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 

Abstract— Fully intrinsic equations are used to obtain a 

model compliant with Euler-Bernoulli assumptions for a beam 

under a linearly distributed follower force known as a Hauger 

column. The advantage of the intrinsic formulation in 

modeling problems with non-conservative forces is discussed 

here. Only intrinsic parameters which are independent of the 

choice of coordinate system has been used and four different 

boundary conditions were implemented. Also, a comparison 

between the present study and similar studies with the classical 

formulation has been developed. The Generalized Differential 

Quadrature Method is used to numerically analyze the critical 

load of the beam. It is well understood that there is a 

remarkable advantage in terms of convergence using intrinsic 

equations in comparison with the classical formulation. 

 
Index Terms— Differential Quadrature Method, Hauger 

Column, Intrinsic Equations, Non-Conservative Stability  

 

I. INTRODUCTION 

ully intrinsic equations may be applied to a wide variety 

of applications of beams because of its proper modeling 

of forces and moments as motion-dependent quantities. 

Although mechanical elements such as beams have been the 

center of interest in recent years and has been analyzed in 

many different configurations, there are some cases that 

have not been discussed properly as yet. One of these is the 

non-conservative stability of beams with linear distributed 

follower loads which is discussed in this paper using 

intrinsic equations.   

The procedure for deriving the fully intrinsic equations 

was proposed by Hodges [1]. The fully intrinsic equations 

include a set of first-order partial differential equations of 

motion. The displacements and rotations are not presented in 

these formulations and intrinsic parameters exist in this 

formulation are independent of the choice of coordinate 

system.  

Hodges [2] presented a systematic derivation of a 
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geometrically exact generalized Timoshenko theory for 

initially curved and twisted anisotropic beams. Models for 

elementary beam vibration and stability with various 

boundary conditions were addressed by Chang and Hodges 

[3]-[4] and Sotoudeh and Hodges [5]. The fully intrinsic 

formulation was used by Patil and Hodges [6] to study flight 

dynamics and aeroelasticity of highly flexible flying wings. 

This work on flying wings spawned several related works 

for HALE aircraft based on the fully intrinsic formulation, 

e.g., Chang and Hodges [7], Chang et al. [8], and Sotoudeh 

et al. [9]. Fully intrinsic equations were also used to predict 

the aeroelastic behavior of joined-wing aircraft by Sotoudeh 

and Hodges [10]. The fully intrinsic formulation was applied 

to model multi-flexible body dynamics problems by 

Sotoudeh and Hodges [11]-[12]. This work has led to a 

series of studies on the effect of engine placement on 

aeroelastic behavior, passive morphing and body-freedom 

flutter of flying wings by Mardanpour et al. [13]-[15]. A 

Galerkin approach was presented for approximate solutions 

of the nonlinear fully intrinsic equations by Patil and Althoff 

[16]. Palacios [17] used the intrinsic formulation to obtain 

the nonlinear normal modes of beams. Hesse and Palacios 

[18, 19] and Wang et al. [20]-[21] applied the intrinsic 

formulation for model order reduction, consistent 

linearization, and modeling of nonlinear aeroservoelasticity 

for flexible aircraft. Using fully intrinsic equations, Khaneh 

Masjedi and Ovesy [22]-[23] investigated the static, large 

deflection of beams under both conservative and 

nonconservative loads. They used the Chebyshev 

collocation method to numerically solve the differential 

equations. In another study, Amoozgar and Shahverdi [24] 

studied a similar problem by using the generalized 

differential quadrature (GDQ) method. Recently, dynamic 

instability of beams under tip follower forces was studied by 

the same group [25] within the framework of geometrically 

exact, fully intrinsic equations. More recently, the 

geometrically exact, fully intrinsic nonlinear beam theory 

has been utilized to model the dynamic stability of initially 

twisted beams subjected to distributed follower forces [26]. 

Non-conservative forces occur in a vast range of 

applications in mechanical and civil engineering as well as 

aeronautics engineering and aeroelasticity. Most researchers 

assume a uniformly distributed follower force which is a 

proper model for fluid friction and similar problems. A 

detailed review of follower force research can be found in 

Mardanpour et al. [26] and Fazelzadeh et al. [27]-[28].  

Because of difficulties of applying a variable follower load 

on a deformable beam, the linearly distributed follower 
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problem known as the Hauger problem has received less 

interest. The only research that considered such a problem 

was published by Marzani et al. [28] in which the stability 

of the Hauger column was studied using the classical 

formulation and the GDQ method. 

All of the research in follower force problems and the 

Hauger column has considered only one boundary 

condition. Using intrinsic equations arbitrary follower forces 

can be applied and so the Hauger column can be modeled 

much more easily than in the classical formulation. In this 

paper, the implementation of a linearly distributed follower 

load on the beam will be discussed. Also the effects of 

different boundary conditions will be considered. 

II. THEORETICAL FOUNDATIONS 

A. Fully Intrinsic Equations 

A set of equations has been proposed by Hodges and 

developed by him and his colleagues during past decade, 

named “fully intrinsic” which are independent of the choice 

of coordinate systems and by considering special 

constitutive rules will provide a geometrically exact analysis 

of beams with any arbitrary shape of cross section and 

curvatures. Fig. 1 illustrates the configuration of the beam 

and reference frames which are used in the intrinsic 

formulation. Here   is the undeformed reference line and L 

is the deformed reference line of the beam. Also, at every 

point of both the deformed and undeformed reference lines 

there is a reference frame for which one of the undeformed 

reference lines is time-independent and denoted by

),,(b 321ii , and is called the undeformed reference 

frame. In a similar manner, a deformed reference frame is 

considered at every point of the deformed reference line and 

denoted by ),,(B 321ii . All intrinsic parameters are 

measured in the deformed reference frame which makes it 

easy to apply non-conservative forces.  

According to the formulation proposed by Hodges [1], the 

three dimensional differential equations of motion in 

intrinsic parameters can be written as: 

  PV
~

HΩ
~

HmFγ~e~MK
~

M

PΩ
~

PfFK
~

F

1 






 (1) 

where F is a vector of cross sectional forces measured in the 

deformed basis and is unknown. Similarly, M  is the vector 

of cross sectional moments, P  is the linear momentum and 

H  is the angular momentum per unit length. There are also 

kinematical intrinsic parameters, which are: generalized 

linear velocity V and angular velocity Ω , generalized 

strain γ and curvatures κ which all is measured in 

deformed reference frame. Furthermore, f  and m  are the 

distributed force and moment vectors. In equation (1) there 

is another parameter which indicates the curvature of the 

beam in the deformed state and denoted by K , which can 

be written in the form of undeformed beam curvature k and 

generalized curvature κ  as: κkK  .  

Here F is the space derivative of the cross sectional force 

with respect to 1x , the path variable of the reference line 

and P  is the time derivative of the linear momentum, and 

so on. In equation (1), and all of this paper, the tilde notation 

is used to simplify the cross product of vectors. Given a 

vector K with three elements,  T321 K,K,KK , the 

tilde notation will give: 

























0KK

K0K

KK0

12

13

23

K
~

 (2) 

Equation (1) provides equilibrium conditions for a three 

dimensional beam with intrinsic parameters, but cannot be 

solved in isolation and needs relations between the 

kinematical parameters. Here these relations for the 

kinematical intrinsic parameters are [2]: 

 

κΩK
~

Ω

γΩγ~e~VK
~

V 1







  (3) 

Equations (1) and (3) simultaneously provide a set of fully 

intrinsic equations for the beam.  

Now we can simplify the three dimensional equations to 

make a beam model consistent with Euler-Bernoulli beam 

theory. In order to achieve this, all of the intrinsic 

parameters are set to zero except 

2321121132 P,M,F,F,,Ω,V , and
3κ . Equations (1) and (3) 

can then be written in simplified scalar form as: 

33

1231132

321123

2132

132231

κΩ

γΩγΩV

HFγFM

PFκF

fΩPFκF



















 (4) 

where 1f  is the distributed axial follower load acting on the 

reference line of the beam. Assuming an homogenous, 

isotropic beam with the mass centroid coincident with the 

reference line and the principle axis of the cross section, the 

constitutive relations of the beam can be written as: 

 

Fig. 1.  General configuration of the beam, the reference lines and the 

reference coordinate systems. 
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333
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









 (5) 

Substituting equation (5) into (4) results in a set of intrinsic 

equations with respect to only 
32132 M,F,FΩ,V , . Thus, 

3

3
3

2

2
3

1
32

332
1

23

21

3

3
2

1322

3

3
1

EI

M
Ω

GA

F
Ω

EA

F
ΩV

ΩiF
EA

F
FM

VμF
EI

M
F

fΩμVF
EI

M
F



















 (6) 

For a linear varying distribution of axial force, known as 

Hauger column, where the magnitude is 0p at the root and 

zero at the free end (Fig. 2), the distributed axial force may 

be written as: 

 Lx
L

p
f 0

1   (7) 

If the non-linear terms in the first of equations (6) is 

neglected, then a decoupled ordinary differential equation is 

created which can be solved analytically for given boundary 

conditions Thus 

 

  0LF

Lx
L

p
F

1

0
1



  (8) 

and the solution is: 

20
1 ( )

2

p
F x L

L
    (9) 

Substituting equation (9) into other equations of (6) and 

ignoring shear effects ( 0
EA

1

GA

1

2

 ) and rotary inertia 

(i3=0), results in four coupled first-order differential 

equations which can be solved for the stability analysis of 

the problem.  

These equations can also be written in non-dimensional 

form to enable an easier assessment of the numerical 

performance. Thus 

2 3V    

3 3M 
&

 

20
2 2F ( 1) V

2

p
    

&
 

3 2M F     (10) 

One can also write the non-dimensional parameters as: 

   

   
dτ

d

μL

EI

dt

d

dξ

d

L

1

dx

d

EI

Lp
p

EI

μL
ΩΩ

EI

μL
VV

EI

LM
M

EI

LF
F

4

3

1

3

3

0
0

3

4

33

3

2

22

3

3
3

3

2

2
2















 (11) 

B. Numerical Discretization 

In order to make a numerical stability analysis of a 

Hauger column, the Generalized Differential Quadrature 

Method (GDQM) has been used. In this method, the space 

derivatives of a function is approximated by a series of 

weighting coefficients multiplied by grid point values of that 

function, as proposed by Bellman and his colleagues [30]-

[31] in the early 1970s. There are several approaches to 

compute the weighting coefficients values. Here, we will 

use Shu’s general approach [32], which is an efficient and 

reliable method and has been used many times recently. 

The first derivative in this method, can be written as: 

   j
N

1j

(1)

iji xfAx
dx

df



  (12) 

where 
(1)

ijA  are the values of the weighting coefficients, 

 jxf  are the values of the function at the grid points and N 

is the number of grid points. A larger number of grid points 

gives more accurate results, although this also makes the 

computation more difficult and the calculation time longer. 
 

Fig. 2.  Reference coordinate system and load model for a Hauger column in 

the undeformed and deformed states. 
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 The matrix of weighting coefficients can be computed 

using Shu’s general approach as follows: 

 

   























N

ikk

ikii

N

jkk

kjji

N

ikk

ki

ij

AA

ji

xxxx

xx

A

,

)()(

,

,)(

1

11

1

11

 (13) 

The other parameter that determine the accuracy of the 

GDQM is the method of choosing the grid points. Here, for 

faster convergence and higher accuracy, a non-uniform 

distribution of grid points has been implemented [32], as 

Ni
N

iL
xi ,...,cos 1

1

1
1

2





















   (14) 

 

III. RESULTS AND DISCUSSION 

Using the Differential Quadrature Method, one can turn 

equation (10) into a system of first order differential 

equations with respect to time. Indeed, the equations of 

motion can be written in standard matrix form as: 

       0qBqA   (15) 

where A and B are numerical matrices. In order to obtain the 

natural frequencies of beam, harmonic motion is assumed 

and therefore, equation (15) can be rewritten in the form of a 

standard eigen-value problem as: 

       0q̂BA   (16) 

Where   is the eigen-frequency and q̂  is the eigenvector 

in generalized coordinates. Using a standard algorithm, the 

eigen-frequency for different load parameters can be easily 

computed. 

Furthermore, the boundary condition must be defined. For 

different boundary conditions, the values of the intrinsic 

parameters should be determined at the boundaries. Four 

different traditional boundary conditions are studied in this 

research and the values of the intrinsic parameters are as 

follows: 

 Simply supported beam (S-S) 

   
    0LM00M

0LV00V

33

22




 

 Clamped-Simply supported (C-S) 

   
    0LM00

0LV00V

33

22




 

 Clamped-Free (C-F) 

   
    0LM00

0LF00V

33

22




 

 Clamped (C-C) 

   
    0L00

0LV00V

33

22




 

The critical load for the four boundary conditions are 

given in Table I. The Hopf bifurcation method was used to 

determine the critical condition. Also, in order to compare 

the intrinsic results and the classical results, the results of 

Marzani et al. [29] are also presented in Table I. The results 

are in a good agreement with those reported by Marzani at 

al.. While the number of grid points in the classical 

formulation using the DQ method is reported to be 51, but it 

is reduced to only 17 when using the intrinsic formulation in 

the same numerical method. This is because of the first 

order derivatives and intrinsic parameters implemented in 

the intrinsic equations. 

 For more design applications, a semi-log plot of critical 

load versus slenderness ratio is provided. It can be seen that 

with an increase of the slenderness ratio, the critical load for 

all boundary conditions will decrease. Furthermore, the most 

critical boundary condition from the point of critical load is 

determined to be the simply supported beam. Also, it is easy 

to see that the least critical boundary condition from this 

point of view is the clamped beam.  

IV. CONCLUSION 

In this paper, the three dimensional fully intrinsic 

equations of beams have been used to create an intrinsic 

model conistent with Euler-Bernoulli beam theory in order 

to analyze a column under a linearly distributed follower 

force known as a Hauger column. The advantage of the 

TABLE I 

CHARACTERISTIC PARAMETERS OF BEAM  

Parameter Description 

µ mass per unit length 

i3 
second moment of inertia (minimum) 

E Young’s modulus 

G shear modulus 

EI3 bending stiffness 

EA tensile stiffness 

GA2 Shear stiffness 

 

TABLE I 

CRITICAL LOAD FOR DIFFERENT BOUNDARY CONDITIONS USING INTRINSIC 

AND CLASSICAL FORMULATIONS  

B
o

u
n

d
ar

y
 C

o
n

d
it

io
n

s 

S-S C-S C-F C-C 

    
Present 61.86 314.42 150.62 374.92 

Ref.[29] 61.87 313.50 150.64 375.02 

Difference 

(%) 
0.01 0.3 0.01 0.03 

 

 

Fig. 3.  The dimensionless critical load versus the slenderness ratio, when the 

number of grid point is 17. 
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intrinsic formulation is clearly seen where applying non-

conservative loads because of the ease of describing motion-

dependent loads in this formulation. Four different boundary 

conditions have been studied and compared with each other. 

A comparison between the present formulation and the 

classical formulation is also presented and the significant 

advantage of the implementation using the intrinsic 

formulation was highlighted. For more design applications, 

a semi-log plot of critical load versus slenderness ratio for 

four boundary conditions is provided. 
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