereas temperatures after the potential merge mixing process
are in the range 15-20 K. The AR process resulted in heating of
the positron plasma that could only be reduced by decreasing the
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Table 1 Figures of merit characterising antihydrogen formation and trapping efficiencies

p injected (x10%) H formed (x10%) T..before (K)  T. after (K) Number of trials H trapped & detected H trapping efficiency (x 107%)
AR injection mixing®

1.31+£0.01 0.53+0.01 27+3 51+1 54 0.62+0M 1.6+0.3

31+01 0.87+0.01 27+3 60 +1 27 0.59+0.15 09+0.2
Potential merge mixingb

55+0.1 24+0. 18+2 16+1 16 87+0.7 47+0.4

9.0+0.3 31+£01 18+2 17 + 26 10.5+£0.6 47+03

merge mixing. The positron plasma comprised 1.6 x 10° positrons at a density of 6.5 x107 cm™

and assume the parent distributions are Poissonian

Antiprotons were evaporatively cooled to ~40 K in all cases. AR injection mixing. The positron plasma comprised 2.3 x 108 positrons at a density of 1.3 x 108 cm™ and a radius of 0.55 mm. b1s potential
and a radius of 0.66 mm. The trapping efficiency is the number of trapped antihydrogen divided by the
number formed (annihilation detector efficiencies included). The positron densities were set by tuning the evaporative cooling process to achieve maximum trapping efficiency. Uncertainties are statistical

70
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Fig. 3 Antihydrogen stacking. The number of antihydrogen atoms detected
when the magnetic minimum trap is ramped down after one or more
consecutive mixing cycles. Each mixing cycle in a sequence is separated by
~4 min. The error bars are statistical and the number of replicates is
indicated above each data point. The dashed line is a linear fit to the data
giving an average trapping rate of 10.5 + 0.6 detected antihydrogen atoms
per mixing cycle

number of injected antiprotons, which unfortunately lowered the
antihydrogen yield. By contrast, the potential merge process
exhibits an antihydrogen formation rate that increases with the
number of antiprotons injected, with no adverse temperature
effects.

Table 1 compares variations in several key attributes of the two
mixing procedures as the number of injected antiprotons is
increased. Lower positron temperatures are evident when the
potential merge mixing protocol is used. Doubling the number of
antiprotons used in AR injection mixing increases the number of
antihydrogen formed (Table 1), but simultaneously heats the
positrons and ultimately reduces the trapping efficiency.
Conversely, starting from a significantly larger initial value, and
then doubling the number of antiprotons employed in the
potential merge process increases antihydrogen trapping and
reveals no measurable change in the positron temperature
(Table 1). In fact, the positron temperature remains unchanged
during potential merge mixing due to evaporative cooling.

The trapping fraction, while much improved for the potential
merge process (likely because of the lower positron temperatures)
is a factor of ~3 below what one might expect solely on the basis
of the fraction of atoms in a Maxwell-Boltzmann distribution
that have energies less than the trap depth (0.54 K in temperature
units), which for 20 K H is 1.6 x 1073, This assumes atoms form
in trappable and un-trappable states with equal probability, when

4
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in fact theoretical work?>~%7 suggests they are more likely to form

in un-trappable states. It also assumes that the antiprotons
equilibrate with the positrons before antihydrogen is formed!'® 28,
If instead the initial antiproton temperature (~40 K) carries over
to the H the discrepancy is almost eliminated. We note that the
improvement in trapping efficiency is roughly in accord with
expectations for lower positron temperatures'® 28, It is likely the
positron density also plays a role in determining the trapping rate.
However, because of the inter-dependence between temperature
and density imposed by the application of evaporative cooling!?,
detailed studies of trapping rate as a function of either parameter
are still pending. For now, we note that the record trapping rates
we have achieved using potential merge mixing yielded about an
order of magnitude more trapped atoms in a single 6-month
experimental run than were accumulated over several years using
AR injection mixing.

Antihydrogen accumulation. A batch of antiprotons is delivered
by the antiproton decelerator roughly every 2 min. The typical
preparation time for antihydrogen synthesis as described above is
3-4 min, and experiments with trapped antihydrogen can take up
to 20 min. This scenario creates an important resource efficiency
and productivity challenge, whose goal is to optimise the number
of antihydrogen atoms that are employed in scientific experi-
ments. Additionally, having more trapped atoms present during
long exposures to laser or microwave radiation improves the
signal-to-background ratio for observation of H annihilations.
Building on the advances in plasma control and trapping effi-
ciency described above, we have, therefore, implemented a new
experimental protocol that increases the availability of trapped
antihydrogen for experiment by making use of a larger fraction of
the antiproton pulses that are delivered and the number of
antihydrogen atoms available in each trial. We do this by stacking
anti-atoms produced in consecutive mixing cycles.

In the absence of the transverse trapping fields, charged
particles are constrained by the strong, uniform magnetic field of
the Penning-Malmberg trap to move on the magnetic field lines
near the axis of our apparatus. When the transverse octupole
trapping field is superimposed on the uniform field, the field lines
are distorted and some will ultimately guide particles to the wall
as they drift in the axial direction. This imposes a dynamic
aperture, parameterised by a critical radius, which is the radial
limit beyond which loss is incurred. The critical radius for
particles passing through our ~30cm long fully energised
neutral trap is about 4.5mm?% 30, Motivated by this, the
electron, positron and antiproton plasmas we prepare have radii
of <1 mm, well below this limit.

We have implemented a protocol in which we maintain the
magnetic minimum trap fields energised during preparation of
the charged particle plasmas. This allows us to produce more
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antihydrogen while the atoms from a previous synthesis cycle
remain trapped. No detrimental effects on plasma
preparation were observed, consistent with the dynamic aperture
considerations above. We were able to repeat the antihydrogen
synthesis process about every 4 min with the magnetic minimum
trap on. This antihydrogen stacking procedure was repeated for a
maximum of 54 min cycles, limited by thermal considerations in
the octupole current supply circuit; hence the first batch of
antihydrogen was confined in the apparatus for 16 min. Figure 3
shows the resulting average number of trapped and detected
anti-atoms as a function of the number of cycles. The five-cycle
experiment yielded 54 detected antihydrogen atoms, with the
detection efficiency of 73.0 +0.4% implying that about 74 atoms
were actually trapped. Here we use the analysis procedure
described in ref. > where an improved signal-to-background ratio
for observed antihydrogen was achieved by re-tuning hit
thresholds and track fitting in vertex reconstruction.
The background is negligible at about 0.063 + 0.003 false positives
per trial. We observe a linear increase in the number of trapped
atoms with the number of stacks, consistent with no loss of
antihydrogen and an average accumulation rate of 10.5+0.6
detected H per mixing cycle, or a maximum absolute effective
accumulation rate of 2.6 + 0.2 detected H per minute.

Discussion

We have demonstrated how detailed plasma control, lower
positron temperatures and potential merge mixing of cold e* and
p plasmas has enabled a significant increase in the rate and
efficiency of antihydrogen trapping. A key feature of the potential
merge mixing protocol is that it allows more antiprotons to be
used than previously possible. Furthermore, these developments
facilitated the implementation of repeated synthesis cycles
contributing to the same batch of trapped antihydrogen, to allow
several 10s of anti-atoms to be held simultaneously in the trap.
These techniques were key for the recent first observation of the
18-2S transition in antihydrogen® and they will almost certainly
enhance the precision of any experiment limited by the avail-
ability of cold trapped antihydrogen. Importantly, nearly all of
these methodologies are equally applicable to experiments that
require antihydrogen, but not trapping. The observed
strong influence of positron temperature on both antihydrogen
formation rate and trapping efficiency indicates that further effort
to lower positron temperatures will be well rewarded (e.g., ref. 25).
As a final note, it is encouraging that the potential merge mixing
technique appears, thus far, to have no upper limit as to the
number of antiprotons that may be exploited, thus paving the
way for efficient use of the new ELENA facility that is being
constructed at CERN?!, ELENA promises up to a factor 100
increase in the number of trapped antiprotons available to
experiments. All of these developments are encouraging for future
fundamental tests with antihydrogen.

Data availability. The data sets generated during and/or analysed
during the current study are available from N.M. and J.S.H. (niels.
madsen@cern.ch, jeffrey.hangst@cern.ch) on reasonable request.
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