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Hassan Jalali, Hamed Haddad Khodaparast, Michael I Friswell 

College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, 
Swansea, SAl 8EN, United Kingdom 

Abstract 

The physical parameters of the contact interfaces, such as preload and surface 

roughness quality, significantly affect the stiffness of joints. Knowledge of the 

relationship between these interface parameters and the equivalent stiffness 

allows joints to be considered in the design stages of complex structures. Hence, 

this paper considers the effect of contact interface parameters on the identified 

equivalent stiffness parameters of joint models. First, a new generic joint model 

is proposed to model the contact interfaces. Then, the ability of three different 

joint models, including the new model proposed in this paper, to capture the linear 

effects of contact interfaces under different preloads and surface roughness 

qualities is investigated. Finally, it is concluded that the preload and surface 

roughness quality control the normal and shearing stiffness of the joint models 

respectively. Experimental investigations also reveal that a complex mechanism 

governs the energy dissipation in the contact interface. 

Keywords: structural joint, surface roughness, preload 

1. Introduction 
The dynamic response of assembled structures is governed by the physics of their 

contact interfaces in the joints. Analysing the behaviour of the assembled 

structures is difficult because of the complexities in the inherent physics and due 

to many parameters affecting the dynamics of the contact interface. Joints play 

an important role in the overall damping and stiffness of assembled structures in 

structural dynamics. They are used to transfer forces and moments between 

different components through their frictional contact interfaces. Despite huge 

research efforts during the past decades [1] [2], the dynamic behaviour of friction 
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is not yet fully understood. This is mainly because there are several parameters 
with a high level of uncertainty [3] that affect the dynamic behaviour of friction, 
including the contact interface preload, the finish quality of the contact surfaces, 
temperature and humidity variation, sensitivity to the order of tightening several 
joints in a structure, etc. Variation in these parameters affects the linear, as well 
as the nonlinear, behaviour of the contact interfaces [4]. 

Investigations into both the effective linear representation and the nonlinear 
behaviour of contact interfaces have been studied by many researchers. Several 
methods have been proposed to consider contact interfaces in assembled 
structures. Joints can be modelled using simple lumped elements, such as springs 
[5], or zero-thickness elements [6] [7] [8]. These zero-thickness joint elements 
include the effect of the contact interface at each point and define the 
linear/nonlinear constitutive relation between two adjacent points in the 
FE/analytical model of the structure. Alternatively, the joints can be modelled by 
using thin-layer [9] or generic joint elements [10] [11] [12] [13]. These types of 
joint models consider the effect of the contact interface over a finite length of the 
structure. Bograd et al. gave a comprehensive literature survey on different 
methods ofmodellingjoints [14]. 

The problem of the contact between rough surfaces has been studied by many 
researchers in the past [15] [16] [17] [18] [19]. The relationship between the 
normal and tangential contact stiffnesses of nominally flat surfaces with respect 
to normal contact pressure has been investigated theoretically, numerically and 
experimentally [20] [21] [22]. Goerke and Willner [23] used simulated and 
experimental case studies to address the effects of surface roughness and 
geometrical irregularities on the stiffness of joints in the normal direction. 

In this paper the equivalent linear stiffness modelling of contact interfaces is 
investigated. The contribution of this paper is twofold. First, a parametric 
rectangular generic joint model is proposed to model bolted lap joints by using 
the decomposition of the stiffness matrix of an initial element. Second, the effects 
of bolt preload and contact surface roughness quality on the dynamic 
characteristics of assembled structures is investigated by using simulated and 
experimental case studies. The ability of different joint models, including the 
model presented in this paper, to model contact interfaces under different bolt 
preloads and different contact surface roughness qualities is examined. 
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2. Contact Interface Mechanisms 
Several mechanisms may be activated at the contact interface of a joint in the 
normal and tangential directions [24], as shown schematically in Figure 1. 
Activation of contact interface mechanisms depends mainly upon the amplitude 
of the external forces applied. Generally, at low level excitation forces, the joint 
behaviour is linear and linear models can be used. Nonlinear effects arise when 
high amplitude excitation forces are applied: the different nonlinear mechanisms 
involved at the contact interface and their interactions mean that appropriate 
models must be developed. 

______ Tangential direction _____ _ 
Stick/micro-sfip/macro-slip 

Figure 1. Different mechanisms that occur at a contact interface 

In the normal direction, a contact interface generally gives an elastic deformation, 
i.e. a linear behaviour, at low excitation force amplitudes. When the amplitude of 
the excitation forces increases, micro-vibro-impacts can occur at the contact 
interface which results in the transfer of energy to higher frequencies, which is a 
nonlinear behaviour [25] [26]. In contrast, in the tangential direction, the contact 
interface can be in stick (linear), micro-slip (nonlinear) or macro-slip (nonlinear) 
conditions at low, medium and high excitation force amplitudes, respectively [27] 
[28]. Linear models of joints target linear contact interface stiffness in the normal 
and tangential (shearing) directions. 

It is worth mentioning that in bolted lap-joints the bolt preload creates pre-stress 
in the contacting substructures. One way to deal with this pre-stress is to consider 
geometric stiffness effects. The alternative way, which is used in this paper, is to 
incorporate the effects of pre-stress into an interfacial element and the proposed 
element in this paper is actually aimed at modelling this pre-stress. In other words, 
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the normal and tangential stiffness of the contact interface is the result of applying 
pre load ( or pre-stress) which is considered by the formulation of the proposed 
joint element in the following sections. Also, the linear behaviour of the contact 
interface will be considered in this paper which assumes that the nonlinear 
mechanisms don't activate in the contact interface. Interfacial separation [29] 
usually happens when nonlinear mechanisms and especially micro-vibro-impacts 
are active in the contact interface. The activation of the nonlinear slip and micro­
vibro-impact mechanisms is the result of applying high amplitude forcing to the 
structure [30]. In this paper it is assumed that the excitation force amplitudes are 
low enough to prevent activation of nonlinear mechanisms in the contact 
interface. Therefore in this paper the effects of interfacial kinematics are ignored. 

3. Linear Joint Modelling Methods 
Two methods are often used to develop an equivalent model of the joint section 
in an assembled structure, as shown in Figure 2. In this figure, an assembled 
structure (Figure 2a) and its FE models are shown. In the FE models the contact 
interface is modelled with 4-noded rectangular joint elements (Figure 2b) and/or 
2-noded beam-like joint elements (Figure 2c). The former modelling approach is 
known as the thin layer element modelling method in the literature [9], where a 
layer of 2D/3D solid elements is used to model the contact interface. A suitable 
constitutive equation must be defined for the joint elements. A general 
constitutive equation for a 3D solid element with orthotropic material is given by 

Cixx E11 E12 £13 Exx 
Ciyy E22 E23 Eyy 
Cizz £33 Ezz (1) 
Cixy £44 Exy 
Ciyz Ess Eyz 

Cizx E66 Ezx 
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Joint section 

Beam Section 

(a} 

L....--,....: ' ' 
L..! 

Figure 2. Modelling the joint in an assembled structure (a): 4-noded rectangular 
joint elements (b) and 2-noded beam-like joint elements ( c) 

Thin layer elements have been used to model the linear [31] [32] [12] and 
nonlinear [33] [34] [35] effects of joints by many researchers. In a series of 
papers, Ahmadian et al. [31] [32] [12] employed the thin layer element theory to 
model the linear behaviour of contact interfaces in structures. They considered 
isotropic material for the joint elements, which reduces the unknown parameters 
in the constitutive equation to two and these parameters were identified using 
model updating techniques. The two parameters are the elastic modulus, E, and 
the shear modulus, G, of the joint elements which control the normal and 
tangential stiffness of the contact interface, respectively. 

Mayer and Gaul [9] and Bograd et al. [ 14] applied constraints on the constitutive 
equation based on a physical understanding of the contact interfaces. They set the 
off-diagonal terms equal to zero, since there is no transverse contraction produced 
by the contact interface. Also, the stiffness of the contact interface parallel to the 
joint's surface is negligible, which means that £11 = £22 = O. The in-plane 
shearing of the contact interface is also negligible, i.e. £66 = O. Thus, there 
remain two independent parameters that define the contact interface: the normal 
stiffness, E 33, and the tangential stiffness, E 44 = E 55, which control the behaviour 
of the contact interface in normal and tangential directions respectively. 

The second approach to joint modelling uses 2-noded beam-like elements to 
model the joint section. Ahmadian and Jalali [36] obtained the structural mass, 
damping and stiffness matrices of a 2-noded beam-like element, called a generic 
joint element, by ensuring that the necessary conditions for matrices of a 
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structural element were satisfied. The stiffness matrix of this element has two 
unknown parameters to capture the effects of the normal and tangential behaviour 
of the contact interface. 

In the next section, a new joint modelling method based on the decomposition of 
the stiffness matrix is proposed which can be used to construct the formulation of 
the joint modelling approaches described in this section. 

4. Proposed Joint Modelling Method 
The method introduced in this paper is based on the decomposition of the stiffness 
matrix representing the joint. Decomposition methods often use a different basis 
for decomposition and two are briefly reviewed here. In the standard 
decomposition method, any stiffness matrix [K0] is decomposed into its static 
eigenvalues and eigenvectors given by [37] [38] 

(2) 

where [Uoln x n is the matrix of unit normalized static eigenvectors, i.e. [U0]T [U0] 
= [/], and [Ao]n x n is a diagonal matrix containing static eigenvalues. Since the 

stiffness matrix is semi-positive definite, some of the eigenvalues are zero. There 
are also non-standard decomposition methods which have been proposed in 
certain circumstances for solving specific problems. For example, Doebling et al. 
[39] proposed a method that decomposed the stiffness matrix in a non-standard 
form as, 

(3) 

where, in contrast to Equation (2), [A]n x m and [Z]m x m are not given by the 
eigenvalues and eigenvectors but are obtained by using a specific algorithm. In 
their method, decomposition of a global stiffness matrix is carried out using 
standard decomposition in an elemental stage. Generally, [Z] contains different 
elemental stiffness parameters, and columns of [A] represent the connectivity of 
the structure by defining how a particular element stiffness parameter influences 
the stiffness at structural DOF. The interested reader is referred to [39] for more 
details. 

Gladwell and Ahmadian [ 40] formulated a family of generic elements by 
adopting the decomposition method given by Equation (2). An alternative 
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parametric stiffness matrix can be formulated for an element by substituting the 
dynamic eigenvectors of the element, rather than the static eigenvectors, to give 

[K]n x n = ( [Mo]n x n [U]n x n) [A]n x n( [Mo]n x n [U]n x nY 
(4) 

where [A] = diag([;t1, ;t2, ... , An]) is the matrix of eigenvalues and [U] contains 
the free-free mass-normalized vibration modes of the element, obtained from 

( [Ko] - ;t[MoD{u} = 0 (5) 

where [M0] is the mass matrix of the original element, and only the non-zero 
eigenvalues are used, i.e. ,1 * O. 

Since there is no mass effect imposed by the contact interface, static and dynamic 
eigenvalues/eigenvectors of the elements representing the joint contact interface 
are the same. Therefore, a new parametric stiffness matrix to model joints in 
structural dynamics can be formulated as 

(6) 

Here, the eigenvectors correspond to the non-zero eigenvalues of the stiffness 
matrix of the original element are combined with a matrix of parametric 
eigenvalues [A]n x n to construct a parametric stiffness matrix for a joint element. 
It is worth mentioning that by substituting the eigenvalues of the original stiffness 
matrix in equation (6), i.e. [A] = [A0], the original stiffness matrix [K1] = [K0] is 
recovered. Basically, the parametric eigenvalues in equation (6) can be used to 
adjust FE models of structures containing contact interfaces. It is also possible to 
relate the eigenvalues to different physical parameters at the contact interfaces. 
This will be done in this paper using experimental results. 

To clarify the differences between the decomposition methods described in 
above, the stiffness matrix of a dynamical system is decomposed. Consider a 2 
DOF mass-spring system of Figure 3 with mass and stiffness matrices as 
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Figure 3- 2DOF mass-spring system 

(7) 

Based on the standard decomposition method, the eigenvalues and eigenvectors 
of the stiffness matrix, i.e. Equation (2), the stiffness matrix can be decomposed 
as 

T 1
[2 -1][

2ko O 
]

1
[ 2 1] [UoHAoHUo] = .JS 1 2 O 7k0 .JS -1 2 

If the method proposed by Doebling et al. [39] is used, one obtains 

1 [1 [Ko] = .ft o 
1 

-1 
0 [

2ko O O l 
1
1 

_ 1] 0 4ko 0 }z 1 
0 0 8ko 2 0 

�1] 
-1 

(8) 

(9) 

Stiffness matrix decomposition using the dynamic eigenvectors and eigenvalues 
proposed by Gladwell and Ahmadian [ 40] results in 

([ M ,][ U]) [A] ([ M ,][ u]) r = {,ii;;[ -
1
1 f] ( ::[3+/2 

3 __'.' .J2])J,n;;[ f : ] ( 10) 

Similarly, parametric stiffness matrices for this 2 DOf mass-spring system can be 
considered using different decomposition methods as 

[ 4s1 + s2 [K]s = -2(s2 - s1) 
(11) 

I 
d1 + d2 [K]d = -Jl.(d1 - d2) 

(12) 

[Z1 + Zz 
[K]z = - Zz 

-2(s2 - s1)
] S1 + 4s2 

- Jl.(d1 - d2)] 2(d1 + d2) 

(13) 

where [KJ s , [K]d and [K]z are parametric stiffness matrices obtained using static 
eigenvectors, dynamic eigenvectors [ 40] and the method proposed by Doebling 
et al. [39]. Si, d i and zi (i = 1,2) are stiffness parameters used for constructing 
stiffness matrices in equations (11-13). It is worth mentioning that the two first 
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parametric stiffness matrices are useful in model updating and the last one in 
damage detection. 

5. Generic Joint Elements 
In this section, the method based on decomposition of the stiffness matrix 
proposed in the previous section is demonstrated to obtain the stiffness matrices 
of 2-noded and 4-noded generic joint elements. 

5.1. Beam-like generic joint element 
To introduce the beam-like generic joint element, first the 2-noded Euler-
Bernoulli beam element shown in Figure 4 is considered. The beam element has 
mass per unit length pA, flexural rigidity EI and length L. The element mass and 
stiffness matrices are 

[Ko]4 x 4 = ::J�[B(O][B(Of d( 

[Mo]4 x 4 = pALf�[N(O][N(Of d( 

(14) 

(15) 

where ( = x / L and x is the position on the beam. The strain-displacement matrix 
[B(O] is defined as [B(O] = d2 [N]/d(2 and the matrix of shape functions [N(O] 
lS 

where 

[N(O] = [x]{b(O} 

[ 2 -3 0 1] 
L -2L L 0 

[x] = -2 3 0 0' 
L -L O 0 

(16) 

(17-18) 

The eigenvectors of the stiffness matrix may be partitioned into the rigid-body 
and strain modes of the element. The element stiffness matrix of the beam has 
rank 2, and hence the element has two rigid-body or zero strain modes. The rigid 
body modes are denoted by t/}1(0 and t/Jz(O, and t/}3(0 and t/}4(0 are two 
orthogonal strain modes and defined as, 

9 
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0 
0 

-3(L + 4/L) 
L 

(20) 

The rigid body and strain modes of the element are shown in Figure 4. Note that 
the strain modes are orthogonal over the length of the element, and hence f � tp3 ( () 

tp4( ()ds = O. The strain modes are used to construct the stiffness matrix of a 
beam-like generic element, from Equation (6) as 

In general, f 1 and f 2 are positive valued functions governing the behaviour of the 
2-noded element. Pi, i = 1,2, ... ,m can be attributed to geometrical and material 
properties of the element. {u3} and {u4} are defined as 

_ [
{u3Y] [ { '} { '} ] [u] = {u4Y 

= {t/J(O)}s t/J(O) s {t/J(l)}s t/J(l) s 

where {t/J(()'}5 = ½d{t/J(()}s/ds, [u] is then obtained as, 

1 
-1 

-2/L 1] 0 1 

(22) 

(23) 

The mode orthogonality means that {u3Y{u4} = O. The stiffness matrix of a 
Euler-Bernoulli beam element can be constructed using Equation (21) by taking 
f 1 = 3El/L and fz = El/L . 
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El,pA, L .,�' 
0 

o�----� 

0.5 

-0.5 

� 0.5 

0 

-0.2 

-0.4 
0.5 

Figure 4. The 2-noded beam element and its rigid-body (in blue) and strain (in 
red) modes 

The stiffness matrix defined in Equation (21) can be used to model the joint 
section in structures like the one described in Figure 2. The two parameters f 1 

and f 2 in the stiffness matrix control the normal and tangential stiffness of the 
contact interfaces respectively. It is worth mentioning that parameters f 1 and f 2 
represent the effects of the contact interface stiffness and it is not possible to relate 
them directly to the actual physical contact interface stiffness in the normal and 
tangential directions. By substituting f 1 = kwL 2 / 4 and f 2 = k0L 2 into Equation 
(21 ), the stiffness matrix of the generic joint element proposed by Ahmadian and 
Jalali [36] is obtained. They regarded f 1 and /2 as independent parameters 
representing the lateral and torsional stiffness of the element respectively, that 
define the normal and shear stiffness of the contact interface. 

5.2. 4-noded rectangular generic joint element 
This approach is identical to that for the beam-like generic joint element 
described in the previous section. First the stiffness matrix of the 2D plane 
element shown in Figure 5 is obtained. The element is a rectangular element with 
a, b and t being its length, width and thickness respectively. The stiffness matrix 
is obtained as, 

(24) 

1 1  



ACCEPTED MANUSCRIPT 

where s 1 = x / a, s 2 = y / b and [B ( s 1,( 2)] is the strain-displacement matrix of the 
element which is obtained from its shape functions [ 41]. The element shape 
functions are defined as, 

where, 

-1 
[x] = 1 I 1 -1 

-1 
1 
0 
0 

[B ( s 1,S 2)] is obtained as, 

-1 1 
0 0 
0 0 ' 
1 0 

f= 

1r (26-27) 

1 
�a1as1 0 

0 
1 
,i/0(2 (28) 

1 1 
,i/Bs2 �a /as 1 

[E] in Equation (24) is the stress-strain relationship matrix, which was given in 
Equation ( 1) for the general case of a 3D orthotropic material. [ E] can be obtained 
for plane-stress or plane-strain cases in 2D problems. In the present paper, plane­
strain is assumed as this more accurately represents the joint model used. t is the 
element thickness. 

In the following, a 4-noded rectangular generic joint element is proposed for 
contact interfaces by using the stiffness matrix of Equation (24). To introduce the 
generic element formulation of the stiffness matrix, the strain modes of the 4-
noded element are needed which are obtained by decomposing the stiffness 
matrix of Equation (24). In general, the modes of a rectangular element may be 
functions of element dimensions and/or material properties, as is the stiffness 
matrix defined in Equation (24). However, in the case of a square element, i.e. a 

= b, the modes are no longer functions of material properties. Since the stiffness 
matrix of a 4-noded generic joint element should not be a function of material 
properties, a combination of different modes of a rectangular element which are 
not functions of material properties and modes of a square element are used in 
the following and formulation of generic joint element is obtained. Figure 5 
shows different modes including the rigid-body modes, i.e. [Ur], and the strain 
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modes, i.e. [U0] , of a 4-noded square plane (or joint) element. The strain modes 
are divided into shear-stress [Uod] modes (in red) and normal-stress [UonJ modes 
(in blue). The same classification applies to the case of a rectangular element. 

For a rectangular element, the rigid-body modes [Ur] are only functions of the 
element dimensions, as Equation (29) shows. The strain modes can be divided 
into two modes, namely [ U od] and [ U on]. Like [Ur] , the columns of [ U od] are only 
functions of element dimensions, whereas the columns of [ U on] are functions of 
both element dimensions and material properties, i.e. [ E] . However, when the 
element is square, i.e. a =  b, the columns of [UonJ are no longer functions of 
material properties as was described in the previous paragraph. Therefore, the 
matrix of modes of the element, which will be used later to construct a generic 
joint element, is given by 

b/a 1 -b/a a/b 0 -1 -1 1 

0 0 1 1 -1 0 -1 -1 

b/a 1 -b/a a/b 0 1 1 -1 

[ [Ur] s x 3 [Uodl s x 3 [Uonl s x 2] 
= 

1 0 0 -1 1 0 -1 -1 

0 1 0 -a/b 0 -1 1 -1 

1 0 0 -1 -1 0 1 1 

0 1 0 -a/b 0 1 -1 1 

0 0 1 1 1 0 1 1 

(29) 

In fact, the first six modes in equation (29) are modes of a rectangular element, 
and the last two modes are from a square element. The modes presented in 
equation (29) are depicted for a square element in Figure 5. 

[J 

4 3 

-[5] 
1 u O 1 

, -□ 
I I 

I I 

I I 

I I 

I I 

L - - - - - "  

1 3  

: -□- - - : 
I I 

I I 

I I 

I I 

L - - - ., 
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Figure 5. The 4-noded plane element and its corresponding modes: rigid-body 
[Ur] (in blue), shear stress strain [ U od] (in red) and normal stress strain [ U on] (in 

green) for the case of a = b 

It is worth mentioning that the strain modes presented in Equation (29) are 
orthogonal, i.e. {Uo,if {Uo,j} = 0, i * j. Therefore, mathematically they can be 
used as a base for constructing the stiffness matrix of a joint element. This means 
that any deformation of a joint element in real situations can be considered as a 
linear combination of its deformation in free-free cases which are defined in strain 
modes of Equation (29). The method proposed in Equation (6) suggests that a 
parametric stiffness matrix with parameters assigned to each strain mode may be 
constructed. Applying this method to the element presented in Figure 5 results in 
a stiffness matrix having 5 different parameters which cannot be physically 
justifiable. Also, several parameters of the element introduce difficulties in the 
identification stage. 

Therefore, to obtain a stiffness matrix for a 4-noded generic joint element with 
minimum but efficient parameters, the strain modes of Equation (29) are 
categorized into two sets based on their physical meaning and then one parameter 
is attributed to each set which is easily justifiable. As it was explained in the 
previous sections, two main mechanisms can be active at the contact interface of 
joints in normal and tangential ( or shear) directions. This means that physically 
two parameters are enough to control the state of the contact interface model. On 
the other hand, Figure 4 shows that [Uon]contains the modes where the element 
experiences normal stress and [ U od] contains the modes where the element 
undergoes shear stress. Based on the nature of the strain modes explained above 
and the behaviour of the contact interfaces described in the previous sections, one 
may consider the formulation of a new rectangular generic joint element as 

(30) 

where columns of [ U on] and [ U od] are normalized mode shapes having being 
obtained by using the modes presented in Equation (29) such that [ U onY[ U on] = 
[/] and [UodY[uod] = [A] where, 

l(b/a) 2 + 1 o o
�l [A] = 0 1 

0 0 

1 4  

(31) 
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The stiffness matrix proposed in equation (30) is symmetrical and semi-positive 
definite and, as will be verified in the next sections, can effectively capture the 
linear behaviour of the contact interfaces in shear and normal directions. 

The parameters kn and kd in Equation (30) control the normal and shear stiffness 
of the contact interface, respectively. 

The strategy employed for constructing stiffness matrix can also be used for the 
damping matrix of the 4-noded rectangular generic joint element shown in Figure 
5. It is well known that the slip mechanism in tangential direction mainly 
contributes to the energy dissipation in the contact interface. Therefore, in this 
paper, it is proposed to use the shear stress strain modes, i.e. [Uod] , to construct a 
damping matrix for the joint element as, 

(32) 

where cd controls the energy dissipation in the contact interface and can be 
identified by using experimental/numerical results. 

The new joint element formulation proposed in this section is used in the 
following sections to model contact interfaces in numerical and experimental case 
studies. 

6. Numerical case study 
In this section the applicability of the proposed generic elements in modelling the 
contact interface in a jointed structure is examined. The aim of this paper is to 
investigate the effect of surface roughness quality on joint model parameters. To 
this end, a simple example is used to demonstrate this effect. Therefore, in this 
section, the intention is to investigate how different joint models can trace the 
changes made in the contact interface. 

A steel (E = 210 GPa, v = 0. 31  and p = 7800 kg/m3) assembled structure 
composed of two beam sections connected through a contact interface is modelled 
in Ansys (Figure 6). The beam sections are 3mm thick and 30mm wide, but their 
lengths are different, one is 200mm and the other is 250mm. The beams have 
30mm of overlapped interface contact. 

1 5  
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y 

Figure 6. Schematic of the FE model 

Solid] 86 elements are used to model the beam sections of the structure. The 
contact condition between the two beam sections is considered node-to-node 
contact and is modelled by employing COMBIN14 elements which represent the 
contact as a combination of linear spring elements in x, y and z directions as kx, 
ky and k2 • It is assumed that a uniform preload is applied to the contact interface. 

The aim of using this example is to investigate the ability of the joint models 
introduced in previous section to capture the effect of the preload in the contact 
interface. The linear contact behaviour in the interface of the simulated example 
shown in Figure 6 is modelled using linear springs in x, y and z directions which 
represent normal stiffness, i.e. ky = KN/ne, and tangential stiffness, i.e. kx = k2 

= Kr/ne, of the contact interface. ne = 49 is the number of spring elements in 
each direction at the contact interface. The effect of the pre load will be considered 
in the spring stiffness values as described in the following paragraph. 

Based on the results presented in [22], for moderate and high nominal closure 
pressures p, i.e. p > SO MPa, a linear relationship between normalized normal 
and tangential contact stiffnesses vs. closure pressure can be considered, i.e. kN 

and kr oc p.  Nominal closure pressure and normalized normal/tangential contact 

.ffn b . d p N KN N d Kr N h . h stl ess are o tame as p = A (m2) , kN = A (m3) an kr = A (m3) w ere P 1s t e 

pre load of the contact interface, A is the contact surface area and KN and KT are 
normal and tangential contact stiffnesses. Medina et al. [ 42] showed that in the 
case of exponential distribution of asperity peak heights with standard deviation 
, the normalized tangential stiffness varies linearly with contact pressure as, 

4(1 - v) p kr = -Jii(2 - v)u 
(33) 

It should be noted that the tangential stiffness is independent ofYoung's modulus 
of the contacting bodies. As previous studies show [22], tangential-to-normal 
contact stiffness is only a function of Poisson's ratio v. The tangential-to-normal 
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contact stiffness for the contact surfaces made from the same materials can be 
considered as [22] 

Kr 1 - u  
KN = x2 - u  (34) 

where 0.5 < x < 2. Greenwood and Williamson [16], Krolikowski and Szczepek 
[18] and Mindlin [15] obtained x = 2, Sherif and Korsa [20] proposed x = rr/2 
and Yoshioka and Scholz [43] reached a value of0.71 for X· 

Following the above discussion and considering x = rr/2 based on Sherif and 
Korsa [20], v = 0.3 1  for contact bodies made of steel and a =  4.6 µm, the 
stiffness of each spring element in normal and tangential directions of the contact 
interface in FE model shown in Figure 6 are considered as, 

k = k = 2 x 105P (
N

) k = 7 7 x 105P (�) (35) x z m '  Y · m 

Equation (34) shows that the state of contact interface is considered a function of 
preload only and by changing the preload, dynamic characteristics of the 
assembled structure change too. The change in the normalized bending natural 
frequencies, i.e. w/wref, in the X-Y plane (i.e. Figure 6) by changing the contact 
interface preload P is shown in Figure 7. Natural frequencies are normalized by 
using the natural frequencies corresponding to P = O.SN which are referred to as 
Wref in Figure 7 and are tabulated in Table 1. 

Figure 7. Changes in bending natural frequencies in the X-Y plane by changing 
preload P 
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Table 1- Reference natural frequencies Wref corresponding to P = O.SN, (Hz) 

pt 2nd 3rd 4th 5th 6th 7th 

88.98 247.82 478.10 793.79 1191.30 1650.80 2200.70 

:-# 
Figure 7 shows that by changing the preload P the rates of change in natural 
frequencies are different. The 2nd natural frequency has the lowest rate of change 
(0.5%) and the 6th natural frequency has the highest (2.5%). The natural 
frequencies presented in Figure 7 are used later in this paper to obtain the 
parameters of the joint models introduced in the previous sections. 

6.1. FE modelling and stiffness parameter identification 
FE models of the structure shown in Figure 6 are constructed by using the Euler-
Bernoulli beam elements introduced in Equations (14) and (15) and the joint 
elements defined by equations (24) and (30). Beam and joint elements are used 
respectively for modelling beam sections and joint part of the structure as 
depicted in Figure 2. A reasonably fine mesh is used by taking the element's 
length equal to 2. 5mm to keep the discretisation error at a minimum level. 

The joint section is considered in the FE model using three different types of joint 
models: the beam-like generic joint model introduced in Equation (21) (model#]), 
the rectangular generic joint model introduced in Equation (30) (mode/#2) and 
the model proposed by Bograd et al. [14] (mode/#3). The stiffness matrix of the 
joint model proposed by Bograd et al. [14] is obtained by using Equation (24) 
when [ E] is considered as, 

[E] = diag( [Exx Eyy Gxy]), Exx « 1 (36) 

The natural frequencies of FE models, i.e. { wa} · are obtained by free vibration 
analysis using Equation (3 7) 
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(37) 

where [M], [K] and [K]1 are the global mass and stiffness matrices of the beams 
and joint sections of the structure respectively. 

The unknown parameters of the joint models (i.e. the joint parameters) are 
identified by minimizing the differences between the simulated natural 
frequencies presented in Figure 7, i.e. { we}, and the natural frequencies obtained 
from FE models containing joint models model#], mode/#2 and mode/#3, i.e. {wa 

}. Parameter identification is carried out by employing the first order eigenvalue 
sensitivity method which uses the following equation in an iterative scheme to 
find the joint parameters [ 44] 

[S]{0} = {E} (38) 

where [S] is the matrix of sensitivity of different natural frequencies to the joint 
parameters, { 0} is the vector of corrections to the joint parameters in each iteration 
and { E} is the vector of differences between experimental and numerical natural 
frequencies. For example, for an FE model containing joint model mode/#2 the 
sensitivity matrix is, 

(39) 

where r is the number of natural frequencies used in identification and <pr is the 
mode shapes obtained using Equation (37). Equation (38) is solved for {0} by 
minimizing the norm of the error vector { E} which results in 

(40) 

The identified joint parameters for different joint models are presented in Figure 
8. It is worth mentioning that since the state of the contact interface in a numerical 
example is controlled by only one parameter, i.e. the preload P, logically one 
parameter is sufficient in each joint model to capture the effect of preload. This 
is true for mode/#2 and mode/#3 as the results presented in Figure 8 show. In fact, 
identification of the second parameters in mode/#2 and mode/#3 results in a very 
low value compared to the first parameter which means that the second parameter 
is not effective. Therefore, for these models only one parameter being both from 
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the same nature- i.e. both parameters control the normal stiffness in contact 
interface- is shown in Figure 8. Joint models model#2 and model#3 represent only 
the contact interface but the joint model model#] represents both beams and the 
contact interface in the joint section (Figure 2). That is why both parameters in 
joint model model#] , i.e. f 1 and [2, have non-zero values as Figure 8 shows. 
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Figure 8. Identified joint model parameters 
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The norm of the vector of differences between two sets of natural frequencies, 
i.e. l e l  = l ({wa} - {we})/{wel l , is shown in Figure 9 for the different joint 
models. 
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Figure 9. Norm of error vector l e l : model#] (blue), model#2 (red) and model#3 
(green) 

Figure 9 shows that although all joint models predict the characteristics of the 
contact interface with a reasonable accuracy, joint model model#] is the most 
accurate model and the accuracies of model#2 and model#3 are at a same level. 

6.2. Damping parameter identification 
To examine the capability of the proposed damping model of Equation (32) in 
representing the energy dissipation at the contact interface, the FE model shown 
in Figure 6 is used. As stated in the previous sections, the slip mechanism is 
responsible for almost all the energy dissipation in the contact interface of joints. 
To incorporate this energy dissipation in the FE model, viscous damping elements 
are considered in parallel to the spring elements in tangential directions, i.e. ex 

and Cz, of the contact interface in the FE model. By using the damped FE model, 
direct FRFs, i.e. he(w), at the end of the beam are obtained by considering two 
different values for viscous damping coefficients as shown in Figure 10. The 
results presented in Figure 10 correspond to the case when kx, ky and kz are 
obtained for P = 2.25N and Cx = Cz = 100Ns/m (Figure 10a) and Cx = Cz = 750 
Ns/m (Figure 10b). 
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Figure 10. Comparison of the simulated and identified FRFs: cd = 110Ns/m 
(a) and cd = 225Ns/m (b). 
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Having obtained the simulated FRFs, the identification of the joint model 
damping coefficient is now considered. A simplified dynamic model of the 
damped structure shown in Figure 6 can be constructed by employing the Euler­
Bernoulli beam elements introduced in Equations ( 14) and ( 15) and the stiffness 
and damping matrices of the 4-noded rectangular generic joint element defined 
by equations (30) and (32) as, 

(41) 

In equation (41) [K]1 is considered known based on the results presented in the 
previous section. By using equation ( 41 ), the matrix of Frequency Response 
Functions (FRFs) is obtained as, 

(42) 

Equation ( 42) is used to obtain the direct FRFs at the end of the beam structure, 
i.e. ha(w). Finally, the unknown parameter of the joint damping matrix, i.e. cd, is 
identified by minimizing the norm of the differences between simulated and 
analytical FRFs, i.e. Eh = l l he(w) - ha(w) I I - Damping parameter identification 
is done in this paper using a direct search method. The identified FRFs are 
compared with the simulated FRFs in Figure 10. The results presented in this 
figure indicate that the proposed damping model can represent the energy 
dissipation in the contact interface. In the next section an experimental case study 
is considered. 

7. Experimental case study 
To check the capability of the joint models introduced in previous sections to 
model contact interfaces in real structures, experimental case studies are 
considered in this section. In the experimental case studies, 4 assembled beam­
like structures with similar material and geometric properties are prepared. The 
beams are made from cold rolled stainless steel and their dimensions are shown 
in Figure 11. 
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350 

Figure 11. Dimensions of the experimental test structures, mm 

To investigate the effects of joint contact surface quality on the identified joint 
model parameters, four assembled structures with identical dimensions but 
different surface qualities at the joint contact interface are considered. The contact 
surfaces corresponding to assembled structures are finished by different methods 
(Table 2) and their roughness is measured. A high-resolution profile-meter (i.e. 
Surfscan 200) with a 12.S µm end-tip is employed to assess the roughness of the 
contact interfaces. The rectangular contact surfaces of each test structure are 
partitioned into grids of smaller areas and the roughness of each area is measured. 
The measured roughness values over the contact interface and a picture of the 
contact surfaces are shown in Figure 12. 
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Figure 12. Measured roughness values over the contact interfaces 

Table 2. methods used for preparing contact surfaces 

Surface finish method 

Surface#! Shot blasted 

Surface#2 Original cold rolled stainless steel 

Surface#3 Fine sandpaper polished 

Surface#4 Extra-fine sandpaper polished 
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In Table 2, Surface#], Surface#2, Surface#3 and Surface#4 refer to assembled 
structures having contact surfaces with mean roughness values (i.e. SRM) of 
14.11, 6.74, 4.18 and 0.50 µm respectively (Figure 12). Two different bolt 
preloads, i.e. P = 30 N and P = 50 N, are considered for each assembled 
structure. 

There are many methods to estimate the bolt preload, which have different 
accuracies. Examples that are frequently employed include a torque wrench, 
strain gages and measuring bolt elongation [ 45]. In this paper the bolt preload ( or 
tension) is applied by tightening the nut with a torque wrench. The relationship 
between the bolt tension, F PT, and the applied torque, T, is [ 46], 

(43) 

where K is the nut factor (an average value of K = 0.2 is used in this paper) and 
db is the diameter at the small end of the bolt (db = 8 mm). 

Experimental modal testing is performed on the assembled structures to measure 
their dynamic properties, i.e. FRFs. Since measurement of FRFs is usually done 
with free-free boundary conditions, soft rubber bands are used to suspend the test 
structures to achieve this condition. To measure the bending natural frequencies 
of the assembled structures, a 8702B 1 00MI KISTLER piezoelectric 
accelerometer is attached to the structure using wax. An impact hammer 
including a KISTLER force transducer of type 9712B50 is used to excite the 
structure. Since the linear behaviour of the assembled structures is of interest, low 
level excitation forces (i.e. ~ 20 mN) are applied to the structures. The symmetry 
of the FRFs around resonant points (i.e. Figure 13) at this excitation force level 
assures that the structure behaves linearly for the preloads considered in this 
paper. It is worth mentioning that since the linear joint model proposed in this 
paper doesn't consider interfacial kinematics, it is very important to excite the 
structure such that separation of the contacting surfaces in the normal direction 
or micro/ gross slip in the tangential direction does not happen. Force and 
acceleration type response signals are measured and transferred to a National 
Instrument data acquisition board type NI USB-4432. The signals are sampled at 
a sample rate of 1600 Hz and are then inputted into Lab View signal processing 
software to calculate the frequency response functions (FRFs ). The test structure 
is shown in Figure 13 and some measured FRFs are shown in Figure 14. 
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Figure 13 - Experimental test set-up: beam structures (a), accelerometer (b) and 
data acquisition and hammer ( c) 

- SRM1 

- SRM3 

P=30 N -••-------------------------

-30 �-��-�--�--�--�--�--�--�� 
2JJO 400 600 800 1000 

Frequency (Hz) 
1200 1400 1600 

Figure 14. Measured FRFs for different contact surface qualities and different 
preloads 

Since the method proposed in this paper is based on natural frequencies, the peak 
picking method is used to extract the natural frequencies by using the measured 
FRFs. The other reason that peak picking can be used is that the assembled 
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structures have well-separated modes, as shown in Figure 13. Therefore, around 
each resonance, the FRFs are dominated by the contribution of one vibration 
mode and the contributions of other vibration modes are negligible. This ensures 
that the measured FRFs can be treated as the FRF from an SDoF system and the 
mathematical model of the SDoF system can then be curve fitted onto measured 
FRFs to derive the modal parameters. Figure 15 shows the experimental natural 
frequencies for different contact surface roughness qualities and preloads. 
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306 602 5 
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5 10 15 0 1 0  
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935 

10 
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1470 

1465 

10 15 
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Figure 15. Natural frequencies at different contact surface roughness qualities 
and preloads, (o) P=30 N and (□) P=50N. 

Figure 15 shows that except for the first natural frequency, all other natural 
frequencies increase by increasing the bolt preload. Also, overall, by increasing 
the surface roughness mean value SRM, the first, second, fourth and fifth natural 
frequencies increase but the third natural frequency initially decreases and then 
increases. This indicates complexity in the physics of the contact interface. In 
other words, different parameters govern the behaviour of the contact interface. 

To estimate the effects of preload and surface roughness quality on the damping 
in the contact interface, the quality ( damping) factor Q is calculated for the third 
and fourth modes by using the half-power bandwidth method [ 4 7]. It is worth 
mentioning that for systems with light damping Q � 2(, where ( is the damping 
ratio. Changes in the quality factors for modes 3 and 4 are shown in Figure 16. 
Around the third and fourth natural frequencies, a good estimate of the FRFs are 
achievable by employing curve fitting, and hence only these two modes are used 
in quality factor extraction. 

27 



0 . 16  

0 . 1 4  

� 0 . 1 2  

0 . 1  

0.08 

ACCEPTED MANUSCRIPT 

Jth Mode 0 . 1 5  

; 0. 1 

8 

1 0  1 5  
SRM (,,. m)  

4t h  Mode 

SRM (,,. m )  
1 0  1 5  

Figure 16. Damping factors at different contact surface roughness qualities and 
preloads, ( o) P=30 N and ( □) P=50N. 

Figure 16 indicates a complex behaviour for damping mechanism at the contact 
interface where both preload and surface roughness quality have great effects on 
the damping in the contact interface. 

Next, identification of the joint model parameters is considered using the 
experimental results presented in Figure 15. Finite element models similar to 
those schematically shown in Figure 2 and mathematically described in Equation 
(37) for the numerical case study are constructed for each assembled structure 
using the beam and joint elements described in the previous sections. A 
reasonably fine mesh is used in the FE modelling of beam sections to keep the 
discretization error at a minimum level. Also, the material properties of the beam 
sections are obtained by comparing the experimental natural frequencies of one 
single beam with its FE correspondents. The material properties are considered 
as E = 210 GPa and p = 7800 kg/m3 • In the FE model, the mass effects of the 
bolt and nut are considered as a lumped mass element with mass and inertia of mb 
= 0.158 g and h = 0.003 g.m2 respectively. The sensitivity method described 

in Equations (30) to (32) is used to identify the joint parameters of different joint 
models by comparing experimental and FE natural frequencies. The joint 
parameters identified for different joint models are shown in Figure 17. 

28 



ACCEPTED MANUSCRIPT 

48 model#1 x 1 07 
model#3 

1 .8 

46 
1 .78 

]' 44 i 1 .76 
e. -- :» 1 .74 

42 
1 .72 

40 1 .7 

0.5 1 . 5 0.5 1 .5 0.5 1 . 5 

x 1 0·S x 1 0·5 x 1 0·5 

2.3 x 1 04 

2.6 4.4 

2.2 2.5 4.2 

E 2.1 E 2
.4 l 4 � 2.3 

-N 

.:,e;,
-0 

2.2 �
?;: 

3.8 

2.1 
3.6 

1 9  

0.5 1 . 5  0 .5  1 .5  0 .5 1 .5 
SRM (m) x 1 0·5 SRM (m)  x 1 0·5 SRM (m) x 1 0·5 

Figure 1 7. Identified joint model parameters for different contact surface 
roughness qualities and preloads, ( o) P=30 N and ( 0 ) P=50N. 

Figure 1 7  shows that overall, the joint parameters defining normal stiffness of the 
contact interface, i .e .jj, kn and E

y
, are affected more by changing the preload than 

the surface roughness quality. Moreover, the surface roughness quality affects the 
shearing stiffness of the contact interface the most. That is because there is greater 
change in the joint parameters defining the shearing stiffness of the contact 
interface, i .e .fi, kd and G

xy
, when surface roughness mean value changes. 

In Figure 1 8 , the norms of the vector of differences between the experimental and 
identified natural frequencies for different models are shown. 
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As Figure 18 shows, the beam-like generic joint model has the minimum norm of 
error. The errors of rectangular generic joint element proposed in this paper and 
the model proposed by Bograd et al. [ 14] are quite the same. All models can 
effectively identify the experimental results. 

Finally, the mode shapes of the beam structure (Figure 11), which is modelled by 
the joint element proposed in this paper, are shown in Figure 19. 

Figure 19. Mode shapes of the identified FE model for P = 30 N and SRM 
= 14.11 µm 

The joint section in Figure 19 is modelled by using 16 joint elements, and Figure 
19 indicates that the joint elements are subjected to both normal and shearing 
deformations in different modes. 

8. Conclusions 
This paper investigates on the capability of different joint models, including a 
new joint model introduced in this paper, to capture the effects of preload and 
surface roughness quality in dynamic modelling of assembled structures. A new 
joint model was proposed based on the stiffness matrix decomposition and the 
nature of the mechanisms involving in the contact interfaces. Both numerical and 
experimental results were used to investigate the effects of surface roughness 
quality and preload on identified joint model parameters and hence to evaluate 
the accuracy of the joint models. 

In the numerical case study, the contact between two rough surfaces was 
modelled by using spring elements in three different directions. The joint models 
can capture the effect of the change in preload being represented by the stiffness 
of the spring elements. It was discussed that since one parameter, i.e. the preloads, 
governs the state of the contact interface in the numerical example, only one 
parameter dominates the dynamic behaviour of the joint models. Numerical 
simulation was also used to check the capability of the proposed damping model 
in predicting the energy dissipation at the contact interface. 
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In the experimental case study, four different assembled structures, similar in 
geometric properties but different in the joint contact interface, were considered. 
The contact surface of each beam structure was prepared by using a different 
surface finishing method. The natural frequencies of the test structures were 
measured under two different bolt preloads. Again, the joint models successfully 
captured the stiffness effect caused by the bolt pre-load and surface roughness 
quality. The identified results show that the parameter representing the normal 
stiffness of the contact interface in the joint models is more dominated by contact 
interface preload. Also, the surface roughness quality mostly controls the 
parameter representing the shear stiffness of the contact interfaces in the joint 
model parameters. The validity of the proposed joint models and the dynamic 
models identified for the assembled structure is restricted to the linear response 
of the structures. 
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A new jo int model representing surface roughness and preload effects is introduced. 

Jo int e lement stiffness model is obta i ned us ing decomposit ion of stiffness matrix. 

The accu racy of the joint model is assessed using numerica l and exper imenta l data . 

Experimenta l data revea l  a comp lex mechanism for energy d issipation in the jo int. 




