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Abstract

Manufacturing new Magnetic Resonance Imaging (MRI) scanners represents a computa-
tional challenge to industry, due to the large variability in material parameters and geometrical
configurations that need to be tested during the early design phase. This process can be highly
optimised through the employment of user-friendly computational metamodels constructed on
the basis of Reduced Order Modelling (ROM) techniques, where high-dimensional parametric
offline solutions are obtained, stored and assimilated in order to be efficiently queried in real
time. This paper presents a novel Proper Generalised Decomposition (PGD) based metamodel
for the analysis of electro-magneto-mechanical interactions in the context of MRI scanner de-
sign, with three distinct novelties. First, the paper derives, from scratch, a five-dimensional
parametrised offline solution process, expressed in terms of (axisymmetric) cylindrical coor-
dinates, external excitation frequency, electrical conductivity of the embedded shields and
strength of the static magnetic field. Second, by exploiting the staggered nature of the coupled
problem at hand, an efficient sequential PGD algorithm is derived and compared against a
previously published monolithic PGD algorithm. As a third novelty, the paper draws some
interesting comparisons against an alternative tailor-made ROM technique, where the electro-
magnetic equations are solved using a Proper Orthogonal Decomposition model. A series of
numerical examples are presented in order to illustrate, motivate and demonstrate the validity
and potential of the considered approach, especially in terms of cost reduction.

Keywords: Coupled magneto-mechanical problems, MRI scanners, Design optimisation,
Reduced Order Modelling, Proper Generalised Decomposition, Real time simulation,
Multiple-query evaluation

1. Introduction

The use of Magnetic Resonance Imaging (MRI) [1] as part of the decision process within a
medical and/or clinical environment has become standard practice, due to scanners’ high in-
built resolution when imaging fractures [2], joints [3] and soft tissues, such as damaged cartilage
[2] or tumours [4]. An additional advantage of MRI is its non-intrusive nature [5], meaning
that no harmful ionising radiation is used, minimising the possibility of any secondary radiation
effects on the patient. As such, MRI is particularly recommended to patients requiring multiple
imaging examinations.
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A prototypical MRI scanner, see Figure 1, consists of a cryostat enclosing three fundamental
components: main superconducting Direct Current (DC) coils, gradient Alternating Current
(AC) coils and radiation shields. The main DC coils [6] are immersed in a supercooled vessel of
liquid helium and their purpose is the generation of a strong background stationary magnetic
field. Gradient AC coils emit dynamic electromagnetic pulses that interact with the protons of
the patient’s body. An image can be generated by post-processing this interaction [5]. Radiation
shields typically consist of three conducting components, the Outer Vacuum Chamber (OVC)
shield, the 77K radiation shield (77K) and the 4K helium vessel shield (4K), which are used to
prevent radiation from escaping through.

Two main physics are considered in order to simulate the complex physical interactions
and coupling within an MRI scanner: electromagnetics and mechanics. The electromagnetic
problem is often represented by the eddy current approximation [7–10] of the general Maxwell’s
equations when dealing with relatively low frequencies with respect to the high electrical con-
ductivities of the conducting components. The mechanical problem is modelled using the
well-known linear elasticity theory [11], assuming small displacements but not necessarily small
velocities or accelerations [12]. The reader is referred to [13–16] for a thorough explanation of
the different modelisation assumptions.

Main coilsGradient coils

Conducting shields

Figure 1: MRI scanner description; new MRI device model MAGNETOM Altea 1.5T Open Bore system,
courtesy of Siemens Healthineers.

According to Siemens Healthineers, one of the bottlenecks when manufacturing a new MRI
scanner, such as the recent ultra high-field 7 Tesla (7T) magnet, is the computational effort
required during the design phase [17]. A crucial part of this involves the simulation of a large
number of electro-magneto-mechanical problems with slight variations in the geometry and/or
material parameters. The design stage can thus become very time consuming, which eventually
is translated into an overall manufacturing cost increase. Reduced Order Modelling (ROM)
techniques have recently gained momentum to help speed up the design optimisation process.
ROM can be used in order to construct computational metamodels capable of interacting with
the user in real time via multi-parametric approximations of the so-called full order solution
[18]. Crucially, these multi-parametric approximations must be carefully obtained in order to
avoid the well-known curse of dimensionality [19], present when attempting to solve higher-
dimensional (i.e. 4D, 5D) problems through standard discretisation techniques (i.e. Finite
Element Method (FEM)). An additional benefit of ROM is the speed of interaction with the
user during the online stage, facilitating real time multiple-query optimisation. In this case,
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the computational effort lies on the marginal cost of another input-output evaluation and an
increased precomputation cost is acceptable [20].

Within the generic name of ROM, there is a wealth of modelling strategies. Among them, a
posteriori ROM techniques rely on the use of reduced approximation bases (modes), carefully
extracted after (typically) carrying out a Truncated Singular Value Decomposition (TSVD) on
a set of representative snapshots, as in the Proper Orthogonal Decomposition (POD) method
[21, 22]. The most appealing property of POD is its orthogonality. Indeed when seeking online
solutions dependent upon a maximum of two parameters, the singular value decomposition
needed in order to generate the POD modes is known to be optimal [23], with no other ROM
method capable of producing a better approximation with a smaller number of modes. Unfor-
tunately, this is not necessarily the case when incorporating further parameters into the online
solution. In addition, the correct choice of relevant snapshots for the construction of the TSVD
is by no means a trivial task and, moreover, POD still requires the assembly and solution of a
reduced system of equations in the online stage.

Alternatively, a priori ROM methods, such as the Proper Generalised Decomposition (PGD)
method [19], do not require any previously stored information of the response of the system
(i.e. snapshots). They build a higher-dimensional parametric offline solution and, subsequently,
during the online stage, a simple interpolation of this parametric solution is performed. The
intrusivity of the offline stage [24] is counterbalanced by the speed of the online stage, allowing
for user queries to be responded in real time. Moreover, the PGD technique allows to compute
sensitivity maps because an explicit generalised solution is available. This PGD methodology
has been successfully implemented in numerous applications, such as Helmholtz based prob-
lems [25, 26], solid mechanics [27], power distribution systems [28], flow problems [24, 29, 30],
thermal problems [31, 32], degenerated 3D domains such as plates and shells [33] and also with
geometrical parametrisations for heat problems [34].

The first main contribution of this paper is the extension of the frequency-based PGD
methodology presented in [35] to a higher-dimensional parametric space, including also the
strength of the background static magnetic field and the electrical conductivity of the shield-
ing components as extra parameters of interest. As a second contribution, and also departing
from our previous work in [35], this paper exploits the staggered nature of the coupled electro-
magneto-mechanical equations by designing a sequential PGD algorithm where the electro-
magnetic and mechanical equations are solved in a staggered fashion. Numerical results will
illustrate that this new approach is capable of greatly increasing the robustness of the overall
algorithm. Finally, the a priori PGD method will be compared to the a posteriori POD tech-
nique applied to the electromagnetic problem, following the methodology recently introduced
in [36] and adapted in this paper for axi-symmetric scenarios. This comparison will be used in
order to draw some interesting conclusions from the computational design (especially in terms
of cost) standpoint.

The paper is structured as follows. Section 2 briefly presents the two physics governing the
behaviour of the problem, the appropriate set of transmission, boundary and initial conditions,
and the computational treatment of the problem, resulting into the so-called full order model.
Section 3 provides a detailed derivation of the new staggered high-dimensional PGD method
and its application to electromagnetics and mechanics, the two physics of the problem. A brief
description of the combined POD-full order technique is presented in Section 4. Section 5
provides a comprehensive set of numerical results for two different geometries, first a simplified
(test) magnet followed by a more realistic MRI scanner configuration. In this section, the true
power of the PGD method is demonstrated by depicting field quantities of interest (i.e. magnetic
potential, eddy current distribution) across the entire computational domain queried in real
time. The conclusions of the paper are found in Section 6, followed by two appendices including
important implementation details, added for completeness and to facilitate reproducibility of
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results.

2. Full order model description

In order to computationally simulate the electromagnetic interactions taking place in MRI
scanners, the underlying non-linear coupled magneto-mechanical problem, see Figure 2, is for-
mulated in a Lagrangian setting [36], with the magnetic vector potential A and the mechanical
displacements u as solution (unknown) fields.

Figure 2: Description of a general magneto-mechanic problem; conducting component ΩC (with magnetic

permeability µ = µ∗ and electrical conductivity γ = γ∗) in a non-conducting three dimensional space R3 \ ΩC

(with µ = µ0 and γ = 0). Problem excited by a current source JS(t) = JDC + Re
(
JJJACeiωt

)
prescribed in a

series of coils.

By linearising about the static (DC) solution, the transient (AC) problem becomes linear
in time and it can thus be solved in time-harmonic variables as

A(t) = ADC + Re
(
AAAACeiωt

)
, (1a)

u(t) = uDC + Re
(
UUUACeiωt

)
, (1b)

where i :=
√
−1, ω = 2πf represents the angular frequency of the harmonic excitation and

f is the frequency in Hertz. The governing equations for the linearised transient problem are
thoroughly derived in [37] and the resulting strong form is defined as: Find (AAAAC ,UUUAC) ∈
(C3 × C3) such that

curl(µ−1 curlAAAAC) + iωγAAAAC = JJJAC in R3, (2a)

div AAAAC = 0 in R3 \ ΩC , (2b)

div
(
σm(UUUAC) + µ−1T (ADC ,AAAAC)

)
= −ρω2UUUAC in ΩC , (2c)

AAAAC = O
(
|x|−1

)
as |x| → ∞, (2d)

UUUAC = UUUAC
D on ∂ΩC

D, (2e)

n× [AAAAC ]∂ΩC = 0 on ∂ΩC , (2f)

n× [µ−1 curlAAAAC ]∂ΩC = 0 on ∂ΩC , (2g)(
σm(UUUAC) + µ−1T (ADC ,AAAAC)

)∣∣−
∂ΩC
n = µ−1T (ADC ,AAAAC)

)∣∣+
∂ΩC
n on ∂ΩC , (2h)

where µ, γ and ρ are the magnetic permeability, the electrical conductivity and the material
density, respectively; n is the outward normal vector (pointing from the conducting to the
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non-conducting side); σm(UUUAC) in (2c) represents the mechanical contribution to the Cauchy
stress tensor and µ−1T (ADC ,AAAAC)

)
in (2c) and (2h) represents the linearised Maxwell stress

tensor. Once the linearised transient problem (2) is solved, the Eulerian complex amplitudes
of the electric and magnetic AC fields can be computed as

EEEAC = −iωAAAAC + iωBDC
0 ×UUUAC in ΩC , (3a)

HHH AC = µ−1BBBAC
0 = µ−1 curlAAAAC in R3, (3b)

and the electric and magnetic time varying quantities are recovered as

E = Re
(
EEEACeiωt

)
= Re

(
(−iωAAAAC + iωBDC

0 ×UUUAC)eiωt
)

in ΩC , (4a)

H = HDC + Re
(

HHH ACeiωt
)

= µ−1
(

curlADC + Re
(
(curlAAAAC)eiωt

) )
in R3. (4b)

For the purpose of this paper, we assume that the fieldsADC , BDC
0 = curlADC and uDC are

assumed to be known and independent of the model parameters that we wish to vary. These
fields can be computed by following the procedure in [14, 15, 37]. The focus of this paper
is restricted to axisymmetric configurations and thus the problem is formulated in cylindrical
(r, φ, z) coordinates across the meridian two-dimensional (r, z) plane Ωp (refer to [35] for a
diagrammatic representation). The unbounded domain is truncated at a finite distance away
from the conducting embedded domain ΩC

p and as an approximation to the decay condition we
set Aφ = 0 on ∂Ωp. The transient current source is assumed to have only an angular component
JJJAC(r, φ, z) = J Sφ (r, z)eφ and, therefore, the solution fields become1

AAAAC = rAφ(r, z)eφ, (5a)

UUUAC = UUU = rUr(r, z)er + Uz(r, z)ez, (5b)

where er, eφ and ez represent the unit basis vectors of the cylindrical system. Note that the
fields Aφ and Ur have been scaled in order to avoid singularities along the r = 0 axis. The reader
is referred to [13, 37] for further details on the derivation of the axisymmetric formulation.

2.1. Full order weak formulation

The so-called full order electromagnetic AC problem is obtained as the standard weak form
of the strong form (2) set in an axisymmetric configuration [13, 37] as: Find Aφ(r, z) ∈ X(0)
such that

WA(Aφ, δAφ) = SA(δAφ) ∀δAφ ∈ X(0), (6)

where
WA(Aφ, δAφ) = WA

K(Aφ, δAφ) + iωWA
C (Aφ, δAφ), (7)

with

WA
K(a, b) :=

∫
Ωp

µ−1

r
∇p(r

2a) · ∇p(r
2b) dΩ, (8a)

WA
C (a, b) :=

∫
ΩCp

γabr3 dΩ, (8b)

SA(b) :=

∫
Ωp

J Sφ br
2 dΩ. (8c)

1Note that the upper index AC for both fields Aφ and UUU is dropped hereafter for simplicity.
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Note that the space X(0) used in (6) is defined as

X(0) := {Aφ : Aφ ∈ H1(Ωp),Aφ = 0 on ∂Ωp}, (9)

and the gradient of the scalar potential in the meridian plane is defined as ∇pAφ :=
∂Aφ
∂r
er +

∂Aφ
∂z
ez. Similarly, the full order axisymmetric mechanical AC problem [13, 37] is also obtained

from (2) as: Find UUU(r, z) ∈ Y (UUUD) such that

W u(UUU, δUUU) = −Su(Aφ, δUUU) ∀δUUU ∈ Y (0), (10)

where
W u(UUU, δUUU) = W u

K(UUU, δUUU) + iω2W u
C(UUU, δUUU)− ω2W u

M(UUU, δUUU), (11)

with

W u
K(a, b) :=

∫
ΩCp

σm(a) : ∇b r dΩ, (12a)

W u
C(a, b) := 2ξ

∫
ΩCp

ρa · b r dΩ, (12b)

W u
M(a, b) :=

∫
ΩCp

ρa · b r dΩ, (12c)

Su(a, b) :=

∫
ΩCp

µ−1T (ADC
φ , a) : ∇b r dΩ−

∫
∂ΩC,Np

µ−1
0 T (ADC

φ , a)
∣∣+n · b r dS, (12d)

where the mass proportional Rayleigh damping coefficient [11] defined as αM := 2ωξ has been
used in (12), being ξ a dimensionless ratio that allows to control the amount of damping added
to the system and

Y (UUUD) := {UUU : UUU ∈ (H1(ΩC
p ))2,UUU = UUUD on ∂ΩC

p,D}. (13)

The coupled magneto-mechanical problem (6)-(10) is then discretised in space and solved
using a high order FEM Galerkin approximation [11] to obtain discrete values of the solution
fields. For further details, the reader is referred to [14, 15].

3. Staggered high-dimensional Proper Generalised Decomposition (PGD) formu-
lation

As mentioned in Section 1, the design process of MRI scanners can be highly optimised by
incorporating material and geometrical parameters as part of a high-dimensional parametric
solution and, thus, the general PGD methodology is first introduced in this section with this
aim. Subsequently, the chosen design (optimisation) parameters are motivated and discussed
in terms of their computational implementation. Finally, a novel staggered PGD solver is
described and the PGD formulation is particularised for the two physics of interest, namely
electromagnetics and mechanics.

3.1. High-dimensional parametric PGD formulation

The PGD method is presented for the general case of a high-dimensional parametric problem
that considers the spatial two-dimensional domain Ωp and a d-dimensional (tensorial) paramet-
ric space Ωq = Ωw1 × · · · × Ωwd . If the solution vector field of this problem is formulated as
q = q(r, z, w1, . . . , wd), the core idea of the PGD methodology [19] is the assumption that the
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vector field q can be approximated using a separable representation qN = qN(r, z, w1, . . . , wd)
as

q(r, z, w1, . . . , wd) ≈ qN(r, z, w1, . . . , wd) :=
N∑
n=1

βnFn(r, z)
d∏
i=1

Gni (wi), (14)

where N denotes the total number of so-called modes, multiplicatively decomposed into spatial
and parametric modes. The spatial modes Fn(r, z) are represented by normalised vectorial
functions whilst the parametric modes Gni (wi) are denoted by normalised scalar functions and
the mode weights βn are scalar coefficients computed via an L2 projection once all spatial and
parametric modes are known [25]. Note that the choice made in this paper is to represent
the spatial Ωp related modes with a single function Fn(r, z) while the parametric domain Ωq

related modes are represented by the product of a set of separated scalar functions
∏d

i=1 Gni (wi).
Although it is also possible to multiplicatively decompose the spatial domain related modes into
two different functions for r and z [38], the choice adopted in this paper is to use a single function
so that more complex geometries can be handled.

In (14), each mode n is sequentially computed using a Greedy algorithm [39]. For a given
nth mode, the accumulated solution qn = qn(r, z, w1, . . . , wd) may be expressed as

qn(r, z, w1, . . . , wd) :=
n−1∑
m=1

βmFm(r, z)
d∏
i=1

Gmi (wi) + fff (r, z)
d∏
i=1

gi(wi)

= qn−1(r, z, w1, . . . , wd) + fff (r, z)
d∏
i=1

gi(wi),

(15)

and, by using a fixed-point Alternating Direction Scheme (ADS) algorithm [19], the approxima-
tion term fff (r, z)

∏d
i=1 gi(wi) (lowercase) is assumed to converge to βnFn(r, z)

∏d
i=1 Gni (wi) (up-

percase) by sequentially updating each individual component function (i.e. {fff (r, z), g1(w1) . . .
gd(wd)}) while assuming the others known. A graphical representation of this generic high-
dimensional PGD algorithm ca ne found in [35] (for specific details regarding the FEM discreti-
sation and thus the nomenclature depicted in the algorithm, the reader is referred to Appendix
A and [35]).

3.2. Parameters of interest: the high-dimensional parametric space

A novel frequency-based PGD technique was recently developed in [35] in order to conduct
real time evaluations of the performance of an MRI scanner when subjected to frequency
dependent magnetic excitations. In this paper, we aim to greatly enhance the flexibility of this
PGD metamodel, by incorporating further parameters of interest into the query process, namely,
the angular frequency ω, the electrical conductivity γ and the strength of the static magnetic
field B0, computed as B0 = max(

∣∣BDC
0 |r=0

∣∣). With this in mind, the solution domain Ω is
expressed as the tensorial product of the spatial meridian (r, z) space Ωp times the parametric
domain Ωq as Ω = Ωp × Ωq. Whilst in [35] the parametric domain exclusively contained the
one-dimensional frequency domain Ωq = Ωω, in this paper the parameteric domain is extended
to further incorporate the electrical conductivity and the strength of the magnetic field as
Ωq = Ωω × Ωγ × ΩB0 .

The conductivity of the embedded shields is a key parameter that is typically modified
(in a continuous fashion) during the design stage of an MRI scanner. The approach followed
in this paper consists of introducing a scalar coefficient αγ ∈ [0.5, 2] that scales the reference
conductivities γ of all shields. In addition, the strength of the static magnetic field B0, measured
in Teslas [T], refers to the maximum value of the magnitude of the background static magnetic
field BDC

0 along the r = 0 axis. This parameter is used to classify MRI scanners and indicate
the overall strength of the equipment, with typical commercial values for B0 currently at 1.5T,
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3T and 7T. Therefore, a further scalar coefficient αB0 ∈ [1, 7] is introduced in order to scale
the strength of the static field BDC

0 . Finally, the dependency of the solution field q upon the
high-dimensional parametric space will be denoted as q = q(r, z, ω, γ, B0).

Due to the staggered nature of the coupled weak forms (6) and (10), we advocate in this
paper for a sequential solution procedure where the electromagnetic governing equations are
solved first (in terms of the magnetic vector potential) followed by the solution of the mechanical
governing equations (in terms of the displacement field). This staggered solution procedure will
be shown to greatly enhance the computational convergence (i.e. robustness and speed) of the
PGD algorithm, especially when considering more than a single parameter of interest (as it was
the case in [35]).

As it was already shown in our previous work [14–16, 35], when the model is excited at
frequencies in the neighbourhood of the resonant modes, singularities can arise in the solution
fields and outputs of interest. Due to the existence of these resonant phenomena, Reference
[35] introduced an automatic regularised-adaptive frequency PGD splitting technique in order
to accurately capture the location of the resonant modes. In [35], this splitting procedure was
shown to be fundamental2 in order to reconstruct, in real time, frequency response spectra
for a series of (integrated) magnitudes of industrial interest (i.e. kinetic energy and dissi-
pated power). Naturally, when employing a sequential PGD solution strategy, as will be the
case in this work, different frequency (splitting) intervals can be considered when solving the
electromagnetic (domain ΩA

ω ) and mechanical (domain Ωu
ω) physics, separately. This is dia-

grammatically depicted in Figure 3 where, as an example, for a single frequency domain of
interest in the electromagnetics problem, namely ΩA

ω , three frequency intervals Ωu,1
ω , Ωu,2

ω and
Ωu,3
ω are used for the mechanical problem. This will always be the case, namely, the frequency

range requires a higher level of discretisation (and possibly splitting) for the solution of the me-
chanical equations than for the solution of the electromagnetic equations (due to the presence of
singularities in the former equations). This important consideration implies that non-matching
parametric (frequency) meshes might be necessary when using the PGD algorithm in both
physics separately. This will require the use of one-dimensional mortar integrals, see Section
3.5 and Appendix B for further details.

Ω!
1 Hz 5000 Hz

Ω
A
!

Resonance region

Ω
u;1
! Ω

u;2
! Ω

u;3
!

Figure 3: Different parametric domains for electromagnetics and mechanics due to adaptive splitting PGD
technique.

3.3. Augmented full order model

Prior to the formulation of the PGD methodology, the full order model (see Section 2) must
be reformulated in the augmented higher-dimensional space Ωp × Ωq. Electromagnetics and
mechanics augmented weak form problems are presented in what follows.

2As it is expected, these sharp changes in the kinetic energy and dissipated power can make extremely
challenging the convergence of the PGD algorithm due to the ill-conditioning of the resulting PGD system in
the proximity of these resonant modes.
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3.3.1. Electromagnetics

The axisymmetric weak form of the electromagnetic problem is formulated in the high-
dimensional space Ωp × ΩA

q (the upper index (·)A is used to emphasise the electromagnetics
parametric domain). Note that there is no dependency on B0 in the electromagnetic weak
formulation (6) and thus the electromagnetic parametric domain can be denoted as ΩA

q =
ΩA
ω ×ΩA

γ . The high-dimensional version of the full order weak form (6) can be written as: Find
Aφ(r, z, ω, γ) ∈ X (0) such that3

WA
K(Aφ, δAφ) + iWA

C (Aφ, δAφ) = SA(δAφ) ∀δAφ ∈ X (0), (16)

with

WA
K(a, b) :=

∫
ΩAγ

∫
ΩAω

WA
K(a, b) dω dγ, (17a)

WA
C (a, b) :=

∫
ΩAγ

αγ

∫
ΩAω

ωWA
C (a, b) dω dγ, (17b)

SA(b) :=

∫
ΩAγ

∫
ΩAω

SA(b) dω dγ, (17c)

and
X (0) := {Aφ : Aφ ∈ H1(Ωp × ΩA

ω × ΩA
γ ),Aφ = 0 on ∂Ωp × ΩA

ω × ΩA
γ }. (18)

3.3.2. Mechanics

In the context of a typical MRI scanner configuration, it is often considered that the conduct-
ing shields are isolated from each other, see Figure 4. Therefore, when solving the mechanical
governing equations, the shields can be solved individually (in parallel) and then proceed to
assemble the mechanical response of the MRI system all together if needed. With this in mind,
this section describes the underlying mechanical governing equations for a single conducting
shielding component, formulated irrespective of the total number NC of shielding components.

The high-dimensional axisymmetric augmented weak form of the mechanical problem is
formulated over a higher-dimensional space ΩC

p × Ωu
q ,

4 where Ωu
q = Ωu

ω × Ωu
γ × Ωu

B0
(the upper

index (·)u is used to emphasise the mechanical parametric domain) as: Find UUU(r, z, ω, γ, B0) ∈
Y(UUUD) such that5

Wu
K(UUU, δUUU) + iWu

C(UUU, δUUU)−Wu
M(UUU, δUUU) = −Su(Aφ, δUUU) ∀δUUU ∈ Y(0), (19)

with

Wu
K(a, b) :=

∫
ΩuB0

∫
Ωuγ

∫
Ωuω

W u
K(a, b) dω dγ dB0, (20a)

Wu
C(a, b) :=

∫
ΩuB0

∫
Ωuγ

∫
Ωuω

ω2W u
C(a, b) dω dγ dB0, (20b)

Wu
M(a, b) :=

∫
ΩuB0

∫
Ωuγ

∫
Ωuω

ω2W u
M(a, b) dω dγ dB0, (20c)

Su(a, b) :=

∫
ΩuB0

αB0

∫
Ωuγ

∫
Ωuω

W uA
K (a, b) dω dγ dB0, (20d)

3The formulation presented in this paper is an extension of the previously developed frequency-based PGD
formulation [35], where now the problem is integrated in a higher-dimensional space Ωp × Ωq.

4Only the conducting spatial domain ΩCp is considered for the mechanical problem, instead of the entire
spatial domain Ωp used for electromagnetics.

5Note that in a small departure from the notation used in [35], where a monolithic solver was developed, the
electromagnetic input term is here considered as a source term Su(Aφ, δUUU) on the right-hand side.
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Air

Main coils

Gradient coils

shields ΩC
p

conducting
Isolated

Ωp

Figure 4: Typical axisymmetric MRI scanner geometry; presence of multiple (NC = 3) isolated conducting
components ΩCp embedded in a truncated non-conducting domain Ωp.

and

Y(UUUD) := {UUU : UUU ∈ (H1(ΩC
p ×Ωu

ω ×Ωu
γ ×Ωu

B0
))2,UUU = UUUD on ∂ΩC

p,D ×Ωu
ω ×Ωu

γ ×Ωu
B0
}. (21)

Note that no direct dependency on the electric conductivity γ can be observed in any of the
terms in (20). However, since the magnetic potential is γ-dependent, namely Aφ = Aφ(r, z, ω, γ),
integration over Ωu

γ is required in the above definitions in order to accommodate the right-hand
side term Su(Aφ, δUUU) in (20d).

3.4. PGD formulation for electromagnetics

The PGD method is applied to the AC electromagnetic problem (16) by approximating
the scalar potential field Aφ with a separable expression. The general high-dimensional PGD
definition for a vector field q, see (14), is particularised for the electromagnetic scalar potential
Aφ as

Aφ(r, z, ω, γ) ≈ ANA
φ (r, z, ω, γ) :=

NA∑
n=1

βnF n
Aφ(r, z)Gn

Aφ(ω)Hn
Aφ(γ), (22)

where NA is the total number of electromagnetic modes computed, the spatial modes Fn(r, z)
appearing in (14) reduce to F n

Aφ(r, z)6 and the parametric modes Gn1 (w1) = Gn
Aφ(ω) and Gn2 (w2) =

Hn
Aφ(γ). The nth accumulated solution is then

An
φ (r, z, ω, γ) =

n−1∑
m=1

βmFm
Aφ(r, z)Gm

Aφ(ω)Hm
Aφ(γ) + fAφ(r, z)gAφ(ω)hAφ(γ)

= An−1
φ (r, z, ω, γ) + fAφ(r, z)gAφ(ω)hAφ(γ),

(23)

where, as mentioned in Section 3.1, the uppercase and lowercase fonts indicate converged and
non-converged quantities in the process of a fixed-point ADS algorithm. A suitable (compatible)

6Note that the general separable expression for a vector field q (14) is reduced to a scalar field Aφ and thus,
the vectorial function Fn(r, z) becomes the scalar function FnAφ(r, z).
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test function can be introduced as

δAφ = δfAφgAφhAφ + fAφδgAφhAφ + fAφgAφδhAφ . (24)

The two expressions (23) and (24) can be now substituted into the electromagnetic weak
form (16), allowing the problem to be formulated as: Find (fAφ , gAφ , hAφ) ∈ X(0) × Z(ΩA

ω ) ×
Z(ΩA

γ ) such that

RfAφ
(δfAφ ; An−1

φ , fAφ , gAφ , hAφ) +RgAφ
(δgAφ ; An−1

φ , fAφ , gAφ , hAφ)

+RhAφ
(δhAφ ; An−1

φ , fAφ , gAφ , hAφ) = 0,
(25)

∀(δfAφ , δgAφ , δhAφ) ∈ X(0)×Z(ΩA
ω )×Z(ΩA

γ ), where Z(Ω) = L2(Ω) and the three electromagnetic
residual forms are defined as

RfAφ
(δfAφ ; An−1

φ , fAφ , gAφ , hAφ) : =WA
K(fAφgAφhAφ , δfAφgAφhAφ)

+ iWA
C (fAφgAφhAφ , δfAφgAφhAφ)

− SA(δfAφgAφhAφ) +WA
K(An−1

φ , δfAφgAφhAφ)

+ iWA
C (An−1

φ , δfAφgAφhAφ),

(26a)

RgAφ
(δgAφ ; An−1

φ , fAφ , gAφ , hAφ) : =WA
K(fAφgAφhAφ , fAφδgAφhAφ)

+ iWA
C (fAφgAφhAφ , fAφδgAφhAφ)

− SA(fAφδgAφhAφ) +WA
K(An−1

φ , fAφδgAφhAφ)

+ iWA
C (An−1

φ , fAφδgAφhAφ),

(26b)

RhAφ
(δhAφ ; An−1

φ , fAφ , gAφ , hAφ) : =WA
K(fAφgAφhAφ , fAφgAφδhAφ)

+ iWA
C (fAφgAφhAφ , fAφgAφδhAφ)

− SA(fAφgAφδhAφ) +WA
K(An−1

φ , fAφgAφδhAφ)

+ iWA
C (An−1

φ , fAφgAφδhAφ),

(26c)

Regarding the implementation of the electromagnetic problem (25), this can be formulated
using the concept of directional derivatives [40], where the problem is solved by incrementally
updating the solution fields fAφ , gAφ and hAφ . As mentioned in Section 3.1, the solver exploits
a fixed-point ADS in order to efficiently converge within every modal component of the PGD
solution. The detailed formulation and its implementation is presented in Appendix A.

3.5. PGD formulation for mechanics

In a similar manner to electromagnetics, the PGD methodology approximates the displace-
ment field UUU using a separable representation. In this case, the generic high-dimensional PGD
definition (14) becomes

UUU(r, z, ω, γ, B0) ≈ UUUNu(r, z, ω, γ, B0) :=
Nu∑
n=1

βnF n
UUU(r, z)Gn

UUU(ω)Hn
UUU(γ)LnUUU(B0), (27)

where Nu is the number of mechanical modes computed and the terms appearing in the general
PGD definition (14) become Fn(r, z) = F n

UUU(r, z), Gn1 (w1) = Gn
UUU(ω), Gn2 (w2) = Hn

UUU(γ) and
Gn3 (w3) = LnUUU(B0). Considering a particular modal component n, the accumulated solution
field is written as

UUUn(r, z, ω, γ, B0) =
n−1∑
m=1

βmFm
UUU (r, z)Gm

UUU (ω)Hm
UUU (γ)LmUUU (B0) + fUUU(r, z)gUUU(ω)hUUU(γ)lUUU(B0)

= UUUn−1(r, z, ω, γ, B0) + fUUU(r, z)gUUU(ω)hUUU(γ)lUUU(B0),

(28)
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where a suitable (compatible) test function can be introduced as

δUUU = δfUUUgUUUhUUUlUUU + fUUUδgUUUhUUUlUUU + fUUUgUUUδhUUUlUUU + fUUUgUUUhUUUδlUUU. (29)

These two expressions (28) and (29) can be substituted into the mechanical augmented
weak form (19) together with the electromagnetic PGD definition (22), allowing the problem
to be formulated as: Find (fUUU, gUUU, hUUU, lUUU) ∈ Y (UUUD)× Z(Ωu

ω)× Z(Ωu
γ)× Z(Ωu

B0
) such that

RfUUU
(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) +RgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)

+RhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) +RlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) = 0
(30)

∀(δfUUU, δgUUU, δhUUU, δlUUU) ∈ Y (0)×Z(Ωu
ω)×Z(Ωu

γ)×Z(Ωu
B0

) and the four mechanical residual forms
are defined as

RfUUU
(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) : =Wu

K(fUUUgUUUhUUUlUUU, δfUUUgUUUhUUUlUUU)

+ iWu
C(fUUUgUUUhUUUlUUU, δfUUUgUUUhUUUlUUU)

−Wu
M(fUUUgUUUhUUUlUUU, δfUUUgUUUhUUUlUUU)

+ Su(ANA
φ , δfUUUgUUUhUUUlUUU) +Wu

K(UUUn−1, δfUUUgUUUhUUUlUUU)

+ iWu
C(UUUn−1, δfUUUgUUUhUUUlUUU)−Wu

M(UUUn−1, δfUUUgUUUhUUUlUUU),

(31a)

RgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) : =Wu
K(fUUUgUUUhUUUlUUU,fUUUδgUUUhUUUlUUU)

+ iWu
C(fUUUgUUUhUUUlUUU,fUUUδgUUUhUUUlUUU)

−Wu
M(fUUUgUUUhUUUlUUU,fUUUδgUUUhUUUlUUU)

+ Su(ANA
φ ,fUUUδgUUUhUUUlUUU) +Wu

K(UUUn−1,fUUUδgUUUhUUUlUUU)

+ iWu
C(UUUn−1,fUUUδgUUUhUUUlUUU)−Wu

M(UUUn−1,fUUUδgUUUhUUUlUUU),

(31b)

RhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) : =Wu
K(fUUUgUUUhUUUlUUU,fUUUgUUUδhUUUlUUU)

+ iWu
C(fUUUgUUUhUUUlUUU,fUUUgUUUδhUUUlUUU)

−Wu
M(fUUUgUUUhUUUlUUU,fUUUgUUUδhUUUlUUU)

+ Su(ANA
φ ,fUUUgUUUδhUUUlUUU) +Wu

K(UUUn−1,fUUUgUUUδhUUUlUUU)

+ iWu
C(UUUn−1,fUUUgUUUδhUUUlUUU)−Wu

M(UUUn−1,fUUUgUUUδhUUUlUUU),

(31c)

RlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) : =Wu
K(fUUUgUUUhUUUlUUU,fUUUgUUUhUUUδlUUU)

+ iWu
C(fUUUgUUUhUUUlUUU,fUUUgUUUhUUUδlUUU)

−Wu
M(fUUUgUUUhUUUlUUU,fUUUgUUUhUUUδlUUU)

+ Su(ANA
φ ,fUUUgUUUhUUUδlUUU) +Wu

K(UUUn−1,fUUUgUUUhUUUδlUUU)

+ iWu
C(UUUn−1,fUUUgUUUhUUUδlUUU)−Wu

M(UUUn−1,fUUUgUUUhUUUδlUUU).

(31d)

The mechanical problem (30) is solved following an analogous procedure to that for electro-
magnetics, see (25), where further details can be found in Appendix A. Note that in the case of
the mechanical problem, input information arising from the electromagnetic problem is needed,
see the right-hand side in (19), which leads to the introductions of so-called mortar integral
due to the possibility of considering different levels of discretisation in the parametric domains,
as shown in Section 3.2. The numerical treatment of these mortar integrals is discussed and
formulated in Appendix B.

3.6. Staggered PGD solver

The PGD solver described above exploits the staggered nature of the coupled magneto-
mechanical problem (6) and (10), by solving the coupled magneto-mechanical problem in a
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sequential manner, as the workflow describes in Figure 5 where, the high-dimensional AC
electromagnetic problem (25) is solved first in order to obtain a separable representation for
the scalar potential ANA

φ . Subsequently, the high-dimensional AC mechanical problem (30) is

solved for each mechanical component, until the complete mechanical response UUUNu is obtained.
The offline stage of the PGD method ends when the separable expressions for both physics ANA

φ

and UUUNu are obtained and stored for future online postprocessing.

Global problem
K,C,M and s from FEM

Electromagnetics (A)

KAA,CAA,MAA and sA

PGDA params 1D domains ΩA

Mechanics (u)

ith mechanical shield

Kuu
i + KuA

i ,Cuu
i ,Muu

i and sui

PGDu
i params 1D domains Ωui

PGD algorithm PGD algorithm

Global solution
ANA

φ ,UUUNu
i

for i = 1, . . . , NC

i = i+ 1

identify ith shield DOFs

identify electromagnetics DOFs

ANA
φ UUUNu

i

for i = 1, . . . , NC

Figure 5: Flow chart algorithm; description of the staggered PGD nature. The continuous and discrete formu-
lations are detailed in Appendix A.

4. Electromagnetic-Proper Orthogonal Decomposition (EM-POD) methodology

This section presents an alternative a posteriori ROM technique which, by also exploiting
the staggered nature of the underlying coupled equations, combines the POD method for elec-
tromagnetics and the full order model for mechanics (referred to as EM-POD hereafter)7. The
methodology, in addition to be used for benchmarking purposes, will help draw some mean-
ingful conclusions in terms of computational effort when comparing it against the staggered
PGD method. Whilst in [36], this EM-POD methodology was applied to three-dimensional
configurations, this is here suitably adapted to account for axisymmetric configurations.

The fundamental idea behind the EM-POD methodology relies on the application of the
POD method to the electromagnetic problem in order to obtain an approximation APOD

φ (r, z, ω, γ)
to Aφ(r, z, ω, γ) and then use this as an input source to the mechanical full order problem to
compute UUU(r, z, ω, γ, B0).8 Before that, the problem is first discretised in space using a typical
FEM expansion as

Aφ(r, z, ω, γ) ≈
QA∑
i=1

Ni(r, z)Ai(ω, γ), UUU(r, z, ω, γ, B0) ≈
Qu∑
i=1

Ni(r, z)U i(ω, γ,B0), (32)

7Note that this methodology was recently developed in [36] under the name “combined POD-full order
model” approach.

8For a more generic description of the POD method applied to an arbitrary number of parameters, namely
Aφ(r, z, w1, . . . , wd) and UUU(r, z, w1, . . . , wd), the reader is referred to [36].
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where QA and Qu are the number of electromagnetic and mechanical degrees of freedom, respec-
tively, and Ni denote typical hierarchic H1 conforming basis functions, which can be rewritten
in matrix notation as

Aφ(r, z, ω, γ) ≈ NA(r, z)A(ω, γ), UUU(r, z, ω, γ, B0) ≈ Nu(r, z)U(ω, γ,B0), (33)

where we have defined the discrete vectors of coefficients A(ω, γ), U(ω, γ,B0) and the matrices
NA(r, z) and Nu(r, z) are defined as

NA(r, z) := [N1 . . . NQA ] , (34a)

Nu(r, z) :=
[
nu

1 . . .n
u
Qu

]
=

[
N1 0 . . . NQu 0
0 N1 . . . 0 NQu

]
. (34b)

At this point, POD is applied to approximate A(ω, γ), which is carried out by means of
the method of snapshots [41, 42]. First, the vector w is defined as w := (w1 . . .wNs), which
contains Ns parameter sets (combinations of different parameter values ω and γ). Then, a
matrix of Ns snapshots9 D ∈ CQA×Ns is built as

D := [A(w1) . . .A(wNs)] , (35)

where A(wj) is a single snapshot obtained for the parameter set wj. Then, a TSVD [43, 44] is
applied in order to obtain a low rank approximation to the snapshot matrix as

D ≈ DM :=
M∑
k=1

hkσkg
T
k = HMΣM

(
G
M
)T

, (36)

where HM = [h1 . . .hM ] ∈ CQA×M is a matrix containing the first M left singular vectors of D,
GM = [g1 . . .gM ] ∈ CNs×M is the matrix of right singular vectors and ΣM = diag(σ1 . . . σM) ∈
RM×M is a diagonal matrix containing the first M singular values, which are sorted in decreasing
order. Note that the choice here is to consider the physical space (r, z) and the parametric
space (ω, γ) as the two dimensions that have to be separated, so the TSVD can be applied.
Otherwise, the high-order version of the TSVD (High-Order Singular Value Decomposition
HOSVD [19, 45]) would be required to separate more than two dimensions, loosing the known
optimality of the TSVD [23]. The snapshot calculation and the TSVD constitute the so-called
offline stage of the POD algorithm as presented in the left box in Figure 6, where the EM-POD
algorithm is summarised using a flow chart. In this particular problem, the affine decomposition
structure of the electromagnetic problem (6) is used to perform most of the assembly (the non-
parameter dependent assembly) as part of the offline stage10, resulting in a much faster online
POD stage.

Subsequently, at the online stage, either interpolation based POD (PODI) [46–48] or projec-
tion based POD (PODP or POD-Galerkin) [49–51] can be considered in order to obtain A(ω, γ)
for any ω and γ. In this case, we explore the use of PODP and A(ω, γ) is approximated as a
linear combination of above left singular vectors as

A(ω, γ) ≈ APOD(ω, γ) :=
M∑
k=1

hkg
P
k (ω, γ) = HMgP (ω, γ), (37)

9Typically, the snapshots are obtained after solving the so-called full order model.
10In most problems, the matrix assembly has to be carried out within the online stage making this POD stage

less computationally efficient.

14



where hk represents the k-th column of the HM matrix and the parametric mode vector gP (ω, γ)
(of coefficients gP

k (ω, γ)) is yet unknown and must be computed for each ω and γ. The compu-
tation of the unknown vector gP (ω, γ) is obtained from the solution of the weak form (6) by
using a Galerkin approximation with (33)a and (37). This leads to the solution of a reduced
system of size M ×M as shown in Figure 6. This must be applied No times to obtain the
solution for all the parameters sets of interest w1, . . . ,wNo .

Global magneto-
mechanical problem

Full order model (electromagnetics)

A(wi)

TSVD

Solve projected system

APOD(wj)

Full order model (mechanics)

U(wj)

Global spatial solution
APODφ (r, z, ω, γ),U(r, z, ω, γ,B0)

Offline POD Online POD

for j = 1, . . . , No

Compute Ns snapshots

for i = 1, . . . , Ns

Snapshot matrix D

i = i + 1

HM ,ΣM ,GM

Store offline POD

j = j + 1

gP (wj)

Figure 6: Flow chart algorithm; description of the EM-POD technique.

Once the solution APOD
φ (r, z, ω, γ) is obtained, this is used as a source term for the mechan-

ical full order solver [36]. The online stage is graphically presented in the right box of Figure
6. For further details about the EM-POD technique and its performance in the context of
three-dimensional configurations, the reader is referred to [36].

5. Numerical results

This section includes a series of numerical examples in order to demonstrate the robustness
and applicability of the new staggered PGD algorithm derived in Section 3. With this in mind,
two different geometries representing two alternative MRI configurations are analysed: first, a
simplified geometrical representation followed by a more realistic MRI scanner configuration.
One of the aims of the section is to validate the previously described staggered PGD algorithm
against the full order (considered as a reference) model. The presence of numerical singularities
in the solution fields, due to the existence of resonance, is a challenging localised behaviour (only
present in some frequencies of interest) that can be captured by combining the staggered PGD
method with an automatic frequency splitting algorithm previously developed by the authors
in [35]. As part of the various analyses carried out, integrated quantities of interest such as
global dissipated Ohmic current and kinetic energy are displayed. Moreover, the true power
of the PGD method is demonstrated by depicting field quantities of interest (i.e. magnetic
potential, eddy current distribution) across the entire computational domain, queried in real
time.

In addition, the benefits of the new staggered PGD model are also remarked by comparing
this new PGD approach against the alternative PGD formulation recently developed by the
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authors in [35], where only the frequency was considered as a parameter of interest and both
electromagnetic and mechanical equations were solved simultaneously in a monolithic manner.
Finally, the novel PGD staggered model is compared (in terms of accuracy and computational
effort) against the alternative EM-POD algorithm included in Section 4, originally developed
in [36] for three-dimensions and adapted in this paper for the consideration of axisymmetric
scenarios.

5.1. Test magnet problem

The first numerical example that is presented in this section depicts a simplification of a
realistic MRI scanner configuration. MRI scanners are typically comprised of three main com-
ponents, namely, main coils responsible for the generation of the static DC field; gradient coils,
responsible for the transient AC fields and radiation shields. Note that the same geometrical
representation was already presented in [35], but it is also described here for completeness.
The shields correspond to three rectangular (yellow) conducting components embedded in a
non-conducing domain (i.e. the air). These are the outer vacuum chamber ΩC

OV C , the 77K
radiation shield ΩC

77K and the 4K helium vessel ΩC
4K . Each mechanical shield has different

material and geometrical parameters that cannot be specified due to confidentiality reasons.
However, the approximate values are µ∗ ≈ 10−7 H/m, γ∗ ≈ 106 S/m, ρ ≈ 103 Kg/m3, E ≈ 109

Pa and ν ≈ 0.3. Note that the axisymmetric formulation [13] follows from assuming rotational
symmetry of the weak form expressed in 3D cylindrical coordinates and, as such, r = 0 does
not form a boundary of the computational domain Ωp.

5.1.1. ROM techniques on the electromagnetic problem

The authors in [36] recently showed that the solution of the mechanical equations does not
benefit from using POD, as a similar number of snapshots to that of a full order model was
needed in order to accurately capture the location of the resonance (mechanical) singularities.
As a result, in this section, we restrict to the un-coupled electromagnetic problem and compare
both PGD and EM-POD strategies against the full order model, both in terms of accuracy and
computational effort. PGD and EM-POD have been presented in Sections 3 and 4, respectively,
and they are implemented herein for the electromagnetic problem of the test magnet geometry,
in order to approximate the scalar magnetic potential field Aφ = Aφ(r, z, ω, γ) dependent upon
the spatial domain (r, z) and two extra parameters, namely, the angular frequency ω and the
electric conductivity γ.

Regarding PGD, the user-defined parameters are presented in Table 1, where IAN represents
the maximum number of modes (note that the superscript (·A) is used to emphasise the electro-
magnetic problem), IFP is the maximum number of fixed-point iterations, tolAN is the tolerance
for the greedy algorithm and tolFP is the tolerance for the fixed-point algorithm. The para-
metric domains are defined by a dimensionless mesh size parameter h that is computed as the
maximum (FEM) element size divided by a reference size of the domain. For instance, for the
frequency domain Ωω, the dimensionless mesh size is hω = 0.1/5000 = 2 · 10−5. The remaining
user-defined parameters refer to the spatial problem Ωp, where hΩp is the mesh size parameter
as previously explained, p is the polynomial order used in the FEM discretisation and ξ, the
dimensionless damping ratio, is used to account both for physical (i.e. classical damping) and
numerical regularisation [35].

Regarding EM-POD, see Figure 6, the algorithm is initiated given a series of snapshots com-
puted using the electromagnetics full order model, which in this case consists of a combination
of 23 frequencies f snap and 3 scaling of the electric conductivity αsnapγ that make up a total of
69 snapshots (Ns = 69). Note that an efficient frequency sampling for this problem requires
a non-evenly spaced (in frequency) set of snapshots, clustered near the low frequency region.
Indeed (this will be shown subsequently) the electromagnetic problem varies more rapidly in
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Table 1: User-defined PGD parameters for the electromagnetic test magnet problem simulation.

PGD parameters Parametric domains Spatial domain

IAN tolAN IFP tolFP hω hγ hΩp p ξ
40 10−4 10 10−2 2 · 10−5 6 · 10−3 5 · 10−3 4 10−3

the low frequency range and, thus, this a priori knowledge of the problem at hand can be used
to optimise the number and location of snapshots needed. It is important to stress that, differ-
ently from the PGD method, the EM-POD technique considers the parametric space (ω,γ) as
a single dimension, avoiding the use of the HOSVD. In addition, the a priori knowledge of the
solution, facilitates the selection of an efficient set of snapshots (i.e. use of a non-evenly spaced
frequency) in order to reduce the computational cost of the offline stage. The TSVD is applied
on the set of stored snapshots and truncated after 20 modes (M = 20). In addition, the mesh
size hΩp , the polynomial order p and the damping ratio ξ are also required. This information
regarding the EM-POD set-up is summarised in Table 2.

Table 2: User-defined EM-POD parameters for the electromagnetic test magnet problem simulation.

EM-POD parameters Snapshots

f snap [Hz] αsnapγ Ns M hΩp p ξ
[10 : 80 : 1000, 1400 : 400 : 5000] [0.5, 1.25, 2] 69 20 5 · 10−3 4 10−3

PGD and EM-POD, are then run and compared against the full order (reference) solution.
Figure 7a shows three different cases, each one consisting of a frequency sweep, for three
different values of αγ used for scaling the electric conductivity. The agreement between the
different techniques is clearly observed and, hence, the implementation of PGD and EM-POD
is validated. Moreover, the error introduced by either of the ROM techniques is negligible and,
crucially, controllable by the various tolerance values used in the analyses. As noted above, the
scalar magnetic potential field is smooth throughout the entire frequency spectrum but with a
sharp gradient observable in the low frequency range.

0 1000 2000 3000 4000 5000

10-6

10-5

(a) Three different cases (αγ = 0.5, αγ = 1 and αγ = 1.5).
Plot of the L2 norm of the vector potential field in the OVC
conducting shield |Aφ|L2(ΩC

OVC
).

0 5 10 15 20
0

20

40

60

80

100

(b) Total computational time required for each method to solve
20 studied cases (different parameter combinations).

Figure 7: Electromagnetic test magnet problem; comparison between PGD and EM-POD approximations
against the reference full order model.
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In addition, Figure 7b presents the computational time that the three methods (full order,
EM-POD and PGD) require in order to complete the analysis of 20 different parametric cases.
The full order model shows a clearly defined linear computational time cost, as each new case
study implies the solution of an identical problem yet with a different parametric combination.
However, the trend of the two ROM techniques is almost constant in cost due to the fact that
the online costs of both methods are almost negligible compared to the offline costs. Note that,
for this particular case, the time required for both ROM methods is comparable, being the
PGD slightly more expensive (with the extra advantage that an explicit parametric solution
field is obtained). Moreover, it has to be stressed that the number of snapshots used in the
EM-POD method has been drastically minimised using the a priori knowledge of the solution,
whereas the PGD technique does not require at all any previous knowledge of the problem.
Furthermore, an increase in the number of parameters will slightly affect the PGD method
whilst it could potentially seriously increase the offline (i.e. use of a HOSVD and a larger
number of snapshots) and online (i.e. solution of a larger reduced system of equations) cost of
the EM-POD technique.

For the PGD method, the offline calculations consist in obtaining and assimilating all terms
appearing in the separable representation (22) and the online stage consists of a simple interpo-
lation of the previously computed high-order parametric solution, that can be straightforwardly
carried out in real time. As for the EM-POD method, the offline stage requires the computa-
tion of the snapshots, the TSVD and the non-parameter dependent assembly process (if the
problem allows for an affine decomposition [36]). In the online stage, the parameter dependent
assembly process is carried out in order to solve the reduced system of equations (size M ×M)
that yields the electromagnetic response of the problem. Note that in this particular problem,
the affine decomposition is possible, see (6), and thus, the online cost is still relatively small
compared to the offline one. Note that this study has been performed with a smaller number
of cases and then it has been extrapolated to 20 cases.

The ROM techniques can be queried in real time (especially efficient is PGD in this regard as
only an interpolation process is carried out) to obtain the magnetic potential distribution that
can be used to compute physically meaningful field quantities such as the transient magnetic
field BBBAC

0 acting on the test magnet geometry, see Figure 8. It is interesting to see how the
transient magnetic field is generated in the AC coils (red) and travels through the free space
permeating across the conducting shields.

Figure 8: Electromagnetic test magnet problem; visualisation of the magnetic field |BBBAC0 | contour lines on the
axisymmetric plane. 3D representation of three MRI components; OVC, 77K and 4K radiation shields (gold
tones), main DC coils (blue) and gradient AC coils (red).
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5.1.2. Coupled magneto-mechanical problem

After comparing both ROM techniques with the full order solution (for the electromagnetic
problem), the more challenging fully coupled magneto-mechanical problem is now considered,
where singularities in the solution field arise due to resonance. Regarding EM-POD, see flow
chart in Figure 6, it combines the use of POD for the electromagnetic equations (with excellent
accuracy with respect to the full order model as shown in Figure 7a) and a full order model
for the mechanical equations. As a result, the EM-POD method does not introduce additional
errors with respect to the full order model when solving the mechanical problem, although the
mechanical solutions will not be exactly the same due to the fact that the source term for the
mechanical problem is based on an approximated electromagnetic solution APOD

φ . However,
important savings with respect to a complete full order solve are gained as the size of the
electromagnetic problem (solved using POD) is generally orders of magnitude larger than that
of the mechanical one (which is solved using the full order model).

Regarding PGD, the same strategy could have been used. The fully coupled magneto-
mechanical problem is solved and the user-defined parameters are presented in Table 3. Note
that due to the sequential nature of the solution process, some of these PGD input parameters
use the superscript (·A) or (·u) to denote whether they refer to the electromagnetic or mechanical
problems, respectively. A new user-defined parameter, tolsplitω , is needed in the mechanical
problem in order to define the maximum size of the frequency subintervals in the resonance
area. This parameter is used in the automatic adaptive frequency splitting, presented in [35],
which consists in automatically detecting the numerical singularities associated with resonance
and refining the frequency domain accordingly, without the need of any a priori knowledge
of the solution. Note that this splitting process is different to that presented by the authors
in [35]. Previously, the PGD algorithm was very sensitive to the frequency subinterval, where
each subinterval had to contain a few natural frequencies as centred as possible. However,
with the staggered PGD presented in this paper, the algorithm becomes more robust and it is
possible to apply a simpler splitting procedure based on the location of the smallest and largest
eigenvalues of the mechanical problem contained within the frequency range of interest.

As displayed in Figure 9, a complete eigenvalue analysis of the problem is too generic and
does not actually provide reliable information about the truly excited resonant frequencies.
Instead, frequencies with high multiplicity and non-excited resonance frequencies may be ob-
tained. For the implementation of the PGD algorithm, the first and last eigenvalues inside the
frequency range of interest are computed, which will define the resonance region of our problem.
Once this region is located, uniform splitting is performed using tolsplitω . The above eigenvalue
analysis is not a computational burden as a result of (i) the consideration of each individual
conducting shield one at a time and (ii) the need to extract only the maximum and minimum
values within the frequency range of interest.

Table 3: User-defined parameters for the test magnet problem simulation.

PGD parameters Parametric domains Spatial domain

IAN IuN tolAN toluN IFP tolFP hω tolsplitω hγ hB0 hΩp p ξ
40 60 10−4 10−5 10 10−2 2 · 10−5 20% 6 · 10−3 8 · 10−3 5 · 10−3 4 10−3

The staggered PGD algorithm can then be applied to the test magnet problem in order to
obtain (offline) the magnetic potential and the displacement field for the two physics considered.
In the context of an MRI problem, two important (spatially integrated) quantities of interest
are typically reported, namely, the dissipated or Ohmic power P 0

ΩC and the kinetic energy Ek
ΩC ,
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Figure 9: Test magnet problem; natural frequencies (red) obtained from eigenvalue analysis and frequency
subintervals (black) defined through frequency splitting. Right figure shows a zoomed view in the resonance
region (red rectangle). Results shown are for a mesh of 2.9K triangular elements using a polynomial order p = 4.

which can be both computed as a postprocess of the solution fields as

P 0
ΩC :=

1

2

∫
ΩC
γ|EEEAC |2dΩ, Ek

ΩC :=
1

2

∫
ΩC
ρω2|UUUAC |2dΩ. (38)

The results for these two quantities are presented in Figure 10, where P 0
ΩC (left) and Ek

ΩC

(right) are shown for each of the three conducting shields. A series of curves are displayed in
each figure, where the black solid lines on the background denote the full order model solution11

for different sets of parameters B0 and αγ. The coloured lines lying on top refer to the different
PGD solutions for the equivalent sets of parameters used in the full order model. Note that
the specific sets of parameters used are presented in the figure legend. These results show
that the PGD approximation is able to accurately reproduce the behaviour of the full order
model, splitting the frequency range only where it is required and accurately capturing all
the singularities of the response. These results clear demonstrate the validity of the reported
staggered PGD model.

Figure 11 shows the comparison in terms of the total computational time required by the
staggered PGD model and the full order model. First, the total time is shown in Figure 11a,
where a clear time reduction is observed between the full order model and the PGD approach
even if just a few cases (parameter combinations) are required. Moreover, the online PGD cost
is no longer negligible as it was when only considering the electromagnetic problem, see Figure
7b. The reason is that the online cost now includes the computation of the integrated quantities
(38). Figure 11b shows the time reduction in percentage obtained for the PGD technique using
the full order method as a reference, where a great reduction of approximately 85% is obtained
when studying, for instance, 20 different cases. PGD is based on the general idea of maximising
the computational effort during the offline stage in order to reduce as much as possible online
computing tasks. In particular, the online stage reduces to a mere interpolation process that
can be easily conducted in real time and displayed via user-friendly application tool (the reader
is referred to [35] for an example of an online PGD application tool).

5.1.3. Staggered versus monolithic PGD technique

Now that the staggered PGD algorithm has been validated against the full order model,
this section will focus on the advantages of exploiting the staggered nature of the magneto-

11Identical results are obtained when using the EM-POD combined with a mechanical full order solution.
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Figure 10: Test magnet problem; comparison between PGD solution and full order model. Plot of the dissipated
power P 0

ΩC and kinetic energy EkΩC in the three conducting shields OVC, 77K and 4K for six different cases.

mechanical problem. This new staggered PGD approach will be contrasted against the mono-
lithic PGD technique presented in [35], where the PGD algorithm was applied simultaneously
to both physics in a monolithic manner.

The convergence of the PGD methodology is often measured by the contribution of the
last computed mode [19]. This means that if the last computed mode has a weight that is
small enough, this particular mode will not be as important as compared to the previously
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three methods.
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Figure 11: Test magnet problem; study of the computational time taken by the full order model and both offline
and online stages of the PGD technique. 700 frequencies have been sampled for each case of study using the
full order model.

accumulated and, therefore, the greedy algorithm can be safely stopped. The error norms used
to quantify this modal contribution are defined as

eAn =
βnAφ
n∑

m=1

β
[m]
Aφ

, eun =
βnUUU

n∑
m=1

β
[m]
UUU

, (39)

where the index n (i.e. n = 1, . . . , NA for electromagnetics and n = 1, . . . , Nu for mechanics)
denotes a particular PGD mode. These error norms give an overall idea of the efficiency of
the PGD algorithm and, thus, they are useful in order to compare the previously published
monolithic approach [35] against the new staggered PGD approach, see Figure 12.

For the electromagnetic equations (Figure 12 left), two convergence curves are presented,
monolithic PGD eAmono and staggered PGD eAstag. It is clear that the staggered PGD approach
converges considerably faster and to a lower modal contribution. As for the mechanics equations
(Figure 12 right), one convergence curve is displayed for the monolithic PGD eumono model and
three additional curves for the staggered approach eustag, namely, one per shield (eu,OV Cstag , eu,77K

stag

and eu,4Kstag ). Note that in this case the total number of modes is actually the same for both
approaches, 60 modes for the monolithic PGD approach and 20 · 3 = 60 for the staggered
PGD approach. However, recall that for the staggered PGD approach, the time required for
the computation of each mode is lower as a result of considering every shield individually (in
parallel). Moreover, the error norms converge to a lower modal contribution. All in all, from
these results it can be concluded that the staggered PGD methodology offers a very competitive
alternative in terms of accuracy, robustness and computational time.

An additional benefit of the staggered PGD approach that must be emphasised is the flex-
ibility of the PGD algorithm, enabling to set different control parameters for electromagnetics
and mechanics and allowing the automatic split of the frequency domain only for the mechanics.
This flexibility permits the use of different convergence criteria for the PGD, concentrating the
computational effort where it is truly needed.

5.2. Full magnet problem

The full magnet problem represents a more realistic MRI scanner configuration of great
interest to industry. Again, the geometry, material properties and boundary conditions were
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Figure 12: Test magnet problem; Last mode contribution for electromagnetics eA and mechanics eu. Comparison
between monolithic PGD emono and staggered PGD estag approaches. Both PGD algorithms only depending
on space (r, z) and frequency ω with no splitting in the frequency domain.

already presented in [35], but they are also described here for completeness. This problem is
also represented by a set of main and gradient coils and the three conducting shields OVC, 77K
and 4K which are now more realistically represented by closed cylindrical shells. Each shield has
different material and geometrical parameters that cannot be specified due to confidentiality
issues. However, the approximate values are µ∗ ≈ 10−7 H/m, γ∗ ≈ 106 S/m, ρ ≈ 103 Kg/m3,
E ≈ 109 Pa and ν ≈ 0.3. Similarly than in Section 5.1, the axisymmetric formulation [13] follows
from assuming rotational symmetry of the weak form expressed in 3D cylindrical coordinates
and, as such, r = 0 does not form a boundary of the computational domain Ωp.

The user-defined parameters in order to compute the PGD offline solution for the full
magnet geometry are presented in Table 4. The parameters related to the parametric and
spatial domains are almost identical to the ones employed for the test magnet problem (see
Table 3). However, there are substantial changes in the PGD parameters used, mainly in the
computation of the offline electromagnetic problem. As expected, the increased complexity of
this problem in comparison to the test magnet problem leads to a greater number of PGD
modes in order to obtain an accurate offline solution. As for the offline mechanical problem,
the total maximum number of modes per frequency subinterval and per shield IuN has also been
increased with respect to the test magnet problem.

Table 4: User-defined PGD parameters for the full magnet problem simulation.

PGD parameters Parametric domains Spatial domain

IAN IuN tolAN toluN IFP tolFP hω tolsplitω hγ hB0 hΩp p ξ
60 40 10−6 10−5 10 10−2 2 · 10−5 20% 6 · 10−3 8 · 10−3 7 · 10−3 4 10−3

A similar comparison (full order versus EM-POD and PGD) to that presented in Figure 7
was repeated for this more challenging geometry, but as the conclusions were the same they have
no been repeated. Instead, the post-processed quantities of interest, dissipated power P 0

ΩC and
kinetic energy Ek

ΩC (38), are presented in Figure 13 for the entire coupled magneto-mechanical
problem. Similarly to the test magnet problem, the full order model is denoted with a black
solid line for all the different cases, whilst the PGD solution is plotted with coloured lines that
can be associated with different combinations of parameters (B0, γ) in the legend. From Figure
13, it can be concluded that the PGD approximation is able to accurately replicate the full
order solution and locate all the resonance singularities for this complex simulation.
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Figure 13: Full magnet problem; comparison between PGD solution and full order model. Plot of the dissipated
power P 0

ΩC and kinetic energy EkΩC in the three conducting shields OVC, 77K and 4K for six different cases.

The computational time required to compute the different cases appearing in Figure 13
has been used to generate Figure 14, where the full order model and the PGD method are
compared considering up to 20 cases (different parameter combinations). These results show
a more costly PGD method with respect to the full order model than for the test magnet
geometry, see Figure 11. However, it is clearly seen how with just 6 cases the PGD approach is
already cheaper than the full order model. Moreover, massive savings can be achieved if more
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cases need to be studied, reaching approximately a 70% reduction.
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(a) Total time (solid line) and offline time (dashed line) for the
full order model and staggered PGD approaches.
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(b) Time reduction (%) obtained with the PGD method.

Figure 14: Full magnet problem; study of the computational time taken by the full order model and the
staggered PGD approach. 400 frequencies have been sampled for each case of study.

Although integrated quantities, such as dissipated power P 0
ΩC and kinetic energy Ek

ΩC (38),
are important quantities of interest for industry, they are not the only quantities required for
design. Other field quantities such as magnetic field displacements, stresses and eddy current
distributions are also taken into account as part of the design process. It is here where an
additional advantage of the PGD methodology can be exploited, by pre-computing explicit
separable expressions of the solution fields which can be then queried in real time. Figure 15
shows the eddy current distribution J0 inside the conductors, computed as J0 = γEEEAC , for
B0 = 1.5 T, γ = 1 and different values of the frequency of excitation f . A typical phenomenon
can be observed in this Figure; the skin depth effect. For low frequencies (100 Hz) see how
the eddy current field is constant across the shield’s thickness. However, in the high-frequency
region (2000 and 4000 Hz) the skin depth effect becomes more dominant, modifying the eddy
current distribution within the radiation shields by concentrating the eddy currents in the
interfaces of the shields. The fact that sharp changes are observed in a small part of the
shields’ thickness makes the problem more demanding from the computational point of view,
requiring the careful combination of high fidelity space-time discretisations and reduced order
computational models.

Finally, it is interesting to demonstrate a further capability of the PGD methodology, related
to its ability to efficiently conduct online multiple-queries (in real time) to the high-dimensional
parametric offline solution. As an example, it is possible to compute and plot output response
surfaces (for a given quantity of interest) when arbitrarily varying the set of input parameters
used in the construction of the PGD offline solution. Figure 16 shows three different response
surfaces of the post-processed output power in the OVC shield P 0

ΩCOV C
for different combinations

of frequency f [Hz], strength of static magnetic field B0 [T] and dimensionless scaling of electric
conductivity αγ. Note that although it is technically possible to compute these response surfaces
with the full order model, the computational time required would be extremely high since a
large number of sample points (2000 in this case) can be typically needed in order to display
the surface with an acceptable level of resolution.

6. Conclusion

This paper has presented a new Reduced Order Modelling (ROM) Proper Generalised De-
composition (PGD) method for use in the design phase of new MRI scanner configurations.
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(a) f = 100 Hz. (b) f = 2000 Hz. (c) f = 4000 Hz.

Figure 15: Full magnet problem; Eddy current distribution within the radiation (conducting) shields for different
frequencies f , B0 = 1.5 T and γ = 1.

(a) f/B0 plot for αγ = 1.5. (b) f/αγ plot for B0 = 5 T. (c) B0/αγ plot for f = 500 Hz.

Figure 16: Full magnet problem; response surfaces of the output power in the OVC shield P 0
ΩCOVC

for different

values of f , B0 and αγ .

The methodology builds upon previous work developed by the authors in [35] where a PGD-
frequency based methodology was developed and it is here enhanced by considering two further
material parameters as part of the high-dimensional parametric PGD offline solution, namely,
the electrical conductivity and the strength of the static magnetic field. The new (reduced
order) PGD methodology has been validated against a reference (full order) solution in terms
of accuracy and computational time, where it has been clearly shown how the PGD method
can drastically optimise the multiple-query online stage without sacrificing accuracy. Moreover,
the staggered nature of the underlying magneto-mechanical problem has been exploited in this
work, in order to obtain a sequential PGD algorithm that has been proven to be both efficient
and robust.

The a priori PGD algorithm has also been compared in terms of the electromagnetic out-
put against an alternative a posteriori ROM method specifically designed for this problem, the
electromagnetic Proper Orthogonal Decomposition (EM-POD) method. This study concludes
that a massive time reduction can be obtained in the electromagnetic problem with both ROM
approaches. When considering the entire coupled magneto-mechanical problem, the EM-POD
strategy developed in [36] is still able to greatly reduce the computational cost of the problem
at the expense of increasing the calculations done in the online POD stage. On the other hand,
the staggered PGD presented in this paper is able to simulate the entire coupled magneto-
mechanical problem, obtaining an explicit expression of the solution fields, conserving the real
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time attractiveness during the online PGD stage and allowing to output sensitivity maps. The
next step of our work will focus on extending the PGD formulation to include geometrical
changes, for instance the thickness of the conducting shields, as extra parameters of the PGD
offline solution, in the search of a computational metamodel which allows for real time simula-
tions, thus minimising human intervention.
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Appendix A. Formulation and implementation of the 5D PGD

This appendix contains the detailed PGD formulation for the two physics presented in this
paper, namely, electromagnetics and mechanics. The continuous expressions of the residual
forms for each of the physics of the problem are defined and expanded first. The FEM discrete
expressions are then presented in the same way as they have been implemented in order to
generate the results of numerical examples section.

Appendix A.1. Electromagnetics

The electromagnetic residuals defined in (26) can be expanded taking advantage of the
separability of the terms, see (23). Hence, these residuals can be shown to be

RfAφ
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where the terms GA
0 , G

A
1 , H

A
0 , H

A
1 associated with the parametric domain Ωq are generically

defined in terms of the fields b, c as

Ga
0(b, c) :=

∫
Ωaω

bc dω, Ga
1(b, c) :=

∫
Ωaω

bcω dω,

Ha
0 (b, c) :=

∫
Ωaγ

bc dγ, Ha
1 (b, c) :=

∫
Ωaγ

bcαγ dγ,
(A.2)

where the upper index (·)a defines the domain of integration (i.e. (·)A for electromagnetics
or (·)u for mechanics). The high-dimensional electromagnetic problem (25) is solved for the
solution fields increments as

f
[k+1]
Aφ := f

[k]
Aφ + ∆fAφ , g

[k+1]
Aφ := g

[k]
Aφ + ∆gAφ , h

[k+1]
Aφ := h

[k]
Aφ + ∆hAφ , (A.3)

where the concept of directional derivatives [40] is used to formulate the problem as: Find
(∆fAφ ,∆gAφ ,∆hAφ) ∈ X(0)× Z(ΩA

ω )× Z(ΩA
γ ) such that
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γ ), where the directional derivatives are defined as
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The standard Galerkin FEM discretisation [11] is carried out in order to numerically solve
the described electromagnetic problem. The global discretised version of (A.4) is obtained by
the standard assembling procedure [11] as(
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where the Roman (non-italic) font denotes a certain discretised quantity. The discretised version
of the residuals is
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and where the scalar quantities are defined as
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h
A,[m]
0 := HA

0 (H
[m]
Aφ , hAφ),

h
A,[m]
1 := HA

1 (H
[m]
Aφ , hAφ),

kA := WA
K(fAφ , fAφ),

cA := WA
C (fAφ , fAφ),

sA := SA(1, fAφ),

kA,[m] := WA
K(F

[m]
Aφ , fAφ),

cA,[m] := WA
C (F

[m]
Aφ , fAφ),

(A.8)

Appendix A.2. Mechanics

The mechanical residual forms defined in (31) can be expanded by using the separability
introduced in (28). The separated expression of these residuals are

RfUUU
(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) = W u

K(fUUU, δfUUU)Gu
0(gUUU, gUUU)Hu

0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU, δfUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU, δfUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+

NA∑
m=1

[
Su(F

[m]
Aφ , δfUUU)Gu

0(G
[m]
Aφ , gUUU)Hu

0 (H
[m]
Aφ , hUUU)Lu1(L

[m]
Aφ , lUUU)

]
+

n−1∑
m=1

[
W u
K(F

[m]
UUU , δfUUU)Gu

0(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

+ iW u
K(F

[m]
UUU , δfUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

−W u
K(F

[m]
UUU , δfUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

]
,

(A.9a)

RgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) = W u
K(fUUU,fUUU)Gu

0(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+

NA∑
m=1

[
Su(F

[m]
Aφ ,fUUU)Gu

0(G
[m]
Aφ , δgUUU)Hu

0 (H
[m]
Aφ , hUUU)Lu1(L

[m]
Aφ , lUUU)

]
+

n−1∑
m=1

[
W u
K(F

[m]
UUU ,fUUU)Gu

0(G
[m]
UUU , δgUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

+ iW u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , δgUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

−W u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , δgUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , lUUU)

]
,

(A.9b)
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RhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) = W u
K(fUUU,fUUU)Gu

0(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

+

NA∑
m=1

[
Su(F

[m]
Aφ ,fUUU)Gu

0(G
[m]
Aφ , gUUU)Hu

0 (H
[m]
Aφ , δhUUU)Lu1(L

[m]
Aφ , lUUU)

]
+

n−1∑
m=1

[
W u
K(F

[m]
UUU ,fUUU)Gu

0(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , δhUUU)Lu0(L

[m]
UUU , lUUU)

+ iW u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , δhUUU)Lu0(L

[m]
UUU , lUUU)

−W u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , δhUUU)Lu0(L

[m]
UUU , lUUU)

]
,

(A.9c)

RlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU) = W u
K(fUUU,fUUU)Gu

0(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

+

NA∑
m=1

[
Su(F

[m]
Aφ ,fUUU)Gu

0(G
[m]
Aφ , gUUU)Hu

0 (H
[m]
Aφ , hUUU)Lu1(L

[m]
Aφ , δlUUU)

]
+

n−1∑
m=1

[
W u
K(F

[m]
UUU ,fUUU)Gu

0(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , δlUUU)

+ iW u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , δlUUU)

−W u
K(F

[m]
UUU ,fUUU)Gu

2(G
[m]
UUU , gUUU)Hu

0 (H
[m]
UUU , hUUU)Lu0(L

[m]
UUU , δlUUU)

]
.

(A.9d)

where the terms related to the parametric domain Ωq are defined following the same notation
than in (A.2) as

Ga
2(b, c) :=

∫
Ωaω

bcω2 dω,

La0(b, c) :=

∫
ΩaB0

bc dB0, La1(b, c) :=

∫
ΩaB0

bcαB0 dB0.
(A.10)

The high-dimensional mechanical problem will be solved incrementally as

f
[k+1]
UUU := f

[k]
UUU + ∆fUUU, g

[k+1]
UUU := g

[k]
UUU + ∆gUUU,

h
[k+1]
UUU := h

[k]
UUU + ∆hUUU, l

[k+1]
UUU := l

[k]
UUU + ∆lUUU,

(A.11)

where the directional derivative definition [40] is used to formulate the problem as: Find
(∆fUUU,∆gUUU,∆hUUU,∆lUUU) ∈ X(0)× Z(Ωu

ω)× Z(Ωu
γ)× Z(Ωu

B0
) such that

DRfUUU
(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆fUUU] = −RfUUU

(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU), (A.12a)

DRgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆gUUU] = −RgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU), (A.12b)

DRhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆hUUU] = −RhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU), (A.12c)

DRlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆lUUU] = −RlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU), (A.12d)

∀(δfUUU, δgUUU, δhUUU, δlUUU) ∈ X(0)× Z(Ωu
ω)× Z(Ωu

γ)× Z(Ωu
B0

), where the directional derivatives are
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defined as

DRfUUU
(δfUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆fUUU] = W u

K(fUUU, δfUUU)Gu
0(gUUU, gUUU)Hu

0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU, δfUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU, δfUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

(A.13a)

DRgUUU (δgUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆gUUU] = W u
K(fUUU,fUUU)Gu

0(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, δgUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, lUUU)

(A.13b)

DRhUUU (δhUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆hUUU] = W u
K(fUUU,fUUU)Gu

0(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, δhUUU)Lu0(lUUU, lUUU)

(A.13c)

DRlUUU (δlUUU;UUUn−1,fUUU, gUUU, hUUU, lUUU)[∆lUUU] = W u
K(fUUU,fUUU)Gu

0(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

+ iW u
C(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

−W u
M(fUUU,fUUU)Gu

2(gUUU, gUUU)Hu
0 (hUUU, hUUU)Lu0(lUUU, δlUUU)

(A.13d)

The standard Galerkin FEM discretisation process [11] is used in order to obtain the discrete
solution of the mechanical problem. Thus, equations (A.12) are expressed in their discretised
version as (

gu0h
u
0 l
u
0Ku + igu2h

u
0 l
u
0Cu − gu2hu0 lu0Mu

)
∆fUUU = −RfUUU

(fUUU, gUUU, hUUU, lUUU), (A.14a)(
kuhu0 l

u
0Gu

0 + icuhu0 l
u
0Gu

2 −muhu0 l
u
0Gu

2

)
∆gUUU = −RgUUU (fUUU, gUUU, hUUU, lUUU), (A.14b)(

kugu0 l
u
0Hu

0 + icugu2 l
u
0Hu

0 −mugu2 l
u
0Hu

0

)
∆hUUU = −RhUUU (fUUU, gUUU, hUUU, lUUU), (A.14c)(

kugu0h
u
0Lu

0 + icugu2h
u
0Lu

0 −mugu2h
u
0Lu

0

)
∆lUUU = −RlUUU (fUUU, gUUU, hUUU, lUUU), (A.14d)

with

RfUUU
(fUUU, gUUU, hUUU, lUUU) =

(
gu0h

u
0 l
u
0Ku + igu2h

u
0 l
u
0Cu − gu2hu0 lu0Mu

)
fUUU

+

NA∑
m=1

[
g
u,[m]
0,s h

u,[m]
0,s l

u,[m]
1,s KuA

]
F

[m]
Aφ

+
n−1∑
m=1

[
g
u,[m]
0 h

u,[m]
0 l

u,[m]
0 Ku + ig

u,[m]
2 h

u,[m]
0 l

u,[m]
0 Cu

− gu,[m]
2 h

u,[m]
0 l

u,[m]
0 Mu

]
F

[m]
UUU ,

(A.15a)

RgUUU (fUUU, gUUU, hUUU, lUUU) =
(
kuhu0 l

u
0Gu

0 + icuhu0 l
u
0Gu

2 −muhu0 l
u
0Gu

2

)
gUUU

+

NA∑
m=1

[
ku,[m]
s h

u,[m]
0,s l

u,[m]
1,s Gu

0

]
G

[m]
Aφ

+
n−1∑
m=1

[
ku,[m]h

u,[m]
0 l

u,[m]
0 Gu

0 + icu,[m]h
u,[m]
0 l

u,[m]
0 Gu

2

−mu,[m]h
u,[m]
0 l

u,[m]
0 Gu

2

]
G

[m]
UUU ,

(A.15b)
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RhUUU (fUUU, gUUU, hUUU, lUUU) =
(
kugu0 l

u
0Hu

0 + icugu2 l
u
0Hu

0 −mugu2 l
u
0Hu

0

)
hUUU

+

NA∑
m=1

[
ku,[m]
s g

u,[m]
0,s l

u,[m]
1,s Hu

0

]
H

[m]
Aφ

+
n−1∑
m=1

[
ku,[m]g

u,[m]
0 l

u,[m]
0 Hu

0 + icu,[m]g
u,[m]
2 l

u,[m]
0 Hu

0

−mu,[m]g
u,[m]
2 l

u,[m]
0 Hu

0

]
H

[m]
UUU ,

(A.15c)

RlUUU (fUUU, gUUU, hUUU, lUUU) =
(
kugu0h

u
0Lu

0 + icugu2h
u
0Lu

0 −mugu2h
u
0Lu

0

)
lUUU

+

NA∑
m=1

[
ku,[m]
s g

u,[m]
0,s h

u,[m]
0,s Lu

1

]
L

[m]
Aφ

+
n−1∑
m=1

[
ku,[m]g

u,[m]
0 h

u,[m]
0 Lu

0 + icu,[m]g
u,[m]
2 h

u,[m]
0 Lu

0

−mu,[m]g
u,[m]
2 h

u,[m]
0 Lu

0

]
L

[m]
UUU ,

(A.15d)

and where the scalar quantities are defined as

gu0 := Gu
0(gUUU, gUUU),

gu2 := Gu
2(gUUU, gUUU),

g
u,[m]
0 := Gu

0(G
[m]
UUU , gUUU),

g
u,[m]
2 := Gu

2(G
[m]
UUU , gUUU),

g
u,[m]
0,s := Gu

0(G
[m]
Aφ , gUUU),

hu0 := Hu
0 (hUUU, hUUU),

h
u,[m]
0 := Hu

0 (H
[m]
UUU , hUUU),

h
u,[m]
0,s := Hu

0 (H
[m]
Aφ , hUUU),

lu0 := Lu0(lUUU, lUUU),

lu1 := Lu1(lUUU, lUUU),

l
u,[m]
0 := Lu0(L

[m]
UUU , lUUU),

l
u,[m]
1 := Lu1(L

[m]
UUU , lUUU),

l
u,[m]
1,s := Lu1(L

[m]
Aφ , lUUU),

ku := W u
K(fUUU,fUUU),

cu := W u
C(fUUU,fUUU),

mu := W u
M(fUUU,fUUU),

ku,[m] := W u
K(F

[m]
UUU ,fUUU),

cu,[m] := W u
C(F

[m]
UUU ,fUUU),

mu,[m] := W u
M(F

[m]
UUU ,fUUU),

ku,[m]
s := Su(F

[m]
Aφ ,fUUU),

(A.16)

Note that the integration of the quantities Gu
0(G

[m]
Aφ , gUUU), Hu

0 (H
[m]
Aφ , hUUU) and Lu1(L

[m]
Aφ , lUUU) in-

volves the use of one-dimensional mortar integrals which are detailed in Appendix B.

Appendix B. One-dimensional mortar integral treatment

Some of the terms featuring in (A.15) require the computation of an integral that can
potentially involve different non-matching one-dimensional meshes. In the context of friction
and contact-impact problems [52–54], this type of integrals are known as mortar integrals and
this Appendix provides a detailed explanation of the implementation for the one-dimensional
case used in this paper. As an example, let us consider the evaluation of g

uA,[m]
0 . As it appears

in (A.16), the definition of this coefficient is

g
u,[m]
0,s := Gu

0(G
[m]
Aφ , gUUU) = gTUUUGu

0G
[m]
Aφ , (B.1)

where the product gTUUUGu
0G

[m]
Aφ may require the assembly of a rectangular mass type matrix,

allowing the use of different meshes with different number of degrees of freedom for both elec-
tromagnetics and mechanics fields. Note that for the case where the electromagnetic parametric
mesh coincides with the mechanical one, then Gu

0 = GA
0 which coincides with the standard one-

dimensional consistent mass matrix for both physics. In general,

Gu
0(G

[m]
Aφ , gUUU) =

∫
Ωuω

G
[m]
Aφ (ω)gUUU(ω) dω, (B.2)
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where the two integrands are discretised as

gUUU =

Quω∑
a=1

Na
UUUg

a
UUU, G

[m]
Aφ =

QAω∑
b=1

N b
AφG

b,[m]
Aφ , (B.3)

with Qu
ω and QA

ω being the total number of degrees of freedom of the frequency domain for
mechanics and electromagnetics, respectively. The integral can then be written as

Gu
0(G

[m]
Aφ , gUUU) =

Quω∑
a=1

QAω∑
b=1

gaUUU

∫
Ω
u,(e)
ω

Na
UUUN

b
Aφ dω︸ ︷︷ ︸

=mab

G
b,[m]
Aφ , (B.4)

and, thus, a particular ab entry of G
u,(e)
0 is computed using a Gaussian quadrature as

mab =

Qgp∑
i=1

Na
UUU(ζi)N

b
Aφ(ζi)Jiwi, (B.5)

where ζi, Ji and wi are the position of the Gauss points, the Jacobian and weights of the Gauss
points, respectively, which are all related to the mechanical frequency domain since the integral
is over Ωu

ω. The computation of this term require careful consideration in the case of non-
matching meshes in the parametric domain (for the electromagnetics and mechanical physics),
see Figure B.17. For the simple one-dimensional case, the necessary steps are summarised in
Algorithm 1.

Algorithm 1 One-dimensional mortar integral computation

1: for e = 1 : Nel do . Loop on elements
2: for i = 1 : Ngp do . Loop on Gauss points
3: Evaluate Na

UUU(ζi) in Ωu
ω (standard in FEM)

4: Locate ζi in ΩA
ω . Find position and element in ΩA

ω

5: Evaluate N b
Aφ(ζi) in ΩA

ω (not standard in FEM since ζi is not a Gauss point in ΩA
ω )

6: Compute entry mab of elemental matrix G
u,(e)
0

7: end for
8: Assemble elemental contribution to global matrix Gu

0

9: end for

Ω
u
!

Ω
A
!

1 2 3

431 2

1 2 3

1 2

ξ1 ξ2

Figure B.17: Representation of two non-matching one-dimensional meshes.

Using Figure B.17 as an example of two different one-dimensional meshes, the three ele-
mental matrices in Ωu

ω have the following structure

G
u,(1)
0 =

[
m11 m12

m21 m22

]
, G

u,(2)
0 =

[
m21 m22 0

0 m32 m33

]
, G

u,(3)
0 =

[
m32 m33

m42 m43

]
, (B.6)
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which are assembled in the global matrix as

Gu
0 =


m11 m12 0
m21 m22 0

0 m32 m33

0 m42 m43

 . (B.7)
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[23] P. Dı́ez, S. Zlotnik, A. Garćıa-González, A. Huerta, Algebraic PGD for tensor separation
and compression: An algorithmic approach, Comptes Rendus Mécanique 346 (2018) 501–
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