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In many applications, such as textiles, fibreglass, paper and several kinds of biological fibrous tissues, the
main load-bearing constituents at the micro-scale are arranged as a fibre network. In these materials,
rupture is usually driven by micro-mechanical failure mechanisms, and strain localisation due to progres-
sive damage evolution in the fibres is the main cause of macro-scale instability. We propose a strain-
driven computational homogenisation formulationbased on Representative Volume Element (RVE),
within a framework in which micro-scale fibre damage can lead to macro-scale localisation phenomena.
The mechanical stiffness considered here for the fibrous structure system is due to: i) an intra-fibremech-
anism in which each fibre is axially stretched, and as a result, it can suffer damage; ii) an inter-fibremech-
anism in which the stiffness results from the variation of the relative angle between pairs of fibres. The
homogenised tangent tensor, which comes from the contribution of these two mechanisms, is required to
detect the so-called bifurcation point at the macro-scale, through the spectral analysis of the acoustic ten-
sor. This analysis can precisely determine the instant at which the macro-scale problem becomes ill-
posed. At such a point, the spectral analysis provides information about the macro-scale failure pattern
(unit normal and crack-opening vectors). Special attention is devoted to present the theoretical funda-
mentals rigorously in the light of variational formulations for multi-scale models. Also, the impact of a
recent derived more general boundary condition for fibre networks is assessed in the context of materials
undergoing softening. Numerical examples showing the suitability of the present methodology are also
shown and discussed.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The study of the micro-mechanical environment in fibrous net-
works is paramount towards a correct understanding of the phe-
nomena involved in the rupture of fibrous materials. Examples in
such important class of materials include textiles, paper, fibreglass
and several kinds of biological tissues as arteries and tendons.
Despite the strides made in this field, the underlying mechanisms
unfolding in the smallest spatial scales and that lead to the occur-
rence of large scale mechanical conditions for failure to occur have
remained poorly understood. In this context, the construction of
proper constitutive models based on a computational homogenisa-
tion approach provides a natural path to bridge observable rupture
phenomena and substratum deterioration. Through such models, it
is possible to provide a typification of the fundamental ingredients
responsible for the irruption of a macro-scale failure, for instance
through the softening of individual constituents (fibres), delivering
a controlled in silico experimental laboratory to test hypotheses.

In fact, the study of the aforementioned phenomena poses for-
midable challenges from the experimental perspective. The obser-
vation and tracking of failures in the small scale constituents, while
the specimen is being stretched,is a empirically laborious task and
might be even beyond the limits of current technologiesfor some
applications, as pointed out recently in [52], particularly in the
biomechanics field. Therefore, most studies in vascular mechanics
try to characterise damage in layer level instead of micro-scale
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components [68]. Meanwhile, current imaging technologies have
provided a staggering amount of data to drive the construction
and validation of mathematical models featuring increasingly com-
plex descriptive capabilities [58]. In turn, novel experimental set-
tings have enabled the study of the refined mechanical response
of individual fibres and associated substructures, including the
mechanisms that lead to the rupture of such components [12,73].
Undoubtedly, such aforementioned features are common for other
classes of fibrous and composite materials, which can be addressed
by multi-scale techniques [66].

In contrast to the development of multi-scale models for com-
plex, but continuum, materials, whose literature is vast and dates
back to the mid of last century [27,35] to these days as in [11,23]
and references therein, the analogous study for materials display-
ing discrete structure, notably fibrous, has recent history, to cite
few works [60,20,28,16]. In fact, the main point concerns the inte-
gration between a macro-scale continuum mechanical models and
micro-scale one-dimensional models. The linking between fibres
and continua was addressed by [48] on the rigorous variational
groundwork provided by the so-called Principle of Multi-scale Vir-
tual Power (PMVP) [11,10]. Noteworthy, it has also established and
demonstrated the importance of a proper characterisation of
admissible minimal set of boundary conditions at micro-scale for
such materials. Notwithstanding, the previous model overlooked
important aspects such as the inter-fibre stiffness due to the pres-
ence of cross-links and softening phenomena, among others. The
modelling of these two aspects will be addressed in this work.

Concerning the mechanical resistances acting in a fibre net-
work, we can classify them in intra-fibre and inter-fibre mecha-
nisms. The first group encloses efforts like stretching and
bending taking place in the fibre itself. Nevertheless, for practical
ranges of loading, it is found stretching to be dominant [59], and
a criterion to this prevalence given in Berkache et al. [6]. Even in
the bending dominated range, it is possible to refine the fibre strain
energy to indirectly model the so-called crimp effect, as proposed
in [24,53,36]. On the other hand, the presence of cross-links in fibre
intersections induces couples atjoints (nodes) [69], denoted here
inter-fibre stiffness. Finally, many mathematical models have been
proposed to explain softening behaviours in fibrous materials, see
for example [2,31,32,43]. These studies share a similar modelling
strategy, that is the characterisation of phenomenological material
models to describe the stable material response as well as the iden-
tification of the conditions for which the constitutive response
starts to feature a softening behaviour (i.e. negative slope in the
stress–strain relation), instant at which the failure of the tissue
typically begins.

The micro-scale modelling for fibrous networks is even more
critical in presence of damage phenomena and possibly material
failure. In particular, such a class of approach must be capable of
enabling the natural development of micro-scale failure mecha-
nisms and capable of delivering a criterion for the instant at which
the macro-scale material response becomes mechanically unsta-
ble. Such a criterion is verified through the loss of strong ellipticity
condition [44] in which the so-called acoustic tensor is issued from
the homogenised constitutive tensor, also derived in the present
work. At such point, the spectral analysis on the acoustic tensor
also provides information about the macro-scale failure pattern,
i.e, unit normal for the discontinuous bifurcation mode and
crack-opening vectors. 1 The loss of strong ellipticity condition, in
many cases, visibly coincides with the instant when a well defined
strain localisation pattern at the micro-scale level. The observation
of this event is particularly possible if sufficiently generic boundary
1 It should be noticed the discontinuous term is used to name the method used to
detect bifurcation but our kinematics is just weak discontinuous rather than strongly
discontinuous, which is also possible, as the name may suggest.
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conditions are available. In this context, the admissible kinematical
constraints derived in [48,46] will be shown to be of special interest.
Although strain localisation is a quite well documented phenomenon
in mechanics (e.g [7]), to the authors’ knowledge, contributions con-
cerning such study for the material response of fibrous materials
within a computational homogenisation paradigm have not been
addressed. Wemust mention the works of [67,25,56,17] where effect
of damaging of fibres has been introduced in a discrete model, but
have let the strain localisation and material instability phenomena
cursorily analysed.

On other hand, [45] addresses the problem of failure in non-
woven fabrics with an energetically consistent coupling between
damage and plasticity models in combination with microscopic
inspired constitutive models for individual fibres. As a result of
the Rule of Mixtures-like model assumed for coupling the different
kinematics, the projection of the homogeneous deformation onto
individual fibres directions analytically determines the axial
strains. Hence, one can straightforwardly obtain the fibre-wise
damage variable by integration of the constitutive model and after
the application of threshold-based criteria to the damage variable,
some fibres are selected to be removed from the simulation, which
enables the emergence of a softening behaviour similar to the frac-
tures experiments. Although the reasonable applicability, it is well
known in the literature that Rule of Mixtures-like models have the
critical hindrance of delivering overestimated stress responses
since non-affine modes are disregarded. The present work aims
to fill this gap in the literature by allowing the simulation of fibre
networks with a more general kinematical constraint, associated
with damage physics, non-linear constitutive laws and finite strain
regime. Numerical simulations are challenging in this context due
to the non-linear nature of the problem, less constrained boundary
conditions and the non-homogeneous network architecture, mak-
ing the numerical treatment of singularities points mandatory.

Based on what has been exposed, the main contributions of the
present work are fourfold. First, we developed a novel method to
account for both intra-fibre and inter-fibre resistances within a
unified variational formulation. Second, we investigate the impact
generated by intra-fibre softening phenomena (occurring at the
discrete micro-scale domain) on the homogenised response. Third,
but inextricably linked to the second point, we propose and assess
a criterion for the detection of the critical instant at which the
macro-scale material response is compatible with a discontinuous
bifurcation condition. Forth, such model is built upon sufficiently
general boundary conditions that allow the physical unfolding of
strain localisation patterns and no artificially periodic structure
for the fibre network is needed. Noteworthy, we illustrate through
several computational experiments how macro-scale failure initia-
tion can be triggered as the result of the progressive degradation
caused by the softening of individual fibres in the micro-scale.

This work is organised as follows. Section 2 presents the com-
putational homogenisation for the fibres network model frame-
work employed in this study. Later in Section 3 and Section 4 we
detail the intra- and inter-fibre modelling. Section 5 provides a
characterisation for the homogenised tangent operator involved
in the macro-scale material response as well as in the detection
of the critical point. Several representative numerical examples
are provided in Section 6, and the discussion of the results follows
in Section 7. In Section 8 we outline the final remarks. To maintain
the best order of exposition, some topics have been cast into
appendix sections. They are indicated throughout the text.
2. Computational homogenisation for the fibres network model

In this section we present acomputational homogenisation
approach that provides the connection between the behaviour



Fig. 1. Macro-scale continuum and micro-scale fibrous cell.
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and interaction of fibres occurring at a fine length-scale (or micro-
scale) and the observable macro-scale continuum material
response of the tissue ensemble, as in Fig. 1. It is worth mentioning
we describe the model in a sufficiently general notation to embrace
the following features, addressed in forthcoming sections:

� The two kinds of kinematics and efforts due to intra- and inter-
fibre interactions to be particularised in Section 3 and 4
respectively.

� Inelastic constitutive laws at fibre level to be specialised to the
damage case in Section 3.1.

Overall, the aforementioned model relies on the following
hypotheses: i) a fibre element is modelled as a straight segment
with uniform cross-sectional area, material properties and axial
strain; ii) fibre supports tensile stress in the axial direction, where
damage unfolds. Hence, bending, shear and torsional effects are
not explicitly taken into account 2 but can be emulated by the fact
that our iii) offer torsional spring-like resistance, although they iv)
are not allowed to detach. v) Moreover, it is considered the solid sub-
strate is the main load-bearing component by a great amount if com-
pared with the surrounding, possibly fluidic media (water, proteins,
etc.).

As sake of completeness, the manuscript is self-contained in
terms of notation. Hence, repetitions with previous literature are
unavoidable. In such cases, mainly in the present section and Sec-
tion 3, the definition is presented concisely and the interested
reader is referred [48,11] to more in-depth comments. Apart of
the previous commented intersections, the formulation is essen-
tially novel and should be followed throughout.
2.1. Macro-scale model

At the macro-scale we consider a standard solid continuum
mechanics model in the finite strain regime. As usual, let this prob-
lem be defined over a domain X � Rnd ;nd ¼ 2;3, an open set repre-
senting the reference (or material) configuration of the body B.
Particularly, we are interested in solving a quasi-static mechanical
equilibrium problem, in which the displacement vector field
u : X ! Rnd is obtained as solution of the equilibrium problem
once suitable boundary conditions and material properties are pro-
vided. Associated to the field u, the first material gradient tensor
field G :¼ ru : X ! Rnd�nd can be obtained. As in a classical
mono-scale analysis, the stress tensor P (first Piola–Kirchhoff
stress tensor) is related to G through a constitutive functional of
the form P ¼ F Gt� �

, where �ð Þt represents the history of the vari-
2 It is possible to refine the fibre strain energy to indirectly model the crimp effect,
as proposed in [24,53,36].

3

able �ð Þ up to a pseudo-time t. In a pseudo-time stepping procedure
and in the realm of theories relying on internal variables, it may be
useful to express this constitutive functional for the pseudo-time
increment from tn�1 to tn as P

n ¼ F Gn;Pn�1� �
, where Pn�1 is a gen-

eric set of internal variables at the instant tn�1 andF stands for the
time-discrete constitutive functional. In a computational
homogenisation approach, the constitutive functional F (and con-
sequently F) is implicitly defined through the mechanical equilib-
rium formulated at the micro-scale domain, and by the application
of a certain homogenisation procedure to be specified in
Section 2.2.

2.2. Micro-scale model for fibres network

For each macro-scale point x 2 X we associate a micro-scale
domain Xl � Rnd (also described in a reference configuration)
denotedRepresentative Volume Element (RVE). It is considered
that Ll=L � 1, being L and Ll the characteristic lengths related to
the macro-scale and micro-scale, respectively. The RVE size Ll is
chosen such that Xl can be regarded as a representative piece of
the material in terms of constituent elements. Some entities asso-
ciated to the RVE will be denoted by index l. In turn, a given entity
�ð Þ from the macro-scale, point-valued at point x 2 X, can be
denoted �ð Þjx, but, for the sake of simplicity we drop the subscript,
so P ¼ Pjx;u ¼ ujx and G ¼ Gjx. The same notation holds for the
corresponding admissible variations in the variational setting.

To denote the set of fibres which are interconnected through
nodes we consider the list of nodes in the network
N net ¼ i; i ¼ 1; . . . ;Nnodef g, the set of boundary nodes in the net-

work N C
net and the set of internal nodes N

�
net ¼ N net nN C

net . Then,
we also introduce the following sets:

� The list of fibres in the network:
Fnet ¼ a ¼ ia; jað Þ 2 N net �N net ; ia – jaf g; ð1Þ
where ia and ja denote initial and final nodes for fibre a, with

positions yia
l and yja

l , respectively. Also, we have the fibre length

La ¼ kyja
l � yia

l k2, area Aa, and volume Va ¼ AaLa.
� The list of pair of fibres:
Anet ¼ c ¼ ic; jc; kc
� �

2 N 3
net;ac ¼ ic; jc

� �
2 Fnet;

n
bc ¼ ic; kc

� � 2 Fnet;ac – bcg
ð2Þ

The micro-scale displacement, denoted by ul, is written as the
additive combination of an affine component and a non-affine
fluctuation. For a generic node i 2 N net , we can express
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ui
l ¼ uþ G yi

l � yG
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Affine

þ ~ui
l|{z}

Non�affine

i 2 N net; ð3Þ

where ~ul is the so-called displacement fluctuation,

yG :¼ 1
jFnet j

P
a2Fnet

Va
2 yia

l þ yja
l

� �
stands for the RVE centroid and

j Fnet j¼
P

a2Fnet
Va for the total volume of fibres. Both ul and ~ul

are defined as linear interpolation between two consecutives nodes,
therefore we carry on with characterisation of those fields in terms
of nodal values. The latter, which is responsible to model the non-
affine part of the micro-scale displacement, is regarded as kinemat-
ically admissible if it belongs to the space

U
	

M
l ¼ ~ul ¼ ~ui

l

n o
i2N net

; ~ui
l 2 Rnd 8i 2 N net;

�
X

a2Fnet

Va
2

~uia
l þ ~uja

l

� �
¼ 0;

X
i2N C

net

Ai~ui
l 
 ni � �nð Þ ¼ O

9=
;;

ð4Þ

where ni stands for an equivalent boundary normal vector, Ai is the
fibre area intersecting the boundary and �n :¼ 1P

i2NC
net

Ai

P
i2N C

net
Aini.

The above space is referred to as Minimally Constrained Space, in
short MCS. Hence, any subspace of MCS can also be considered as a
kinematically admissible space generating other sub-models. For
example, the so-called Linear Boundary Space, in short LBS, is char-
acterised as follows:

U
	

L
l ¼ ~ul 2 U

	
M
l ; ~u

i
l ¼ 0 8i 2 N C

net

n o
Hereafter, whenever a particular choice of model is not relevant, the

notationU
	
l is employed. It is also important to note that admissible

variations of fluctuations (denoted ~̂ul) are also elements of U
	
l.

The following model now relies on the Principle of Multi-scale
Virtual Power (PMVP), which postulates to equate the virtual
power at the macro-scale and micro-scale for all kinematically
admissible fields Blanco et al. [10,11]. Below, we specialise the
PMVP for the case of discrete physics.

Problem 1. (Principle of Multi-scale Virtual Power). Given a
macro-scale gradient G 2 Rnd�nd 3 and the known set of internal
variables P ¼ Paf ga2Fnet

, it is said that the macro-scale stress tensor
P is at mechanical equilibrium with the network if
P � Ĝ ¼ 1
jXlj

X
i2N net

f il � û i
l 8^u	l 2 U

	
l;8Ĝ 2 R

nd�nd ; û 2 R
nd ; ð6Þ

where ûi
l ¼ ûþ Ĝ yi

l � yG
� �

þ ~̂ui
l is the admissible variation of the

micro-scale displacement at node i 2 N net and f il are nodal internal
forces in the micro-scale.

The forces f il are characterised as a function of the adopted phe-
nomenology, and depend upon the micro-scale displacement,
which encodes all efforts congregating at node i 2 N net . In general,
such dependence is nonlinear, thus is useful to define

Tij
l ¼ @uj

l
f il; ð7Þ

the second-order tangent tensor relating changes in the force at
i 2 N net due to the micro-scale displacement at j 2 N net .

The two direct variational consequences of Problem 1 are:
3 For sake of simplicity we considered the space Rnd�nd , but the model also remains
valid for incompressible materials, i.e., in the subspace of isochoric strains [46].

4

1. The micro-scale mechanical equilibrium: For the same inputs of

Problem 1, find ~ul 2 U
	
l such that the forces f il obey:
X

i2N net

f il � ~̂ui
l ¼ 0 8 ~̂ul 2 U

	
l: ð8Þ

2. Macro-scale stress homogenisation rule:

P ¼ 1
j Xl j

X
i2N net

f il 
 yi
l � yG

� �
: ð9Þ

We should notice that (8) will be solvedusing the standard
Newton–Raphson method,where the RHS is given by (8) and
the LHS is identical to (52) (to be seen in Section 5) making
use of the tangent definition (7). Moreover, we candevelop (9)
exclusively in boundary dependent terms making use Lagrange
Multiplier techniques [46,9].

Finally, it is worth noticing that heretofore all the formulation
has been presented in terms of nodal displacements and efforts.
As already mentioned, we aim to model stresses due to fibre axial
stretches and rotational resistance between pairs of fibres. Such
mechanisms are linked with their respective node-wise contribu-
tions in Section 2.3. Notwithstanding, we retake the unified
node-wise formulation whenever is convenient, e.g. in Section 5.
Moreover, in the same spirit of avoiding excessive notation, the
fibre constitutive model explicitly accounting for damage only
appears in 3.1.

Remark 1. Solution of the Problem 1, jointly with the homogeni-
sation rule presented in (9), determines the constitutive functional
F (or F) as stated in Section 2.1. For a the pseudo-time increment
from tn�1 to tn, in the setting of Problem 1, we need to understand
G as Gn and P as Pn�1, henceresulting in Pn ¼ F Gn;Pn�1� �

.

2.3. Characterisation of internal forces

In this work we model two kinds of generalised stresses. First
we have stresses due to axial stretching along fibres. The second
type of resistance is due to relative rotation between pair of fibres.
These phenomena will result in corresponding forces defined at
each node. The goal of this section is to report the explicit form
of these forces.

Naturally, the internal virtual power can be split in two contri-
butions coming from forces along fibres and from angular resis-
tance, namely

Pint ûl
� � ¼ Pint

F ûl
� �þPint

A ûl
� �

: ð10Þ

These functionals are linear with the virtual displacements and can
be written in the terms of generalised forces exerted on nodes, then
we have,

X
i2N net

f il � ûi
l ¼

X
i2N net

f il;F � ûi
l þ

X
i2N net

f il;A � ûi
l: ð11Þ

Accordingly, f il is defined in terms of nodal forces due to fibres (f il;F)

and angular resistance (f il;A) as

f il :¼ f il;F þ f il;A: ð12Þ
Consequently, we also have

Tij
l ¼ Tij

F þ Tij
A; ð13Þ

with Tij
X ¼ @uj

l
f iX ;X 2 A; Ff g: ð14Þ
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As demonstrated next in Sections 3 and 4, a fundamental differ-

ence between f il;F and f il;A is that the first is given by the summa-
tion of forces acting along the fibre directions, and the second
results from the action of force vectors not necessarily aligned with
the fibre direction.
3. Intra-fibre force modelling

As mentioned earlier, at the fibre level we are interested in
modelling effects due to the axial stretch of each fibre. Before dig-
ging into this issue it is useful to introduce the fibre-node bracket,
given below for a given a ¼ ia; jað Þ 2 Fnet:

a; i½ � ¼
�1 ; if i ¼ ia
1 ; if i ¼ ja
0 ;otherwise

8><
>: ð15Þ

The difference for any generic variable �ð Þ along the fibre is denoted

by Da �ð Þ ¼Pi2N net
a; i½ � �ð Þ ¼ �ð Þja � �ð Þia . In such terms, the unit vector

along the material fibre direction is aa ¼ 1
La
Dayl and the generalised

fibre strain vector becomes

ga :¼ 1
La

Daul ¼ Gaa þ 1
La

Da~ul: ð16Þ

To shorten notation in some cases, also consider the vector aligned
with the spatial direction of the fibre

qa ¼ 1
La

Da yl þ ul

� �
¼ aa þ ga; ð17Þ

and its unit vector ba (¼ qa
kqak).

The kinematical variable that carries the axial stretch informa-
tion is the ratio between the actual length of the fibre, ‘a, and its
original length La, known as fibre stretch, is ka ¼ ‘a

La
¼ kqak (see

Fig. 2). Let us postulate that the internal virtual power due to fibre
resistance is given by

Pint
F ûl
� � ¼ X

a2Fnet

Vasak̂a; ð18Þ

where sa is the scalar axial stress of the fibre, whose value is deter-
mined by a constitutive law, expressed in terms of the fibre stretch,
ka and the set, Pa, of internal state variables (such relation is
detailed in Section 3.1). Recasting (18) by using (A.1) (in Appendix
A) to develop k̂a we have

Pint
F ûl
� � ¼ X

a2Fnet

Vasa � q̂a; ð19Þ

where

sa ¼ saba ð20Þ
is the generalised fibre stress vector.

We note that vector sahas the same direction of the unit vector
of the fibre in the spatial configuration. Noticing that ĝa ¼ q̂a; sa is
Fig. 2. Fibre in its material (reference) and spatial (deformed) configurations, and
interpretation of the generalised strain and stress vectors.

5

actually the power-conjugate stress associated with the gener-
alised fibre strain vector.

We can now rewrite (19) in terms of nodal contributions as

X
a2Fnet

Vasa � ĝa ¼
X

a2Fnet

Aasa �
X

i2N net

a; i½ �ûi
l

 !
¼

X
i2N net

X
a2Fnet

a; i½ �Aasa
 !

� ûi
l;

ð21Þ

then for a given i 2 N net , we obtain

f il;F ¼
X

a2Fnet

a; i½ �Aasa: ð22Þ

Now we aim to establish a relation between the tensor Tij
l;F with

Da :¼ @gasa for each fibre. This is performed by applying twice the
fibre-nodes fibre definition after the linearisation of the termP

a2Fnet
Vasa � ĝa as next

X
a2Fnet

Aa
La

DaD
ad~ul � Da ~̂ul ¼

X
i;j2N net

X
a2Fnet

a; i½ � a; j½ �Aa
La

Dad~uj
l � ~̂ui

l: ð23Þ

We can interpret the innermost sum in RHS of the later expression
as the an equivalent definition of the node-wise fibre tangent tensor
given in function of fibre-wise quantities, so we have for given any
i; j 2 N net that

Tij
l;F ¼

X
a2Fnet

a; i½ � a; j½ �Aa
La

Da: ð24Þ

In (D.15) it can be clearly seen thatDa embeds both geometrical and

constitutive non-linearities for the tangent, hence Tij
l;F inherits

natively these two contributions.

3.1. One-dimensional damage model for fibres

In this section, we present the one-dimensional constitutive
model of fibres. First, let W0

a : R ! R be an hyperelastic strain
energy function representing the rate-independent behaviour of
one single fibre without experiencing damage. This potential is
assumed convex in terms of ka (i.e. @2

ka
W0

a P 0 for the entire range
of stretches) and also the fibre only bears load in tension. The asso-
ciated stress of the undamaged material is given by: 4

s0a kað Þ ¼ @kaW
0
a kað Þ: ð25Þ

In order to model softening effects we propose the use a standard
continuum damage approach with one scalar damage variable da
per fibre a 2 Fnet , whose evolution is considered in the light of
the framework introduced by [54] reviewed below (recall that t is
a generic pseudo-time):

ra tð Þ ¼ max
s2 0;t½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W0

a ka sð Þð Þ
q

; r0a

	 

; t > 0; ð26aÞ

_qa tð Þ ¼ Ha ra tð Þð Þ _ra tð Þ; ð26bÞ

da tð Þ ¼ 1� qa tð Þ
ra tð Þ ; da 2 0;1½ �; ð26cÞ

ra 0ð Þ ¼ r0a; qa 0ð Þ ¼ q0
a; q

0
a ¼ r0a: ð26dÞ

Note that two additional auxiliary variables were introduced, ra and
qa, with the meaning of strain energy and stress-like respectively.
The parameter r0a represents the threshold where the damage evo-
4 We have employed the simplified notation @Z �ð Þ ¼ @ �ð Þ
@Z and no distinction of

notation was made between the stress and stress constitutive functional.



Fig. 3. Pair of fibres showing notation of inter-fibre force modelling.
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lution begins and Ha is the so-called softening modulus. The rela-
tion between three entities are such that it guarantees da 2 0;1½ �,
where da ¼ 0 represents the pristine material and da ¼ 1 the fully
degraded material. Moreover, due to thermodynamical arguments

the evolution of damage satisfies: _da P 0 (see Appendix D.1). Set-
ting Pa ¼ ra; qa;daf g the damaged stress is then defined as below:

sa ka;Pað Þ ¼ 1� dað Þs0a kað Þ: ð27Þ
Furthermore, the choices of the functionsW0

a and Ha fully define
the constitutive behaviour of one single fibre, which for all exam-
ples of Section 6 is assumed to be the following:

W0
a kað Þ ¼

Ea
2 ka � kaa
� �2

ka P kaa;

0 otherwise

(
; ð28Þ

Ha rað Þ ¼ �H0
a exp �H0

a
ra � r0a

r0a

	 
� �
; ð29Þ

where kaa P 1ð Þ is the activation stretch that accounts for the fact
that fibres are not initially straight, Ea (> 0) is the elasticity fibre
material property and H0

a (> 0) dictates the softening behaviour. It

is possible to characterise H0
a in terms of the Fracture Energy, Gf

a,
which is considered as a material parameter for each fibre, as fol-
lows (see Appendix D.1):

H0
a ¼ Gf

a

r0a
� �2La �

1
2

" #�1

: ð30Þ

Here we note that for r0a sufficiently small (or conversely Gf
a large) it

is assured that H0
a > 0 (see D.1).

Recalling (25), the energy function assumed in (28) leads to a
linear stress–strain relation s0a ¼ Ea ka � kaa

� �
, where ea ¼ ka � kaa

can be seen as a strain measure. Particularly for this case of strain

energy, it is easy to see that r0a ¼ suaffiffiffiffi
Ea

p , where sua represents the dam-

age threshold stress that triggers the inelastic behaviour of the
fibre. For the sake of clarity, sua will be the default parameter,
instead of r0a (the material parameter to be characterised), acting
as a damage initiation threshold in the numerical experiments of
Section 6.

Despite its simplicity, the linear stress–strain is widely used in
literature (e.g [63]), but the homogenised response of a fibre net-
work ensemble may be not so simple. This is because of several
reasons of which we mention the topological arrangement of
fibres, heterogeneous material behaviour, nonlinear character of
the damage model and the nonlinearity of the geometry of large
strains and deformations of the fibres.

4. Inter-fibre force modelling

In addition to axial resistance, we also consider in this work the
resistance to inter-fibre angle variation (see Fig. 3). The kinematical
variable that carries such information is the angle hc, for a given tri-
ple c 2 Anet , computed as follows

hc ¼ arccos
Dac yl þ ul

� �
� Dbc yl þ ul

� �
kDac yl þ ul

� �
kkDbc yl þ ul

� �
k

0
@

1
A: ð31Þ

We can write the internal virtual power functional due to angle
resistance as:

Pint
A ûl
� � ¼ X

c2Anet

hc hc
� �

ĥc: ð32Þ

where hc is a generalised stress due to angle variations, in our case
computed as the derivative of a potential as:
6

hc hc
� � ¼ @hcWc hc

� �
: ð33Þ

For ease of notation, let us define cc ¼ cos hc, which can be com-
puted as follows

cc ¼
qac � qbc

kqackkqbc
k ¼ bac � bbc : ð34Þ

Using expressions derived in Appendix A, the angle virtual variation
yields

ĥc ¼ @cc hc
X

n2 ac ;bcf g
Hnb�n

� � � ĝn: ð35Þ

where

�n ¼ bc; if n ¼ ac
ac; if n ¼ bc

(
; ð36Þ

and the tensor Hn stands for

Hn ¼ k�1
n I� bn 
 bnð Þ ; n ¼ ac;bc: ð37Þ

Finally we haveX
c2Anet

hcĥc ¼
X

c2Anet

hc@cc hc
X

n2 ac ;bcf g
Hnb�n

� � � ĝn

¼
X

i2N net

X
c2Anet

X
n2 ac ;bcf g

n; i½ �
Ln

hc@cc hc Hnb�n

� � � ûi
l: ð38Þ

Noticing that hc@cc hc ¼ @ccWc, we obtain

f il;A ¼
X

c2Anet

X
n2 ac ;bcf g

n; i½ �@ccWc Hnb�n

� � � ûi
l: ð39Þ

Taking another variation of (38) we haveX
c2Anet

X
u;n2 ac ;bcf g

@2
ccWc Hnb�n

� �
 Hub �u
� �þ @ccWc dunQ n þ du�nHnHu

� �h i
dgu � ĝn ¼

X
i;j2N net

Tij
Adu

j
l � ûi

l;
ð40Þ

with

Q n ¼ �k�2
n bn 
 b�n þ b�n 
 bn þ cc I� 3bn 
 bnð Þ� �

; ð41Þ
and

Tij
l;A ¼

X
c2Anet

X
u;n2 ac ;bcf g

u;j½ � n;i½ �
LnLu

@2
ccWc Hnb�n

� �
 Hub�u
� �þh

@ccWc dunQ n þ du�nHnHu
� �

:

ð42Þ

Here, the first term in the summation represents purely non-linear
constitutive tangent vanishing for linear constitutive laws with cc.



Fig. 4. Angles at boundary illustrating the assumption of mirrored fibres.
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The second term is purely geometric. A reasonable choice for Wc
5-

(truncation in the quadratic term of [5]) is

Wc hc
� � ¼ 1

2
gc hc � h0c

� �2
; ð44Þ

where h0c is the relative angle of pair of fibres in the material net-
work configuration given by

h0c ¼ arccos aac � abc

� �
: ð45Þ

By the chain rule we have

@ccWc ¼ �gc hc � h0
� �

1� c2c
� ��1=2

; ð46Þ

@2
ccWc ¼ gc 1� c2c

� ��1
� gc hc � h0

� �
cc 1� c2c
� ��3=2

: ð47Þ

Remark 2. Boundary inter-fibre relation Note that for the nodes
over the RVE boundary (see Fig. 4) we have to introduce some
assumption regarding the continuation of the RVE, in order to
consistently take into account inter-fibre resistances. In this work,
for the sake of simplicity, we shall consider mirrored fibres, which
implies that the angle between each fibre and the edge represent-
ing the boundary (in 2D) is half the angle between mirroring fibres.
We also assume that the stored strain energy is halved with
respect to pair of mirrored fibres (if the RVE was prolonged).
Hence, we have

gb
c hbc � hbc

� �0	 
2

2
¼ Wb

c hbc

� �
¼
Wc hc ¼ 2hbc
� �

2
¼ gc hbc � hbc

� �0	 
2

;

thus arrive at gb
c ¼ 2gc, where gc is the torsional modulus (such as

the one in interior of the RVE) and gb
c is the modulus used for the

angle resistence of the boundary.
5. Homogenised tangent derivation and discontinuous
bifurcation analysis

In a computational homogenisation analysis, the linearisation of
the homogenisation formulae is fundamental for the solution of
the macro-scale nonlinear equations through any gradient-based
method (such as the Newton–Raphson method). In the case of
materials which undergo degradation and failure, the calculation
of the tangent operator also provides further insight about the
mechanical state of the micro-structure, in fact, it makes possible
to carry out a discontinuous bifurcation analysis.

The homogenised tangent tensor is the derivative of the homo-
genised Piola–Kirchhoff stress tensor P with respect to the macro-
scale gradient of displacements G [11,55], that is:

DP :¼ @GP: ð48Þ
It can be shown (see Appendix B) that two terms contribute to the
homogenised tangent operator:

DP ¼ DP þDP;
	

ð49Þ
where DP is the so-called Taylor contribution, given by:

DP ¼ 1
jXlj

X
i;j2N net

Tij
lEkl yj

l � yG
� �


 yi
l � yG

� �

 Ekl; ð50Þ
5 In our notation, a different strain energy proposed in [33] reads

Wc cc
� � ¼ �gc

Lac þ Lbc
kbac � bbck2 ¼ 2�gc

Lac þ Lbc
1� cað Þ:

7

where operation Ekl ¼ ek 
 el. In turn, the fluctuation contribution

DP

	
to the tangent is

DP

	
¼ 1

jXlj
X

i;j2N net

Tij
l ucan

kl

� �j 
 yi
l � yG

� �

 Ekl ð51Þ

where ucan
kl , for fixed k; l ¼ 1; . . . ;nd, is the solution of the following

linear variational problem:

Problem 2 ((Canonical Problem).). Consider the same conditions of

Problem 1 and its solution ~ul 2 U
	
l, find ucan

kl 2 U
	
l such that:
X
i;j2N net

Tij
l ucan

kl

� �j � ~̂ui
l ¼ �

X
i;j2N net

Tij
lEkl yj

l � yG
� �

� ~̂ui
l 8 ~̂ul 2 U

	
l: ð52Þ

Now we are able to describe how the discontinuous bifurcation
analysis is performed in the same spirit of [44]. The aforemen-
tioned criterion detects the loss of strong ellipticity of the macro-
scale response, based on the spectral properties of the so-called lo-
calisation tensor or acoustic tensor Q , to be defined next.

Consider now the instant t ¼ tN at which a discontinuity surface
in the macro-scale nucleates. The gradient of displacement rate is
assumed to have the following tensor structure (known as Max-
well’s kinematical compatibility condition [62]) 6:

s _Gt ¼ _fb
 n; ð53Þ
where n is the unit normal vector of the surface, b is the unit open-
ing direction vector, and _f is the non-negative normalised opening
rate at that instant. The latter is not relevant for the purposes of this
work and will be omitted if necessary.Physically, at the macro-scale
n defines a surface in which the crack initiates and b the direction in
which this crack is evolving. If bkn, we have a normal mode of frac-
ture and if b ? n, we have pure shear mode of fracture. Enforcing
the traction continuity across the discontinuity surface, we arrive
at the condition in which the strong ellipticity is lost, here also
referred to as discontinuous bifurcation condition:

s _Pnt ¼ sDP Gð Þ _Gtn ¼ _f DP Gð Þb
 nð Þn :¼ _fQ G;nð Þb ¼ 0;
for any b 2 R

nd ; _f > 0
ð54Þ

where, in our mult-iscale modelling scenario, Q ¼ Q G;nð Þ is the
homogenised localisation tensor. In Cartesian coordinates, Q is such
that Q½ �ik ¼ DP½ �ijkl n½ �j n½ �l. Expression (54) has non-trivial solutions if
6 N o t e t h a t g i v e n a s u r f a c e S w i t h n o rm a l n we d e n o t e
s �ð Þt ¼ �ð Þj xþdxð Þ � �ð Þj x�dxð Þ;8x 2 S, with dx parallel to the direction of n and kdxk ! 0
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and only if Q is a singular tensor. Hence, if at a given instant t ¼ tN
with macro-scale gradient GN there exists an unit vector nN such
that

detQ GN;nNð Þ ¼ 0;

then we say that a discontinuous bifurcation (loss of strong elliptic-
ity) has been detected, and tN and nN are the nucleation pseudo-
time and normal direction of the corresponding opening macro-
crack, respectively.

In practice, we determine the time instants tN � dt and tN ,
where the minimum of detQ for any possible direction n, changes
sign and becomes negative. Hence, determination of b at time
t ¼ tN as the eigenvector of Q , associated to a null eigenvalue, turns
out to be inaccurate. This problem is circumvented by introducing
the auxiliary complementary tensor Q ¼ Q G; bð Þ, defined in Carte-

sian coordinates, Q
h i

jl
¼ DP½ �ijkl b½ �i b½ �k (see Appendix C for its justi-

fication). The determination of b in the critical instant is analogous
to the process of finding n through the minimisation of detQ .
7 For cases Ex1-b and Ex1-c numerical viscosity was needed (taken ga ¼ 5:0F=L2)
and was removed after 5 pseudo-timesteps once the critical point was attained.
6. Numerical examples

The numerical tests in the following aim to show the descrip-
tive capabilities of the computational homogenisation theoretical
framework presented here. Overall, four types of analyses are
reported in different sections, ranging from simple test cases to
more involved micro-structural settings.

The constitutive behaviour considered for fibres is the one char-
acterised by expressions (28) and (29), so the set of material

parameters kaa; Ea; s
u
a;G

f
a

n o
needs to be specified for each fibre. As

already commented, due to numerical issues, a fictitious viscosity
parameter ga, which is generally 2 orders of magnitude smaller
than Ea is also employed. Regarding the inter-fibre effects due to
variations in the inter-fibre angle, a single parameter has to be
set: gc (see (44) and please do not confuse with ga). In principle,
these parameters differ for along the network, and this poses a
major source of heterogeneity to the fibre network. Further sources
of heterogeneity can be considered such as fibres featuring differ-
ent cross-sectional areas Aa, different spatial orientations (denoted
here /a) and different fibre agglomeration density throughout the
micro-scale domain of analysis.

The network of fibres is computationally generated by net-

fibGen [47], an open-source library suited for this task, providing
a set of target properties. Initially, for a given average fibre orien-
tation, say /a, (measured with respect to the horizontal axis) and
for a certain number of fibres nfib, a homogeneous network is gen-
erated containing two families of fibres symmetrically oriented.
Crossing-points are considered to be junctions, which are the
extremes of computational segments composing the fibres. Then,
the position of each node is individually perturbed in a random
manner in terms of distance and direction, limited by a circle of
radius dmax. It turns out that the orientation of each fibre /a results
from a combination of a given mean value /a and the perturbation.
Once the network has been built, spatial distribution of material
properties and fibre areas are selected. In the study cases presented
below we consider either properties constant for all fibres, proper-
ties randomly sampled from a known probability density function
(e.g. a normal distribution), or specifically modified in a specific
region of the RVE, such as a bands or balls. For the sake of simplic-
ity, in the forthcoming examples the damage threshold stress sua
and the fibre area Aa are considered sources of heterogeneity.

The loading protocol is defined by the macro-scale gradient,
which progresses as a function of the pseudo-time parameter
8

t 2 tmin; tmax½ �, discretised differently depending on the problem.
Two strain paths are considered:

1. Axial stretch (pure axial test):
Gt ¼
t � 1 0
0 0

� �
: ð56Þ

2. Early axial stretch and late shear-like distortion (combined
axial-shear test):

Gt ¼
min t � 1; t0 � 1ð Þ max 0; t � t0ð Þ

0 0

� �
; ð57Þ

where t0 controls the size of the early axial stretch. The early
pre-stretching stage is required in many cases to circumvent
the lacking resistance state of the RVE where most of the fibres
are compressively loaded.

Recalling the directions that emerge from the discontinuous
bifurcation analysis, namely n and b, we parametrise for in-plane
case with two angles h and b, respectively, as follows:

n ¼ n hð Þ ¼ cos hð Þe1 þ sin hð Þe2;ð58Þ
b ¼ b bð Þ ¼ cosbð Þe1 þ sinbð Þe2:ð59Þ

The search of the minimum determinant of the acoustic tensor Q
(or Q ) is then performed exhaustively by subdividing the range
for h (or b) (in the interval �90�;90�½ �) into 500 subintervals, sam-
pled equally spaced.

For the sake of clarity, the dimensionless version of the acoustic
tensor, defined as Q � ¼ 1

Ea
Q will be reported in the following exam-

ples. Note that we are using the elasticity parameter of the fibre Ea
(constant for all fibres and in all examples) as the normalising fac-
tor. Moreover, as mentioned in Appendix C, the determinant of ten-
sor Q , effective to determine b, changes its sign at the same instant
than Q for all numerical examples reported in this paper. There-
fore, detQ is not plotted in the analysis shown next.

6.1. Study 1: Detection of critical point, angle and direction of
discontinuous bifurcation in the macro-scale

In this example we illustrate the detection of the critical point
at which the problem requires the nucleation of a macro-scale
crack. To this aim, we consider an RVE made of a regular and
homogeneous network of fibres each of which only resists to axial
tensile stresses. Simulations taking into account inter-fibres resis-
tance will be considered in Study 2 (Section 6.2) and Study 3 (Sec-
tion 6.2), so gc ¼ 0:0F=L2. The only source of heterogeneity is the
fibre damage threshold stress sua, where a smaller value is assigned
to a given location in the RVE, resulting in a weakened band of
fibrous material. Particularly, we study the following three cases:

1. Vertical weakened fibre band, macro-scale gradient as in (56),
denoted Ex1-a.

2. Inclined weakened fibre band, macro-scale gradient as in (56),
denoted Ex1-b.

3. Vertical weakened fibre band, macro-scale gradient as in (57),
with t0 ¼ 1:2, denoted Ex1-c.

In all cases, the MCS is employed, and we take
tmin; tmax½ � ¼ 1:0;1:5½ �, with 100 equally spaced pseudo-time steps.
For the definition of all parameters see Table 1 7.



Table 1
Material, geometrical and numerical parameters for the cases in Study 1. #max:
maximum reduction.

Property Ex1-a Ex1-b Ex1-c

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

0.0 5.0 5.0

sua F=L2
h i

79:06
#max ¼ 50%
vertical band

79:06
#max ¼ 60%

21:8�-inclined band

79:06
#max ¼ 50%
vertical band

Gf
a F=L½ � 500:0

gc F=L2
h i

0:0

Aa L2
h i

0:01

/a 29:05� 36:87� 33:69�

jFnet j=jXlj 0:2069 0:2994 0:2884
dp 0:0
Nfib 180 432 384

Fig. 5. Results of the
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In Fig. 5, we can see the results obtained for the first study case.
From Fig. 5(a), it can be seen that a vertical localisation band is
obtained as a result of the applied load and the geometrical distri-
bution of the weakened material. This phenomenon is captured by
the discontinuous bifurcation analysis, as seen in Fig. 5(b), where
the vertical red line indicates the critical time instant tN . In the bot-
tom right panel we have that h tNð Þ ¼ 0 and b tNð Þ ¼ 0, implying that
the RVE specimen begins to localise in a mode-I of fracture. Also,
notice that, due to the simplicity of the test, the critical point coin-
cides with the maximum value of the normal traction that in this
case coincides with the stress component Pð Þ11. This may not be
the case in more complex settings.

For the second study case the results are displayed in Fig. 6.
Here, a mixed model of fracture is obtained as a consequence of
the inclination of the weakened band and the loading program,
see Fig. 6(a)-right. This phenomenon is predicted by the discontin-
uous bifurcation analysis, where two distinct values of b and h are
found at the critical point (precisely tN ¼ 1:26), as seen in the
middle-right inset in Fig. 6(b). We can observe that the value pre-
dicted for h tNð Þ (precisely ¼ 24:12�) agrees well with the angle of
study case Ex1-a.



Fig. 6. Results of the study case Ex1-b.
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the inclined band (precisely ¼ 21:8�, see Table 1) in material con-
figuration. 8. Regarding the prediction of b tNð Þ (precisely ¼ 13:32�),
this value is smaller than the inclination of the band but still larger
than the direction established by the loading program. This confirms
the expected result, since the direction of the crack-opening velocity
is a consequence of these two factors combined. In addition, Fig. 6(b)
presents the component Pð Þ11 of stress, which, because of the geom-
etry and macro-scale strain path, is presumably the most important
in magnitude. Moreover, the softening behaviour greatly affects this
component, whose peak almost coincides with the critical point
detected by the discontinuous bifurcation analysis.

Finally, in the third study case, the situation is that illustrated in
Fig. 7(a), in which the localisation band appears as result of the
applied shear induced loading. In the middle inset, it is shown
the exact instant when the critical point is detected (precisely
tN ¼ 1:245). The values detected for b tNð Þ ¼ 30:6� and
h tNð Þ ¼ 55:44� at the critical point are distinct and not perpendicu-
8 It is important to mention that the detected band inclination is comprised in the
range of angles inside the finite band size induced by the domain with weakened
properties.

10
lar (see middle-right panel in Fig. 7(b)), which characterises a
mixed fracture mode. In the present situation, with two particular
preferential directions of the fibre families, the localisation band in
deformed configuration is at an angle with respect to vertical.
Interestingly, in this case the component Pð Þ21 manifests the better
than Pð Þ11 the outcome of the discontinuous bifurcation analysis.
6.2. Study 2: Sensitivity of critical point to boundary conditions

In this example we explore the influence of the choice of admis-
sible fluctuations (i.e. the RVE boundary conditions) in the initia-
tion of the localisation process. Specifically, we analyse the MCS
and LBS models. As we will see, the choice of boundary conditions
severely affects the homogenised stress response, possibly delay-
ing the appearance of the critical point. We now consider the influ-
ence of inter-fibre resistance, for which we test a range of values
for gc, i.e, g0

c ;g1
c and g2

c (see Table 2).
Concerning the study cases, we consider here three fibrous net-

works with a vertically weakened fibrous band in the middle of the
RVE. Namely, we have the cases Ex2-a, Ex2-b and Ex2-c, with 192,
432 and 768 fibres each, respectively. The loading program is given



Fig. 7. Results of the study case Ex1-c.

Felipe Figueredo Rocha, Pablo Javier Blanco, Pablo Javier Sánchez et al. Computers and Structures 255 (2021) 106635
by horizontal axial stretching, applied during t 2 1:0;1:7½ � in 100
equally spaced pseudo-time steps. Also, we have admitted some
level of heterogeneity in the network parameters, namely: i)
fibres areas follow a normal distribution N l;rð Þ, where l
stands for the mean value and r for the standard deviation,
and ii) the position of nodes in the network are randomly per-
11
turbed by a factor according to the number of fibres. Moreover,
to circumvent the lack of convergence of the Newton–Raphson
method, different values for the numerical viscosity ranging from
0:1 to 20:0 were employed as well as the SOR method with sub-
relaxation ranging from 0:7 to 0:8. The model parameters are
reported in Table 2.



Table 2
Material, geometrical and numerical parameters for the cases in Study 2. #max: maximum reduction.

Property Ex2-a Ex2-b Ex2-c

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

20:0 (LBS)
0:1 (MCS)

20:0 (LBS)
5:0 (MCS)

20:0 (LBS)
10:0 (MCS)

sua F=L2
h i

79:06
#max ¼ 40%

inside the band

79:06
#max ¼ 40%

inside the band

79:06
#max ¼ 40%

inside the band

Gf
a F=L½ � 500:0

gc F=L2
h i

0:0 ¼ g0
c

� �
, 10�3 ¼ g1

c

� �
and 10�2 ¼ g2

c

� �
Aa L2
h i

N l;rð Þ ¼ N 0:01;0:0025ð Þ

/a 36:87� 36:87� 38:66�

dp L½ � 0:04 0:02 0:0125
Nfib 192 432 768
jFnet j=jXlj 0:2252
Model Both LBS and MCS
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It is important to mention that the parameters of the normal
distribution appearing in Table 2 are only used in the case Ex2-a.
In cases Ex2-b and Ex2-c the same values were used just as an ini-
tial guess for fibre areas. Next, these areas were scaled accordingly
in order to preserve the same volume fraction featured by case
Ex2-a (note that the size of the RVE (jXlj) was kept unitary). This
emulates the effect of increasing the size of the RVE. No matter
the approach, this aims to render comparable results in terms of
stresses, as shown in Figs. 10–12 and discussed in the following.

In Fig. 8 we report the deformed states for the three different
cases of networks using g0

c , each one being simulated with both
Fig. 8. Deformed state of fibre networks at the last step of the loading program. From to
used.

12
the LBS and MCS. For the LBS, the localisation band becomes more
prominent as the number of fibres increases, and the bell-like
shape can be considered an artifact caused by the overly con-
strained space of fluctuations over the RVE boundary. In contrast,
the MCS features vertical localisation bands crossing entirely the
RVE regardless the number of fibres. Regarding the effect of gc,
Fig. 9 shows the comparison between two deformed networks,
namely g0

c (blue) and g2
c (red). In terms of displacements, the solu-

tions are very close to each other. Such difference is even smaller
for g1

c (not shown).
p to bottom, cases Ex2-a to Ex2-c (g0
c overall), with LBS (left) and MCS (right) being



Fig. 9. Comparison between deformed states in the last step of the loading program in case Ex2-a using MCS, for g0
c (blue) and g2

c (red).

Fig. 10. Homogenised stress components throughout the loading program and critical points (vertical lines) for Ex2-a.
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Figs. 10–12 display the components Pð Þ11 and Pð Þ22 of the
homogenised stress tensor for the different models and for the dif-
ferent networks. For a given network size and model, we can see
that the Pð Þ11 component does not vary considerably with the
value of gc, although this difference is visible for the case Ex2-c.
In contrast, for Pð Þ22 this difference becomes more pronounced,
specially for larger RVEs. With regard to the different fluctuation
spaces (definition of boundary conditions), the critical point is sub-
stantially delayed and mechanical response is stiffer when consid-
ering LBS, compared to the response delivered by model MCS, for
the same RVE size. As the number of fibres increases, the instant
at which the critical point occurs is more sensitive when using
the linear model. These results reveal another fundamental issue
of RVE-based models, the convergence of the mechanical response
with respect to the size of the RVE 9. Thus, we can assert that, in the
present setting, model MCS delivers a more physically consistent
solution than model LBS. Not a significant difference in the critical
9 As already commented, this is equivalent to increasing the number of fibres for
the same size of the RVE, but scaling fibre areas in order to have comparable volume
fractions. Note that the homogenisation implicitly takes into account the volume
fraction even without a specific parameter for it, although comparable results are only
obtained with we keep the same volume fraction, otherwise it should be accordingly
rescale.
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point detection was observed by changing gc, being Ex2-b (LBS)
the case in which such discrepancy was more accentuated. Overall,
the bigger the gc, the earlier the critical point occurs.

In the examples examined above, independently of the kind of
boundary condition, we can appreciate from Figs. 10–12 that the
shape of the post-critical mechanical response (curve after the ver-
tical lines) strongly depends upon the RVE size. This is a manifes-
tation of the well-known size-effect [3] and will be properly
investigated and discussed in Section 6.4.
6.3. Study 3: Influence of heterogeneity

Heterogeneities (of all kinds) in the topological and material
composition of fibre networks are the main sources of stress con-
centration, driving the onset of damage processes and strain local-
isation phenomena at micro-scale. The study cases reported in this
section aim to analise the effects of these factors.

In the case of fibrous synthetic materials, like fibreglass or tex-
tiles, undesirable heterogeneities may arise during the manufac-
turing process. In the context of biological tissues,
heterogeneities can be originated by anomalous and non-uniform
processes of growth and remodelling of fibres. In both cases, such
study deserves special attention.



Fig. 11. Homogenised stress components throughout the loading program and critical points (vertical lines) for Ex2-b.

Fig. 12. Homogenised stress components throughout the loading program and critical points (vertical lines) for Ex2-c.
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Particularly, we consider, heterogeneities of the following
kinds:

1. Reduction of fibre areas in a certain region: In case Ex3A-a the
perturbation in the fibre area is introduced in a vertical band
whereas in case Ex3A-b such perturbation is introduced on
two ball-shaped regions located in the upper-central part of
the RVE. In both cases, damage threshold stress sua is the same
for all fibres. The model parameters data are found in Table 3.
14
2. Non-homogeneous spatial distribution of fibres: we induce a
controlled and uneven spatial distribution by removing a per-
centage of fibres located in a region of the RVE. Particularly,
we have considered vertical bands with width 0:3L (Ex3R-a)
and 0:6L (Ex3R-b) centered with the RVE, in which, respectively,
10% and 5% of fibres were randomly selected to be removed. In
each case, two realisations were simulated. Also, damage
threshold stress sua is the same for all fibres. Table 4 presents
all model parameters.



Table 3
Material, geometrical and numerical parameters for all cases in Study 3 concerning fibre area reduction. #max: maximum reduction.

Property Ex3A-a (Band) Ex3A-b (Balls)

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

0:0 10:0

sua F=L2
h i

79:06

Gf
a F=L½ � 500:0

gc F=L2
h i

0:0 ¼ g0
c

� �
;10�4 ¼ g1

c

� �
and 5� 10�4 ¼ g2

c

� �
Aa L2
h i

0:01
#max ¼ 40%

band thickness 0:2

0:01
#max ¼ 40%

�2ð Þ ball radius 0:2
/a 33:69�

dp L½ � 0:02
Nfib 600

Table 4
Material, geometrical and numerical parameters for all cases in Study 3 concerning removal of fibres. Variable kð Þ is used to identify the realisation.

Property Ex3R-a
(k = 1)

Ex3R-a
(k = 2)

Ex3R-b
(k = 1)

Ex3R-b
(k = 2)

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

5:0 5:0 10:0 6:0

sua F=L2
h i

79:06

Gf
a F=L½ � 500:0

gc F=L2
h i

0:0 ¼ g0
c

� �
;10�4 ¼ g1

c

� �
;5� 10�4 ¼ g2

c

� �
Aa L2
h i

0:01

/a 35:84�

dp L½ � 0:01
Nfib 936
Removal criterion random

10% of fibres
band thickness 0:3L

random
5% of fibres

band thickness 0:6L
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As in the previous example, the RVE was stretched in the hori-
zontal direction with t 2 1:0;1:6½ �, and recall that in this case the
fibres experience inter-fibre resistance. Due to the larger sources
of heterogeneities, numerical parameters for these simulations
had to be carefully chosen in order to avoid poor or even lack of
convergence of the Newton–Raphson method as well as to capture
the more complex mechanical behaviour with more accuracy. In
addition to fictitious viscosity and the SOR method (typically 0:7
of subrelaxation), we have used an adaptive selection of the
pseudo-time step, refining the time-discretisation near singular
points (zero-derivative of stress) and at high gradient regions. In
all cases 1000 pseudo-time steps have been used, with a maximum
ratio between the largest and smallest steps of 20:0.

The obtained results are presented in Fig. 13 and Fig. 14. It is
seen that the different cases of heterogeneous fibre areas yield
similar homogenised mechanical responses in the pre-critical
stage. In detail, since the region between the balls features fibres
with larger area values, the total localisation in this case is slightly
delayed (see the blue and red vertical lines in Fig. 13). This delay
not only affects the critical point position but also the evolution
of damage in the subsequent increments as depicted in the third
row of Fig. 14. Notwithstanding this, both study cases provide a
similar homogenised behaviour, quantitatively and qualitatively,
in terms of the critical point and the constitutive response, for both
stress components, Pð Þ11 and Pð Þ22. Regarding the sensitivity by
respect of gc, in both scenarios, the only important difference
appears around the L-shaped region (approximately for t ¼ 1:45)
15
and in some cases increases from that point onwards. This can be
corroborated visually in Fig. 14 in which the snapshot at t ¼ 1:40
looks identical for both Fig. 14(a), (b) and Fig. 14(c), (d), whilst at
t ¼ 1:60 Fig. 14(a), (b) shows a more developed deformation pat-
tern if compared to Fig. 14(c), (d).

Let us now analyse the cases Ex3R-a and Ex3R-b. From Fig. 17
and Fig. 18 we notice that the nucleation of localisation bands
occurs by traversing the (randomly determined) regions in the
RVE with reduced fibre density. This source of heterogeneity
strongly affects the configuration of the deformed network for
the different realisations. In addition, and as expected, the higher
the percentage of fibres removed in a small region from the RVE
(case Ex3R-a seen in Fig. 17) the less complex the localisation pat-
tern that emerges in the RVE, in contrast with the opposite case,
that is lower percentage of fibres removed from a larger region
as in case Ex3R-b seen in Fig. 17. These sources of heterogeneity
affect differently the homogenised response. As seen in Fig. 15,
the study cases denoted by Ex3R-a feature a more sensitive
response along the whole loading program. Comparatively, the
response obtained in the study cases Ex3R-b seen in Fig. 16 only
features some differences during the post-critical stages. In either
case, the directions of the nucleated macro-scale crack obtained
from the discontinuous bifurcation analysis remain the same.

Considering the sensitivity with respect to gc for a fixed scenar-
io, we can observe agreement in the pre-critical response in all
realisations for both Ex3R-a and Ex3R-b (see Fig. 17 and 18,
respectively).



Fig. 13. Homogenised stress components throughout the loading program and critical points for Ex3A-a (band) and Ex3A-b (balls).
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After the critical point, results for Ex3R-a, Fig. 17, are more sen-
sitive than for the setting Ex3R-b, Fig. 18. In the latter figure, such a
difference is also reflected if we consider the similarity between
deformations states at t ¼ 1:45 and consider the differences at
t ¼ 1:60, considering the same realisation (k ¼ 1 or k ¼ 2) with dif-
ferent values of gc (g0

c and g2
c). This is seen comparing Fig. 18(a), (b)

with (c), (d). For the case Ex3R-a, Fig. 17 shows that the are dis-
crepancies even earlier, at t ¼ 1:4.
6.4. Study 4: Size-effect during the post-critical regime

In this section, we study the size-effect observed in the homo-
genised RVE stress response during the post-critical regime, i.e.,
after the discontinuous bifurcation analysis. Hence, the homoge-
nised stress-based response is analysed for increasing the RVE
sizes. Specifically, we double the RVE size in the horizontal direc-
tion by repeating its structure. The source of material heterogene-
ity is considered to be in the fibre damage threshold stress sua,
located in vertical (Ex4V-a and Ex4V-b, see Table 5) and inclined
bands (Ex4I-a and Ex4I-b, see Table 6) inside the RVE. When the
RVE is doubled, the band with altered properties is also repeated
correspondingly. Regarding the imposed macro-scale gradient, in
all cases we consider progressive axial stretching, with
t 2 1:0;2:0½ � discretised in 100 pseudo-time steps.

Fig. 19 shows, for a single realisation, the deformed state of the
different RVEs. Clearly, after the bifurcation instant, the localisa-
tion occurs just in one of the bands, and, thus, the whole strain
applied to the RVE is confined to the same region of space. In turn,
the stress is homogenised using the whole size of the RVE. This
implies that, during the post-critical regime, for the same level of
the inserted macro-scale strain, the larger RVE will have a larger
crack opening, resulting in an apparently more brittle material,
i.e., strain localisation is more severe. This behaviour can be
noticed in Fig. 20. In such figure, the RVEs deliver the same
response in the pre-critical stages regardless the RVE size. When
the critical point is achieved, the localisation has become promi-
nent, and the homogenised behaviours deviate from each other,
16
highlighting the lack of objectivity of the stress response at post-
critical instants. Also, differently from continua models at the
micro-scale, even the maximum stress attained presents some
size-effect, supposedly to follow Weibull-type distributions as
classical in the literature of fibre-reinforced composites [15].Con-
cerning the statistical nature of the fracture, the results presented
also keep strong relation with the avalanche phenomena studied in
the works of dry and saturated heterogeneous networks [37] and
in the more general context of brittle-to-ductile transitions
[72,49]. Although beyond the scope of this work, methodologies
applied to circumventthe size-effect are commented in Section 7.

7. Discussion

7.1. On the potential of the computational homogenisation paradigm

In this work, we presented the theoretical bases of a computa-
tional homogenisation approach to simulate material failure in
fibrous materials. As well, we exhaustively analysed, through sev-
eral numerical examples, the homogenised material response of
networks of fibres targeting an improved representation of the
mechanical environment unfolding at fine scales in rather general
and complex mechanical settings. Models of the present type have
the potential to analyse trends in mechanical behaviour of fibrous
tissues in situations where fibre properties, including their spacial
distribution, may be affected, for instance, by pathological condi-
tions in the case of biological tissues or manufacture defects in syn-
thetic materials.

Particularly, the study focused on the analysis of the damage
progression in single fibres, with the aim of evaluating the evolu-
tion of the mechanical response of such complex materials through
several loading conditions. With the proposed RVE-based strategy
it has been possible to properly homogenise stress-like accounting
for micro-scale damage processes. Moreover, the resulting homo-
genised response has shown to be sensitive to the presence of
heterogeneities in the arrangement of fibres as well as to the
choice of the admissible kinematical contraints (i.e. boundary con-
ditions). Also, we investigated the impact that inter-fibre mecha-



Fig. 14. Different snapshots of the network of fibres for cases Ex3A-a and Ex3A-b displaying distribution of fibre area (upper frame) and deformed configuration for different
states of material deterioration.
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nisms have on the homogenised response, as well as in the result-
ing localisation pattern. Remarkably, in comparison with [48], in
which only purely elastic fibres were considered, this sensitivity
has been increased with the consideration of damaging processes
of individual fibres.

Additionally, a new ingredient of this work is the analytical
derivation of the fourth-order homogenised tangent, thus complet-
ing, together with the homogenised stress, a complete constitutive
computational homogenisation toolbox. An important byproduct
obtained from the tangent tensor is the evaluation of the model
loss of strong ellipticity via the acoustic tensor properties as
described in Section 5. This method has been shown to be effective
also in the present context in which we deal with a network of
fibres, allowing the determination of the critical instant as well
17
as the crack orientation and the instantaneous initial crack-
opening velocity. Such characterisation is fundamental in the sense
that these data are required for the realisation of the mechanical
equilibrium at the macro-scale continuum.

It is important to mention that the incorporation of inter-fibre
stiffening mechanisms had already been explored in previous
works. For instance, [33] takes into account the energy dispensed
for changing the local tangent vector of fibres, which is lumped
as torsional springs in the network. The approach employed in
the present work is conceptually similar, but for the fact that the
variation of inter-fibre angle was utilised to this aim. The most fun-
damental difference relies on the fact that our strategy makes use
of the mechanical equilibrium, solved through a Newton–Raphson
approach, for which the analytical derivation of the tangent was



Fig. 15. Homogenised stress components throughout the loading program and critical points for different realisations of the case Ex3R-a.

Fig. 16. Homogenised stress components throughout the loading program and critical points for different realisations in the case Ex3R-b.

Felipe Figueredo Rocha, Pablo Javier Blanco, Pablo Javier Sánchez et al. Computers and Structures 255 (2021) 106635
required. In turn, [33] proposed solving the problem by minimising
of Hamiltonian (Energy) through a conjugate-gradient algorithm.
In this line of thought, the work of [1] exploits the so-called FIRE
algorithm [8], which is also based on a conventional optimisation
strategy with efficiency comparable to that of the family of
quasi-Newton methods. We claim that, whenever is possible,
second-order methods, such as the Newton method, are preferred
because of the intrinsic knowledge the tangent operator brings to
the phenomenology. Moreover, in problems accounting for dissipa-
tion phenomena as in the present case, minimisation of the poten-
18
tial cannot be straightforwardly applied and one would have to
resort to more evolving techniques (see [29]).

In the context of the present work, the use of the minimally
constrained kinematical model enabled the localisation phenom-
ena occurring at the micro-scale to reach the boundary and natu-
rally give rise to visible localisation bands which, ultimately, are
manifested at the macro-scale through the prediction delivered
by the discontinuous bifurcation analysis. More specifically, the
proposed model allowed us to simulate the development of
straight and inclined localisation bands, as well as the simulation



Fig. 17. Different snapshots of the network of fibres for different realisations in the case Ex3R-a.
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of the effects of random heterogeneities in both the micro-scale
mechanical state and the resulting homogenised response. Fur-
thermore, it has been possible to evaluate the sensitivity of the
material response to the presence of micro-scale regions with
marked altered conditions.

Despite of the differences between the models MCS and LBS
appreciated throughout the several computational experiments
presented in this work, it is important to remark that both models
are able to characterise the universe of possible solutions attain-
able through this kind of homogenisation procedures. Although
no formal proof has been presented, MCS and LBS are respectively
good candidates to be regarded as lower and upper bounds of the
constitutive response [27] (we have discarded from this compar-
ison the Taylor or rule of mixtures model).
19
Finally, the present approach provides a solid framework for the
further development and improvement of RVE-based constitutive
models of fibrous materials by introducing, for example, more
complex fibre constitutive responses, as well as complementary
inter-fibre and intra-fibre phenomena. It is worthwhile to mention
that the proposed model can directly be implemented in 3D.

7.2. Limitations

This class of homogenisation approach relies, at some point, on
scale separation concept. When the hypothesis of scale separation
is questionable, and size-effects are important, the macro-scale
model could be improved in order to capture a more complex phe-
nomenology in a context of non-Cauchy continua [22,65,30].



Fig. 18. Different snapshots of the network of fibres for different realisations in the case Ex3R-b.
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Notwithstanding, the presence of high-order terms given by non-
homogeneous fluctuations embeds the resulting macro-scale con-
tinua with a microstructure, and thus enabling the capture non-
affine deformation modes, even though the stress homogenised
measure is standard Cauchy. An index of non-affinity have been
proposed in [48,46] in the purely elastic regime. In the context of
higher order continua, and even for fracture mechanics, the frame-
work provided by the MMVP has proven to be suitable for the sys-
tematic development of multi-scale models [9,50], by providing
the characterisation of the minimally constrained kinematically
admissible space in which the PMVP (generalised Hill-Mandel
principle) has to be cast. Similar issues have been addressed in
fibrous materials by Blanco et al. [19,6] departing from a different
methodologyand in the homogenisation of strands in supercon-
ducting coils [13].
20
Although, the model provides a sound criterion for the deter-
mination of the critical instant at which suitable strategies must
be adopted in the macro-scale to recover well-posedness of the
mechanical problem, once this point is reached, it is widely
known that homogenisation strategies relying on the average
of micro-scale stress-like entities throughout the entire RVE
yields non-objective responses. More specifically, and as seen
in the numerical experiments reported in this work, the post-
critical effective response, obtained from traditional homogenisa-
tion procedures, in such cases depends on the size of the RVE
[50]. The development of a multi-scale model capable of recov-
ering an objective response in the post-critical regime is a mat-
ter of current research. This problem can be addressed by an
appropriate generalisation of the insertion and kinematical
homogenisation operators in the post-critical regime [10,11],



Table 5
Material, geometrical and numerical parameters for all cases with a vertical band in
Study 4. #max: maximum reduction.

Property Ex4V-a Ex4V-b

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

10:0 5:0

sua F=L2
h i

79:06
#max ¼ 40%

one vertical band

79:06
#max ¼ 40%

two vertical bands

Gf
a F=L½ � 500:0

Aa L2
h i

N l;rð Þ ¼ N 0:01;0:0025ð Þ

/a 36:87�

dp L½ � 0:02
Nfib 432 864

RVE size L2
h i

1� 1 2� 1

jFnet j=jXlj 0:3359 0:3364

Table 6
Material, geometrical and numerical parameters for all cases with an inclined band in
Study 4.

Property Ex4I-a Ex4I-b

kaa 1:0

Ea F=L2
h i

250:0

ga F=L2
h i

10:0 10:0

sua F=L2
h i

79:06
#max ¼ 40%

one 21:8�-inclined band

79:06
#max ¼ 40%

two 21:8�-inclined bands

Gf
a F=L½ � 500:0

Aa L2
h i

N l;rð Þ ¼ N 0:01;0:0025ð Þ

/a 36:87�

dp L½ � 0:02
Nfib 432 864

RVE size L2
h i

1� 1 2� 1

jFnet j=jXlj 0:3367 0:3364
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resulting in different homogenisation procedures for the micro-
scale stress as proposed in [50,64,10,11].

Furthermore, rigorously speaking, the use of the acronym RVE
should be understood only for sake of simplicity. Notwithstanding
this, such abuse of notation does not encompass any restriction to
the framework presented, since our scope is the general formula-
tion of RVE-based models. The RVE size/number of realisations
depends, among other factors, on the statistical distribution of
properties for the material of interest, thus an application-
dependent analysis, that should be carried out using some of the
methodologies available in the vast specialised literature [38].

It is worth mentioning that this work proposed an important
contribution through the incorporation of inter-fibre mechanical
interaction and damage in the micro-scale discrete model for net-
work of fibres, features normally disregarded in the literature.
Notwithstanding this, still other mechanisms present in such
fibrous systems may be worth including into the model, such as
bending, torsion of fibres, and inter-fibre sliding, just to mention
a few instances. The latter issue is particularly addressed in El Nady
and Ganghoffer [19] by using auxiliary beams in the contact and its
modelling can be used to enrich the phenomenology of the result-
ing material behaviour. Related to that, the so-called interlock
effect among fibres is investigated by [18], and references therein,
where interactions caused by frictional contact are incorporated to
address the problem.

Phenomena such as the bending of individual fibres have been
addressed in part by Stylianopoulos and Barocas [59,60]. It is
21
important to mention, as it is already well-known in the literature,
that bending only plays an important role in the total mechanical
response if normal strains are below a certain threshold. A quanti-
tative estimate for this limit is proposed by Berkache et al. [6]. Even
in the bending dominated range, it is possible to refine the fibre
strain energy to indirectly model the crimp effect, as proposed in
[24,53,36]. Nevertheless, it has been shown that under physiolog-
ical ranges of stretches [59], fibre stretching continued to play
the most important role in the constitutive response, and that is
could be reasonably approximated by a linear behaviour as consid-
ered in the present work. Based on this, the proposed model is suit-
able for applied scenarios, as in the living or synthetic fibrous
materials research. Moreover, it provides a general and consistent
formalism which enables the consideration of additional kinemat-
ical complexities to test further physical mechanisms in situations
where the realisation of experiments are not possible or extremely
hard to be performed.

Truly multi-scale simulations are those simulations in which
the macro-scale and micro-scale realms somehow interact to solve
the macro-scale equilibrium problem. From the numerical point of
view, whenever the use coupled multi-scale simulations (also
called FE2 [21]) are to be conducted in the context of finite element
procedures, the computational cost involved poses a challenge to
be addressed. Within the context of a Newton scheme for the lin-
earisation of the macro-scale equilibrium problem, the application
of the present multi-scale approach requires, for each Newton iter-
ation, and throughout the whole loading program, the determina-
tion of the stress and the tangent operator at each Gauss point.
Besides, the assembly of the macro-scale stiffness matrix and load
vector through the solution of these micro-scale problems consti-
tutes an inherently parallel process which requires an efficient
management of the computational resources at hand. Currently,
this is only possible if high performance computing facilities are
available and several computationally efficient implementations
have been proposed to mitigate costs [34,39].

One possible approach, appealing in the context of materials
whose response is independent from the loading program, is the
off-line construction of a database for the constitutive response,
depending upon a number of parameters, which can be reduced
by some technique as in [61,71], or even relying on more sophisti-
cated approaches of dimensionality reduction as in [70,26]. This
mapping could then be stored and accessed during on-line compu-
tations, drastically reducing the computational cost to the same
burden than single-scale simulations. More specifically, for nonlin-
ear inelastic constitutive laws (e.g. history-dependent materials),
as the situation of the present work, few extensions of the database
approach are available. For instance, [41] exploits the dimensional-
ity reduction approach as in [26] but applying it just to the elastic
part of the domain, restricting the on-line simulations of the
inelastic regime just to a small part of the domain. Approaches like
this deserve further investigations to facilitate the use of multi-
scale models in more realistic applications. Finally, it is important
to mention that in many cases there are reliable phenomenological
constitutive laws which require the definition of model parame-
ters. Then, it is possible to use homogenisation procedures in the
form of an in silico mechanical testing machinery to fit these mate-
rial parameters, as carried out in [57].
8. Concluding remarks

In this work, by exploiting a computational homogenisation
paradigm, we have presented a novel study about the connection
between micro-scale damage processes occurring in networks of
fibres and the associated homogenised material response corre-
sponding to a continuum model. Through the combination of suit-



Fig. 19. Initial and deformed (after bifurcation) configurations for fibre networks of Study 4.
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able kinematical framework constructed to allow the evolution of
localisation regions in the micro-scale domain and specific discon-
tinuous bifurcation analysis, it has been possible to analyse the
realistic impact of material and geometrical heterogeneities not
only in the effective stress and tangent but also in the critical
instant in which the strong ellipticity condition is lost.
22
More specifically, we have employed a damage model with a
single parameter to simulate the inelastic mechanics of each
fibre. It was shown that due to progressive deterioration of fibres
at the micro-scale level, a critical point at the macro-scale is
reached, which is compatible with the existence of a discontinu-
ous bifurcated mode. As shown in the present study, such a



Fig. 20. Homogenised stress responses showing the lack of objectivity in the mechanical response during the post-critical regime.
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specific mechanical condition can be successfully characterised
through a bifurcation analysis based on the spectral properties
of the acoustic tensor, which is obtained in terms of the homo-
genised tangent operator. This kind of study is still to be
exploited in practical situations for fibrous tissues, but in the
present work we have demonstrated that it can be an effective
tool not only to assess the critical instant at which strong ellip-
ticity is lost, but also for the characterisation of the mean normal
vector of the nucleated macro-scale crack and the corresponding
opening direction.
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Appendix A. Auxiliary derivatives relations

The derivations below are useful for Section 2.3. In all develop-
ments take vector q 2 Rnd :

1.
_kqk ¼ _ffiffiffiqp ¼ 1
2
ffiffiffiffiffiffiffiffiffiffi
q � qp 2q � _q ¼ q

kqk � _q: ðA:1Þ
2.
_�q
kqk

� �
¼ k _�qk�1q
� �

¼ � 1
kqk2

q
kqk � _q þ 1

kqk _q

¼ 1
kqk I� q

kqk 

q
kqk

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Hq

_q: ðA:2Þ
23
3. Take c 2 Rnd as a constant vector:

_Hqc
� �

¼
_

1
kqk c� q

kqk � c
� �

q
kqk

	 

¼

� q
kqk3 � _q
� �

c� c � q
kqk

� �
Hq _q � c �Hq _q

� � q
kqk

¼ �kqk�2 2
q

kqk

scþ q

kqk � c
	 


I� 3
q

kqk 

q

kqk
	 
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qqc

_q:

ðA:3Þ

Appendix B. Tangent tensor (derived from nodal forces)

In this appendix, the detailed derivation of expression (48), con-
cerning the tangent tensor, are shown. For ease of notation, just in
this section we will omit the constitutive dependence of the inter-
nal variables and incremental superscripts. Thus, for instance, in
the actual value for G ¼ Gn, then P ¼ P Gð Þ actually means
Pn ¼ F Gn;Pn�1� �

. The same holds for quantities evolving nodal

forces, for example f i ¼ f i ul
� �

, and also for the fluctuation
~ul ¼ ~ul Gð Þ (solution of (8)).

From the definition of the constitutive operator we have:

DP Gð Þ :¼ @GP Gð Þ ¼ lim
s!0

P Gþ sek 
 elð Þ � P Gð Þ
s

� �

 ek 
 el: ðB:1Þ

where ek and el are the unit directors employed to perturb the
macroscale strain measure. As well, let us define the tensor
Ekl ¼ ek 
 el. Definining the perturbed displacement as

ul
� �s

kl ¼ uþ Gþ sEklð Þ yl � yG
� �

þ u
	
l þ sucan

kl ; ðB:2Þ

where ucan
kl , to be determined next, accounts for the derivative of the

fluctuation field with respect to the macro-scale strain tensor.
Rewriting (B.1) by using the homogenisation formula given in (9)
we obtain

DP ¼ 1
jXlj

X
i2N net

lims!0

f i ul
� �s

kl

� �
� f i ul

� �
s

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼wi;s

kl


 yi
l � yG

� �


 Ekl; ðB:3Þ
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which is explicitly given in Cartesian components as

DP½ �pqkl ¼
1

jXlj
X

i2N net

wi;s
kl

h i
p
yi
l � yG

h i
q
: ðB:4Þ

Now, let us characterise the elements wi;s
kl . By taking the Taylor

expansion to the perturbed nodal force we get

f i ul
� �s

kl

� �
¼ f i ul

� �þ P
j2N net

@uj
l
f i ul
� �

ul
� �s

kl � ul

� �
þ o s2
� �

¼ f i þ s
P

j2N net

Tij Ekl yj
l � yG

� �
þ ucan

kl

� �j� �
þ o s2
� �

:
ðB:5Þ

Hence, we finally arrive at

wi;s
kl ¼

X
j2N net

Tij Ekl yj
l � yG

� �
þ ucan

kl

� �j� �
: ðB:6Þ

Replacing (B.6) into (B.4) we get

DP ¼ 1
jXlj

X
i;j2N net

Tij
lEkl yj

l � yG
� �


 yi
l � yG

� �

 Ekl

þ 1
jXlj

X
i;j2N net

Tij
l ucan

kl

� �j 
 yi
l � yG

� �

 Ekl; ðB:7Þ

The characterisation of ucan
kl follows from the micro-scale mechani-

cal problem stated in (8). Recalling, for a given perturbed macro-

scopic strain Gþ sEkl, find ~ul þ sucan
kl

� � 2 U
	
l such thatX

i2N net

f i ul
� �s

kl

� �
� ~̂ui

l ¼ 0 8~̂ul 2 U
	
l; ðB:8Þ

with ul
� �s

kl given by (B.2). From (B.8), considering the Taylor expan-

sion in (B.5), noticing that ~ul 2 U
	
l satisfies the micro-scale

mechanical equilibrium for the macro-scale gradient G, and by the

fact U
	
l is a vector space, we have to find ucan

kl 2 U
	
l such that:X

i;j2N net

Tij
l ucan

kl

� �j � ~̂ui
l ¼ �

X
i;j2N net

Tij
l ek 
 elð Þ yj

l � yG
� �

� ~̂ui
l 8~̂ul 2 U

	
l:

ðB:9Þ
10 Note that in a theory formulated in terms of symmetric stress and strain tensors,
the tangent tensor does have minor simmetries and Q would coincide with Q .
11 This is true for a vast majority of constitutive laws, including hyperelasticity and
continuum damage models, which are sufficient for the present work. One classical
example that violates this assumption is non-associative plasticity, not considered in
this work.
Appendix C. Alternative method of determining the initial
opening direction

As already discussed, the direct determination of the eigenvec-
tor b that solves Qb ¼ 0 is not precise since the critical instant for
which Q becomes singular is never exactly determined. This
appendix aims to propose an alternative path to overcome this
issue. Next, we present the basis upon which a heuristic strategy
is proposed. This heuristic proved to yield consistent results in
all examples tested along the present investigation.

The problem of interest can be cast equivalently as follows: find
b 2 Rnd such that

Qb � v ¼ 0 8v 2 Rnd : ðC:1Þ
Rearranging terms we have

Qb � v ¼ Q½ �ik b½ �k v½ �i
¼ DP½ �ijkl n½ �j n½ �l b½ �k v½ �i ¼ Q vn � n ¼ 0 8v 2 Rnd ;

ðC:2Þ

where Q v ¼ Q v G;bð Þ is defined by

Q v

h i
jl
:¼ DP½ �ijkl v½ �i b½ �k:

Consider a fixed and non-null vector v. Then, expression (C.2) is ver-
ified if:
24
1. Vector n is in the kernel of tensor Q v , that is, if Q vn ¼ 0. So, this
nontrivial solution of this system implies that we must search
for the vector b such that:
detQ
�

v ¼ 0: ðC:4Þ
2. Vector Q vn is orthogonal to n, that is Q vn ¼ s, with s ? n.

For sake of convenience, assuming the spatial dimension to
be nd ¼ 2, without loss of generality, the orthogonal vector
is characterised as s ¼ �n2e1 þ n1e2, where n1 and n2 are
Cartesian components of vector n. Taking the matrix repre-

sentation Q v ¼ a11 a12
a21 a22

� �
we have

a11 a12
a21 a22

� �
n1

n2

� �
¼ �n2

n1

� �
; ðC:5Þ

leading to

a11 a12 þ 1
a21 � 1 a22

� �
n1

n2

� �
¼ 0

0

� �
; ðC:6Þ

and thus

det
a11 a12 þ 1

a21 � 1 a22

	 

¼ a11a22 � a12a21 þ 1þ a12 � a21 ¼ 0;

ðC:7Þ
leading to

detQ v ¼ a21 � a12 � 1: ðC:8Þ
Note that (C.2) should be valid for all v 2 Rnd . However, at the
time-discrete level, one should never expect that (C.2) is veri-
fied exactly, since the critical pseudo-time instant is an
unknown in the problem and can be determined up to an error
of Dt ¼ tn � tn�1. In our experience, the sensitivity of the prob-
lem to the choice of v is quite large, and after a trial and error
process we have been able to identify a heuristic procedure.
This heuristic consists in fixing a particular v such that some
desirable properties are satisfied and, more importantly, the
results are physically consistent in terms of what is expected
in fully controlled scenarios. To this end, we recall that the
determinant of Q is positive during the earliest stages of the
loading program, Q is symmetric and positive-definite and,
thus, all its eigenvalues are positive. Therefore, we found that
by selecting v ¼ b, the tensor Q v¼b (hereafter just Q ), features
the following properties:

1. Q has (in all numerical experiments) a positive determinant in
early stages of the loading program, resembling to Q . For other
choices of v, the tensor Q v failed to hold this property.

2. Q is symmetric (see (C.3) and recall that DP does have major
symmetry). This guarantees that (C.8) simplifies to
detQ ¼ �1, which facilitates our analysis since it follows from
the previous property that (C.4) is always verified earlier than
(C.8). For this reason, it is sufficient to test (C.4).

Comparing Q and Q , it is in general Q – Q since DP has no
minor symmetries10 (recall expressions (49), (50) or (51)). More-
over, Q and Q are both second order symmetric tensors, since DP

does have major symmetry11, this fact yields the existence of only
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real eigenvalues. Furthermore, the pseudo-time instants at which
conditions detQ ¼ 0 and detQ ¼ 0 hold coincides in every numeri-
cal experiment, which tells us that both computations are consistent.

Appendix D. Additional comments concerning the one-
dimensional damage model for fibres

D.1. Dissipation analysis for a single fibre

Here we follow the notation already introduced in Section 3.1.
First let the strain energy accounting for damage be defined as

Wa ka; dað Þ ¼ 1� dað ÞW0
a kað Þ: ðD:1Þ

Under standard assumptions, the Clausius–Duhem inequality can
be written for a single fibre as below

Dint
a ¼ sa _ka � _Wa P 0; ðD:2Þ

where Dint
a is the dissipation per unit fibre volume. Developing the

above expression we get

Dint
a ¼ sa � 1� dað Þ@kaW

0
a

� �
_ka þ _daW

0
a: ðD:3Þ

The first term vanishes by considering the constitutive law intro-
duced in (27) and the second term is the only responsible for the
dissipation process, then

Dint
a ¼ _daW

0
a: ðD:4Þ

In a monotone loading regime the dissipation can be rewritten in
terms of the auxiliary variables qa and ra introduced in (26) as
follows

Dint
a ¼ 1

2
rað Þ2 qa _ra � _qara

rað Þ2
¼ 1

2
qa � Harað Þ_ra: ðD:5Þ

Integrating the dissipation in time and space yields to the total
energy dissipated by the single fibre, say Gf

a. By changing variables
we getZ t1

t0

Z
Xa

Dint
a dtdV ¼ AaLa

Z r1a

r0a

1
2

qa rð Þ � Ha rð Þrð Þdr ¼ Gf
a; ðD:6Þ

where Xa is the fibre domain.
The regularised damage model proposed here assures that, for

each fibre undergoing damage, the integration of the dissipation,

in time and space, yields the Fracture Energy Gf
a (energy per unit

area) times the fibre area. The Fracture Energy, Gf
a, is a material

parameter for each fibre, defined as follows:

Gf
a ¼ Gf

a

Aa
; ðD:7Þ

For the specific choice of the softening-hardening function given in
(29) and by taking the limit r1a ! 1 after analytically solving the
above integral we have

H0
a ¼ Gf

a

r0a
� �2La �

1
2

" #�1

: ðD:8Þ

Here, if r0a <

ffiffiffiffiffiffiffiffi
2 Gf

a
La

q
the condition H0

a > 0 is satisfied, leading to a pure
softening behaviour ruled by (29) as already discussed. Moreover,
when the characteristic length La is small (which is mostly idealistic
in cases where this length is the mesh size in finite element simu-
lation) the expression is simplified as below

H0
a ¼ r0a

� �2La
Gf
a

: ðD:9Þ
25
Both formats, (D.8) and (D.9), are used in literature for the same
purposes. The former is identical to one appearing in [14] 12. in
the context of damage modelling in biomechanics and the latter
has been applied to modelling concrete [51]. It is worth mentioning
that the derivation of the regularised parameter is independent from
the strain energy function adopted

D.2. Consistent algorithmic tangent

The one dimensional model for fibres has been presented in a
time-continuous framework, but due to the presence of damage,
it is also interesting to show the leading incremental expressions
and also derive the algorithmic tangent, which is required for the
iterative solution of the non-linear micro-mechanical problem
in (8).

In time-discrete form we have

sna kna;P
n�1
a

� � ¼ 1� dn
a

� �
@kna

W0
a kna
� �

; ðD:10Þ
where:

rna ¼ max rn�1
a ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W0

a kna
� �q	 


; ðD:11aÞ

rn;xa ¼ 1�xð Þrn�1
a þxrna; ðD:11bÞ

qn
a ¼ qn�1

a þ Ha rn;xa
� �

rna � rn�1
a

� �
; ðD:11cÞ

dn
a ¼ 1� qn

a

rna
: ðD:11dÞ

For convenience, for all the numerical examples of Section (6), we
assume x ¼ 1

2 (mid-point rule) to integrate the model. Note that
the time-discrete damage evolution law is implicit regardless of
the value of x. We highlight that Pn

a, the updated internal variable
vector, is fully defined in (D.11).

The consistent algorithmic tangent for this one-dimensional
model is defined by

cn;alga :¼ @kna
sna

¼
1� dn

a

� �
@2
kna
W0

a rna ¼ rn�1
a

1� dn
a

� �
@2
kna
W0

a � 1
rna

@rnad
n
a

� �
@kna

W0
a

� �2
rna > rn�1

a

8<
: ;

ðD:12Þ

with

@rnad
n
a ¼ 1

rna
� �2 qn

a � Ha rn;xa
� �þxH0a rn;xa

� �
rna � rn�1

a

� �� �
rna

� 
: ðD:13Þ

Using the chain rule, the algorithmic tangent is determined by

Dn;alg
a :¼ @gnas

n
a

¼ sna
kna
Iþ cn;alga � sna

kna

� �
bn
a 
 bn

a

ðD:14Þ

¼ snaH
n
a þ cn;alga bn

a 
 bn
a: ðD:15Þ

with cn;alga andHn
a given in (D.12) and (37), respectively. Here a expli-

cit separation between geometric (left) and constitutive (right) non-
linearities are made clear.

Remark 3. Regarding the positive-definiteness of the tangent
tensor, we have that, for a generic non-zero vector w 2 Rnd ,

Dn;alg
a w �w ¼ sna

kna
kwk2 � w � bn

a

� �2� �
þ w � bað Þ2cn;alga

¼ kwk2 sna
kna

1� cos2 /
� �þ cos2 /cn;alga

� �
> 0;

ðD:16Þ
12 For complete analogy with [14] set H0 ¼ �A , r ¼ s and r0 ¼ Sd0.
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where / is the angle between w and bn
a. Whenw is parallel to bn

a the
positive-definiteness condition is only based on positivity of the
one-dimensional tangent of the fibre, i.e.

cn;alga > 0:

On the other hand, if w is perpendicular to bn
a the positive definite-

ness follows trivially since sna and kna are always positive if the fibre
is bearing axial load.

In other words, the three-dimensional format of the fibre
tangent has the same properties as the one-dimensional constitu-
tive law. In particular, if a fibre is in softening regime (i.e.

cn;alga < 0), its corresponding tangent tensor Dn;alg
a is not definite-

positive.
Remark 4. Numerically the loss of positive-definiteness of the
consistent algorithmic tangent renders severe difficulties for the
convergence of the Newton–Raphson method. To circumvent this
issue, as detailed in Appendix E, whenever necessary a fictitious
viscosity parameter was incorporated into the one-dimensional
fibre constitutive law. This modification perturbs the tangent,
improving the convergence of the iterative scheme in the vicinity
of critical points. Accordingly, the perturbation in the stress van-
ishes when convergence has been achieved, up to the convergence
tolerance.
Appendix E. Numerical regularisation based on artificial
viscosity

As already commented, the numerical solution of the nonlinear
problem associated to the model proposed is extremely challeng-
ing. The reason for that is twofold: first, our fibres (trusses) behave
indeed like forceless components (cables) when the fibre stretch in
below the activation stretch; second, the damage model consid-
ered is updated using a fully implicit numerical scheme. These
two characteristics are well-known in literature to affect smooth-
ness, and thus the numerical computations in the problem [4]. In
other words, the robustness of the Newton–Raphson method is
affected by the aforementioned factors which deteriorate the
positive-definiteness of the global stiffness matrix resulting from
the linearisation process. Even so, we decided not to use explicit
integration schemes as the so-called Implex method [40], due to
the reported presence of spurious oscillations in the stress that
could easily mask the physical peaks we are interested in. In fact,
the Implex method was tested, but the results are not reported
here as sake of simplicity. In turn, as explained in the sections
describing the numerical experiments, the strategies employed
(which resulting in a convergent algorithm) were: firstly, the adap-
tive selection of the pseudo-time step; and secondly, the consider-
ation of a numerical viscosity in the fibre material model,
presented below.

For the sake of simplicity, only in this appendix we consider
that all variables correspond to a single fibre a 2 Fnet , actual
pseudo-time n and for the current Newton–Raphson iteration k,
and so all indexes (a;n and k) are dropped everywhere. Consider
now that the stress state also depends on the stretch unbalance
with the previous iteration k� 1ð Þ following a Kelvin-Voigt-like
13, that is:

sg ¼ sg k;dð Þ ¼ 1� dð Þ@kW
0 kð Þ þ g k� k k�1ð Þ

� �
; ðE:1Þ
13 Although our viscosity term is artificial, rate-dependent models associated to
damage has been used also for non numerical purposes [42].

26
where the subscript g in the stress highlights the difference with
the inviscid form, here represented by s0. Noticing that

sg ¼ s0 þ g k� k k�1ð Þ
� �

; ðE:2Þ

the algorithmic tangent is:

calgg :¼ @ksg ¼ @ks0 þ g@k k� k k�1ð Þ
� �

¼ calg0 þ g; ðE:3Þ

where we have used (D.12).
Thus, we briefly conclude from (E.3) and (E.2) that the viscous

numerical regularisation affects by a constant term the LHS (delay-

ing the fibre loss of positive-definiteness, now calg0 < �g) and by a
consistent term (vanishing together with the convergence) in (8).

It is important to underline that this modification only alters
the tangent used in the solution of the equilibrium problem, and
so it does not affect the final converged solution of the nonlinear
problem, nor all subsequent computations (solution of the canon-
ical problem, homogenisation of stress and tangent, determination
of the acoustic tensor, etc). These computations are performed as
described in the main part of the manuscript, that is, without mak-
ing use of the numerical viscosity.
Appendix F. Stretch-only theory

When we are interested exclusively in a micro-mechanical
environment which solely accounts for the axial stretch of fibres,
a more convenient approach, even in terms of computational
implementation, is to express the equations of Sections 2.2 and 5
in terms of summation along fibres instead of summations over
nodes. In what it follows we briefly present such equivalences
(proofs are simple and thus omitted,):

� The micro-mechanical problem given in (8) can be rewritten as
X
a2Fnet

Aasa � Da ~̂ul ¼ 0 8 ~̂ul 2 U
	
l: ðF:1Þ
� The macro-scale stress, alternatively to (9), can be given by the
following homogenisation rule
P ¼ 1
j Xl j

X
a2Fnet

Vasa 
 aa: ðF:2Þ
� The homogenised tangent computation contributions simplifies
to:
DP ¼ 1
jXlj

X
a2Fnet

VaDa � aa 
 aað Þ; ðF:3Þ

DP

	
¼ 1

jXlj
X

a2Fnet

Aa DaD
aucan

kl

� �
 aa 
 Ekl; ðF:4Þ

where for any vectors a;b; c and d, the operation � denotes
a
 bð Þ � c
 dð Þ ¼ a
 c
 b
 d and where ucan

kl is obtained by
solving the canonical problem below (fibre-wise version of (52))

X
a2Fnet

Aa
La

DaD
aucan

kl � Da ~̂ul

¼ �
X

a2Fnet

Aa aa½ �l Daekð Þ � Da ~̂ul 8 ~̂ul 2 U
	
l: ðF:5Þ

We remark that only in this simplified framework and for pure
elastic fibres the present model matches with the formulation
of [48].
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