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Abstract
This paper addresses the influence of manufacturing variability of a helicopter rotor blade on its aeroelastic responses. An

aeroelastic analysis using finite elements in spatial and temporal domains is used to compute the helicopter rotor fre-

quencies, vibratory hub loads, power required and stability in forward flight. The novelty of the work lies in the application

of advanced data-driven machine learning (ML) techniques, such as convolution neural networks (CNN), multi-layer

perceptron (MLP), random forests, support vector machines and adaptive Gaussian process (GP) for capturing the non-

linear responses of these complex spatio-temporal models to develop an efficient physics-informed ML framework for

stochastic rotor analysis. Thus, the work is of practical significance as (i) it accounts for manufacturing uncertainties, (ii)

accurately quantifies their effects on nonlinear response of rotor blade and (iii) makes the computationally expensive

simulations viable by the use of ML. A rigorous performance assessment of the aforementioned approaches is presented by

demonstrating validation on the training dataset and prediction on the test dataset. The contribution of the study lies in the

following findings: (i) The uncertainty in composite material and geometric properties can lead to significant variations in

the rotor aeroelastic responses and thereby highlighting that the consideration of manufacturing variability in analyzing

helicopter rotors is crucial for assessing their behaviour in real-life scenarios. (ii) Precisely, the substantial effect of

uncertainty has been observed on the six vibratory hub loads and the damping with the highest impact on the yawing hub

moment. Therefore, sufficient factor of safety should be considered in the design to alleviate the effects of perturbation in

the simulation results. (iii) Although advanced ML techniques are harder to train, the optimal model configuration is

capable of approximating the nonlinear response trends accurately. GP and CNN followed by MLP achieved satisfactory

performance. Excellent accuracy achieved by the above ML techniques demonstrates their potential for application in the

optimization of rotors under uncertainty.
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1 Introduction

Helicopters experience high level of vibrations compared

to other flight vehicles due to a significantly higher degree

of aeroelastic interaction and rapidly rotating flexible

blades [21]. The vibratory loads in helicopters typically

emanate from the main rotor and can result in fatigue

damage of important structural components, cause human

discomfort and reduce the efficacy of weapon systems.

Therefore, considerable research has been directed towards

accurate modelling of helicopter rotor blades [35, 48].

Rotorcraft analysis is typically conducted using compre-

hensive codes [22]. These codes are needed to provide
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aeromechanics predictions for helicopter properties such as

performance, vibration and aeroelastic stability.

Composite materials have been a natural choice for

helicopter rotor blades owing to their superior strength,

high stiffness-to-weight ratios and other properties which

can be tailored based on requirements. In this context, the

underlying assumption of multiple existing studies is that

the aeroelastic response of composite helicopter rotor blade

corresponding to deterministic physical (input) parameters,

replicates the actual behaviour. This assumption often

proves to be invalid especially for practical industrial

applications where the presence of uncertainty is inevi-

table. Therefore, besides enhancing the fidelity of the

deterministic model of composite rotor blades, the quan-

tification of the response variation because of manufac-

turing anomalies is equally important, if not more so, for a

more realistic description of the system behaviour. More-

over, the effect of manufacturing variability on the aeroe-

lastic response may be aggravated due to the inherent

nonlinearities and structural and aerodynamic interactions.

Consequently, active research has been carried out over

the years to quantify the influence of uncertainties on the

dynamic response of aerospace structures. The first com-

prehensive review of uncertainty quantification (UQ) in

aeroelasticity can be found in [43]. For a more recent

survey on the same topic, [5, 12] is recommended. How-

ever, the literature seems to be quite scarce when it comes

to specific works related to the intersection of aeroelastic-

ity, UQ, composite modelling and helicopter rotor blades.

The honorable mentions of existing works falling under the

above multi-disciplinary intersection are as follows:

For the first time, the influence of composite material

uncertainty on the aeroelastic properties of a helicopter

rotor was investigated in [39]. In particular, they studied

the effect of aleatoric uncertainties on the aeroelastic

response of the helicopter rotor and vibratory hub loads.

Manufacturing constraints were introduced within the

multidisciplinary rotor blade optimization framework in

[32]. In doing so, durability and fatigue analysis were

performed coupled with a probabilistic robust design

methodology to reduce the effects of material, geometry

(particularly, shape) and loading uncertainties on the rotor

blade structural performance. The influence of spatially

varying material properties were studied on the aeroelastic

code predictions (e.g., rotating natural frequencies, vibra-

tory hub loads, etc.) of composite helicopter rotors in [40].

A stochastic spectral method was employed combining

Karhunen–Loéve expansion and high dimensional model

representation to reduce the computational cost. Epistemic

uncertainty modelling was performed in [6], illustrating

high sensitivity of vibratory loads on the optimal design of

inflow models. The authors went on to demonstrate the

high sensitivity, such that the optimal configuration of one

inflow model performed worse than the baseline design

when evaluated with a different inflow model. The influ-

ence of material and manufacturing uncertainties of a

composite UH-60A helicopter rotor blade model were

propagated to the beam properties, the rotating natural

frequencies, the aeroelastic response, and vibratory loads in

hover and forward flight [44]. A micro-mechanical

stochastic approach was undertaken by varying the fiber

orientations of the box-spar of high-fidelity rotor-blade

models. An experimental technique was recently devised

for flutter speed UQ as a stochastic structural modification

problem considering manufacturing tolerances, damage

and degradation [2].

The common aspect and key take-away from findings of

the above articles is that perturbations in the material and

geometric parameters of a composite helicopter rotor can

lead to significant fluctuations in the aeroelastic dynamic

response, thereby accentuating the requirement for

stochastic analysis. In this context, UQ has retained its

popularity since past few decades. Despite its usefulness, it

is computationally expensive to implement in large-scale

systems [53]. Therefore, cost-effective non-intrusive UQ

tools can be useful for analyzing such computationally

demanding systems as they entail detailed numerical

models and sophisticated deterministic solvers in which

one cannot readily modify the existing framework to set up

the necessary propagation tools. This is altogether more

relevant for rotor analysis as the governing equations of

rotorcraft aeroelasticity are typically nonlinear and any

alteration of the rotorcraft analysis software needs domain

specialists.

Monte Carlo Simulation (MCS) is the most widely used

and simplest approach for stochastic response analysis

[41]. However, MCS requires large number of simulations

and thus, proves to be inefficient for large-scale detailed

models. Substantial research has been carried out to

improve the computational framework of MCS. In contrast

to MCS and its variants, which are essentially sampling

based approaches, non-sampling-based techniques, such as

surrogate models are computationally viable alternative to

the former [31]. These models map the input-output rela-

tionship and approximate the functional space with the help

of small number of actual physics-based high-fidelity

simulations. This reduces the computational effort signifi-

cantly. Some recent research has used surrogate modeling

for aerospace analysis and design. Batrakov et al. [3] per-

formed optimization for the rear fuselage of a helicopter

using genetic algorithms and Kriging surrogate models. Lu

et al. [34] used a Kriging surrogate model of the objective

function along with genetic algorithm to reduce the adverse

effects of aerodynamic interactions on UH-60 type fuse-

lage of a helicopter. Kontogiannis et al. [27] used Kriging

and co-Kriging based multifidelity surrogates for
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aerodynamic optimization. Extensive review of surrogate

models can be found in [15, 19].

Although machine learning (for example, radial basis

function neural network [29], recurrent neural network and

multi-layer perceptron [30]) has been employed in solving

inverse problems (for example, structural health monitor-

ing, damage detection and model updating) for rotor blade

applications previously, however, we observed that the

literature is scarce when it comes to the application of ML

for forward stochastic aeroelastic response analysis of

rotors. In this context, it is worth mentioning a recent work

which has employed deep learning to emulate and extrap-

olate from the limited experimental responses of rotorcraft

available as raw sensor (accelerometer) data and create a

’virtual sensor’ for better understanding of their vibration

behaviour [36]. A data-driven framework was proposed to

develop safety-based diagnostics for rotorcrafts and to

define the process of selecting a single, airworthy ML-

based diagnostic classifier that replaces a suite of fielded

condition indicators (CI) [54]. A high-performance parallel

computing framework for deep neural network (DNN)

hyperparameter search using evolutionary optimization

was proposed for nonlinear high-dimensional multivariate

regression problems for condition monitoring of rotorcrafts

[17]. The developed DNN models were capable of map-

ping existing CI to helicopter oil cooler vibration spectra

and thereby infer the quality of the internal bearing faults

[18]. The above works are a part of improving the Health

and Usage Monitoring Systems (HUMS) in rotorcrafts via

ML, initiated by the US Army Aviation Engineering

Directorate (AED) [55]. HUMS evaluate CI to quantify the

rotorcraft health state from operational flight data collected

from on-board sensors. It is to be noted that the above

works are data-driven ML-based rotorcraft operational

analyses and did not account for (i) physics-based mod-

elling or (ii) any form of uncertainties. Drawing motivation

from the above works, this work builds upon generating

ML models on limited and expensive synthetic rotor

response datasets resulting from high-fidelity physics-

based models for accurate and efficient UQ.

Specifically, the following points have motivated our

research: (i) generation of response data by solving detailed

physics-based models is computational expensive and (ii)

input-response relationship is strongly nonlinear. While

(i) can be addressed by conventional surrogate models, we

investigate various specialized ML techniques and utilize

their multi-layered architecture in this work for ensuring

satisfactory approximation accuracy (point (ii)). To be

precise, our work attempts to improve upon the accuracy

aspect by metamodeling of the stochastic rotor responses.

To the best of the authors’ knowledge, this is the first

application of advanced machine learning-driven stochastic

aeroelastic analysis of helicopter rotor blades. The rest of

the paper is organized in the following sequence. The

aeroelastic analysis is discussed briefly in Sect. 2. The

stochastic response by ML is illustrated in Sect. 3. In

Sect. 4, the numerical study is undertaken and the results

are interpreted. Finally, the work is summarized in Sect. 5.

2 Aeroelastic analysis

For realistic prediction of helicopter vibratory hub loads, an

aeroelastic analysis is required. A comprehensive aeroe-

lastic analyses software has been created to address this

issue [21]. This aeroelastic analysis is briefly elucidated

below. The equations in this section are adopted from [21]

and are provided here for completeness.

2.1 Governing equations of motion

The helicopter is modeled as a nonlinear model of multiple

elastic rotor blades coupled to a six-degree-of-freedom

rigid fuselage. Each blade displays flap (out-of-plane)

bending (w), lag (in-plane) bending (v), elastic twist (tor-

sion) (/) and axial displacement (u) as shown in Fig. 1.

The equations of motion are derived using the generalized

Hamilton’s principle developed for non-conservative

systems:

dP ¼
Z w2

w1

ðdU � dT � dWÞdw ¼ 0 ð1Þ

where dU, dT and dW represent the virtual variations of

strain energy, kinetic energy and virtual work performed by

an external force, respectively, and dP indicates the total

Fig. 1 Elastic rotor blade
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potential of the system. The dU and dT are derived using

the Hodges and Dowell approach and incorporate a mod-

erate deflection theory [21]. The external aerodynamic

forces acting on the rotor blade add to the virtual work

variational dW . The aeroelastic analysis applied in this

paper considers aerodynamic forces and moments which

are calculated using free wake analysis, incorporate a

reverse flow model and address time domain unsteady

aerodynamics.

2.2 Finite element-spatial discretization

The governing equations of motion are converted to dis-

crete form using finite element (FE) analysis. This analysis

is valid for nonuniform blade properties. Once discretized,

equation (1) is expressed as:

dP ¼
Z 2p

0

XN
i¼1

ðdUi � dTi � dWiÞdw ¼ 0 ð2Þ

The beam is divided into N spatial finite elements. Each of

the N finite elements incorporates fifteen degrees of free-

dom. These fifteen degrees of freedom incorporate six

degrees of freedom at each boundary node (axial and tor-

sion displacement, flap and lag bending displacement, flap

and lag bending slope) and two internal nodes for axial

displacement and one internal node for torsion displace-

ment. These degrees of freedom correspond to cubic

variations in axial elastic and (flap and lag) bending

deflections, and quadratic variation in elastic torsion.

Between the elements, there is continuity of slope and

displacement for flap and lag bending deflections and

continuity of displacements for elastic twist and axial

deflections. This FE guarantees physically consistent linear

variations of bending moments and torsion moments and

quadratic variations of axial force inside the elements. The

shape functions used here are Hermite polynomials for lag

and flap bending and Lagrange polynomials for axial and

torsion deflection and are given in [7]. In this paper, can-

tilever boundary conditions are considered and the rows

and columns corresponding to the root node in the global

mass, stiffness, damping matrices and the force vector are

discarded. For the numerical results, a non-uniform mesh

with thirteen elements is used.

Substituting u = Hq ( H is the shape function matrix)

into the expression for Hamilton’s principle yields:
Z 2p

0

dqT
�
M€qðwÞ þ C _qðwÞ þKqðwÞ � Fðq; _q;wÞ

�
dw ¼ 0

ð3Þ

The space functionality is thus eliminated by applying FE

discretization and the governing partial differential equa-

tions are reduced to ordinary differential equations.

2.3 Normal mode transformation

Each rotor blade is modeled using FE equations. These

equations are transformed into normal mode space to

facilitate the computationally efficient solution of blade

response. The displacements are enunciated with respect to

normal modes as q ¼ Up. Substituting q ¼ Up in Eq. (3)

yields the equations in normal mode coordinates:
Z 2p

0

dpT
�
�M€pðwÞ þ �C _pðwÞ þ �KpðwÞ � �Fðp; _p;wÞ

�
dw ¼ 0

ð4Þ

where the mass, stiffness and damping matrices and the

force vector in the normal mode space are expressed as
�M ¼ UTMU, �C ¼ UTCU, �K ¼ UTKU and �F ¼ UTF ,

respectively. Integration of Eq. (4) by parts yields:

Z 2p

0

dp

d _p

� � �F� �C _p� �Kp

�M _p

� �
dw ¼

dp

d _p

� � �M _p

0

� ������
2p

0

ð5Þ

The right hand side of the aforementioned equation van-

ishes due to the periodic nature of the rotor steady state

response. Consequently, Eq. (5) generated the system of

first order differential equations:

Z 2p

0

dyTQ dw ¼ 0

where y ¼
p

_p

� �
and Q ¼ F� C_p�Kp

M_p

( )

ð6Þ

For the numerical results, four flap, three lag, two torsion

and one axial mode are used.

2.4 Finite element-temporal discretization

The abovementioned equation is nonlinear since the force

vector �F incorporates nonlinear terms. These periodic,

nonlinear, ordinary differential equations are solved to

yield the blade steady response. Here, the FE in time is

applied in conjunction with the Newton-Raphson method.

We now discretize Eq. (6) over Nt time elements around

the circumference or the rotor disk (where

w1 ¼ 0;wNtþ1 ¼ 2p). Then, we consider a first order Tay-

lor’s series expansion about the steady-state value

y0 ¼ ½pT0 _pT0 �
T
. This process yields the following algebraic

equations.
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XNt

i¼1

Z wiþ1

wi

dyTi Qiðy0 þ MyÞdw

¼
XNt

i¼1

Z wiþ1

wi

dyTi ½Qiðy0Þ þKtiðy0ÞMy�dw ¼ 0

ð7Þ

Kti ¼
o�F

op
� �K

o�F

o _p
� �C

0 �M

2
4

3
5
i

ð8Þ

Here, Kti represents the tangential stiffness matrix for time

element i. Furthermore, Qi is the load vector for time

element i. The modal displacement vector can be written as

follows:

piðwÞ ¼ HðsÞri ð9Þ

Here, HðsÞ are time shape functions (in terms of the ele-

ment coordinates) which are fifth-order Lagrange polyno-

mials [8] used for approximating the normal mode

coordinate p. r is the temporal nodal coordinate needed to

describe the variation of p within the element. Continuity

of generalized displacements is enforced between the time

elements. A Lagrange–Hermite polynomials are used for

interpolation inside the time element. For the numerical

results, a uniform mesh with eight time elements is used.

Now, we substitute Eq. (9) and its derivative into

Eq. (7). Thereafter, an iterative solution provides the blade

steady response.

2.5 Aerodynamic loads

The air velocity in the blade-deformed plane is computed

first. The blade airloads in the rotating deformed frame are

then determined after applying two-dimensional strip the-

ory. Wake model is used for the inflow and time domain

unsteady aerodynamics is invoked.

2.6 Rotor and hub loads

The force summation method is applied to determine the

steady and vibratory components of the rotating frame

blade loads. In the force summation method, the blade

inertia and aerodynamic forces are first integrated along the

length of the blade. Then, the fixed frame hub loads are

computed after summing the contributions of individual

blades at the root.

2.7 Coupled trim

The helicopter must be trimmed for a proper assesment of

the loads. The trim procedure for the helicopter mandates

calcuating the pilot control angles H which cause the six

steady forces and moments acting on the helicopter to

vanish. The solution of the nonlinear trim equations is

performed using a Newton-Raphson procedure and many

iterations are typically performed. A process known as

coupled trim is conducted to solve the pilot input trim

controls, blade steady response and vehicle orientation,

simultaneously. This method is called coupled trim because

the blade response equations and trim equations are

simultaneously solved to incorporate the effect of elastic

blade deflection on the rotor steady forces. Further infor-

mation about the aeroelastic analysis including derivations

of the blade governing equations is expounded in reference

[21].

3 Stochastic analysis via machine learning

3.1 General computational framework

A physical system governed with the help of a set of

equations (for example, differential equations), the general

input-output functional form of the model can be expressed

as

y ¼ MðxÞ ð10Þ

where x 2 RM is a vector of input parameters of the model,

representing the geometrical details, the material model

and the loading. y 2 RQ is the vector of response quantities

of interest such as,

• The displacement response or its related components,

• Natural frequency, modal contribution factors and other

response components in the eigen-space,

• Strain and stress component tensor at specified

locations,

• Plastic strain and other internal damage measuring

metrics,

• Spatial and temporal evolution of the above quantities.

Here, our motive is to set up a generalized non-intrusive

framework for UQ, in which the computational model M

can be construed as a black box, i.e., the model configu-

ration settings cannot be edited by the user at any point and

will only yield unique response values for each combina-

tion of the input vector. Also, M is deterministic in nature

as repeating the analysis with the same set of input

parameters more than once will lead to the same exact

value of the output response quantity. The stochastic input

parameters can be modelled by random realizations of the

vector x 2 RM in accordance to the particular probability

density function fxðxÞ. The conventional techniques

involve the use of statistical inference based approaches,

such as maximum likelihood estimate and criteria like,

Akaike and Bayesian information for selecting the best fit

distribution [45, 51]. Alternative approaches include
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Bayesian statistics which can supplement the model pre-

diction by utilizing measurement data in conjunction with

the system physics and the maximum entropy approach for

cases where there is scarce or no data.

3.2 Gaussian process modelling

The Gaussian process (GP) is a surrogate modelling tech-

nique which fits probability distributions over functions.

GP is a spatial interpolation technique originally developed

for geostatistics [28].

The functional form is expressed below by considering

an independent variable x 2 Rd and function gðxÞ such that

g : Rd ! R, a GP over gðxÞ with mean lðxÞ and covari-

ance function jðx; x0;HÞ can be defined as

gðxÞ�GPðlðxÞ; jðx; x0;HÞÞ;

lðxÞ ¼ E½gðxÞ�

jðx; x0;HÞ ¼ E½ðgðxÞ � lðxÞÞðgðx0Þ � lðx0ÞÞ�

ð11Þ

where H represents the hyperparameters of the covariance

function j. The covariance function j models any prior

knowledge about gðxÞ and can cope with the approxima-

tion of arbitrary complex functions. In a way, the covari-

ance function brings in interdependencies between the

function value corresponding to different inputs. The

squared exponential (Gaussian) covariance function illus-

trated in Eq. (12) is used here.

jðx; x0Þ ¼ r2g exp �
Xd
i¼1

ðxðiÞ � x0ðiÞÞ2

2r2i

" #
ð12Þ

where frg; r1; . . .; rdg ¼ H are the hyperparameters of the

covariance function.

One perspective of viewing GP is the function space

mapping describing the input-output relationship [45]. As

opposed to conventional modelling techniques which

employ fitting a parameterized mathematical form to map

the input-output functional space, a GP does not assume

any explicit form, instead holds a prior belief (in the form

of the mean and covariance function) onto the space of

model (response) functions. Thus, GPs can be classified as

a ’non-parametric’ model as the number of parameters in

the model are governed by the number of available data

points.

Universal Kriging (a general form of GP) is employed

here [33]. This constitutes a second-order polynomial trend

function and GP as shown below

YðxÞ ¼
Xp
j¼1

bjf jðxÞ þ ZðxÞ ð13Þ

where b ¼ fbj; j ¼ 1; . . .; pg is the vector of unknown

coefficients and F ¼ ff j; j ¼ 1; . . .; pg is the matrix of

polynomial basis functions. ZðxÞ is the GP with zero mean

and autovariance cov½ZðxÞ;Zðx0Þ� ¼ r2Rðx; x0Þ, where r2

is the process variance and Rðx; x0Þ is the autocorrelation

function.

The parameters b and r2 can be estimated by the

maximum likelihood estimate (MLE) defined by the fol-

lowing optimization problem under the assumption that the

noise Z ¼ Y� Fb is a correlated Gaussian vector

ðb̂; r̂2Þ ¼ arg max
b;r2

Lðb; r2jyÞ ¼ 1

ðð2pr2Þn det RÞ2

exp � 1

2r2
ðy� FbÞTR�1ðy� FbÞ

� � ð14Þ

Upon solving Eq. (14), the estimates ðb̂; r̂2Þ can be

obtained as

b̂ ¼ ðFTR�1FÞ�1FTR�1y ð15Þ

r̂2 ¼ 1

n
ðy� FbÞTR�1ðy� FbÞ ð16Þ

where y represents the model response such that

y ¼ fy1; . . .; yngT .
The prediction mean and variance by GP can be

obtained as

lŶðxÞ ¼ FT b̂þ rTR�1ðy� Fb̂Þ ð17Þ

r2
Ŷ
ðxÞ ¼ r̂2½1� rTR�1rþ uTðFTR�1FÞ�1u� ð18Þ

where u ¼ FTR�1r� R and r are the autocorrelation

between unknown point x and each point of the observed

dataset.

Some unique features of the above formulation are:

(i) The prediction is exact at the training points and the

associated variance is zero. (ii) It is asymptotically zero

which means as the size of the observed dataset increases,

the overall variance of the process decreases. (iii) The

prediction at a given point is considered as a realization of

a Gaussian random variable. Thus, it is possible to derive

confidence bounds on the prediction. Other adaptive ver-

sions of GP can be found in [13, 14, 38].

3.3 Convolution neural networks (CNN)

The convolutional neural network is a deep learning feed-

forward neural network that has revolutionised computer

vision in recent years. It is typically adopted in image and

video recognition [56]. The main advantage of the CNN is

its inherent ability to perform feature engineering from data

automatically without the need for a manual feature engi-

neering procedure, which is a long-standing bottle-neck in

traditional machine learning [23]. Figure 2 shows the

structure of the typical CNN. Within the model, the input

layer develops a feature graph from the input data, which
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corresponds to the convolution kernel. This kernel uses a

set of weights to develop this feature graph. The link

between the input and convolution layer is established by a

receptive field, which is a square matrix of weights having

sizes smaller than the input vector. As the receptive field

strides along the input, it executes the convolution opera-

tion, described using the equations

yij ¼ r

	XF
r¼1

XF
c¼1

wrcxðrþ1�SÞðcþj�SÞ þ b



ð19Þ

0� i� H � F

S
; 0� j� W � F

S
ð20Þ

where yij is the output of a node, H and W represent the

height (vertical) and width (horizontal) dimensions of the

input, respectively. F represents the height and width size

of the receptive field; and S denotes the stride length. The

term xðrþ1�SÞðcþj�SÞ refers to the input data element with

coordinates ðr þ 1� SÞðcþ j� SÞ, and wrc and b denote

the weight positioned on the receptive field and the bias,

respectively. Also, r represents the nonlinear activation

function used to extract the features from the input.

Within the convolution layer, the input size ðH �W �
DÞ is reduced to ½H�Fþ2P

Sþ1
� W�Fþ2P

Sþ1
� K�, where K denotes

the number of filters. This process progressively decreases

the dimension as the convolution layer stack becomes

deeper. The pooling layer performs two key functions:

(i) reduce the spatial dimension of the input layer by

(typically) up to 75% and (ii) control overfitting.

Within this study, a multi-task learning deep neural

network architecture is adopted. According to [11], multi-

task learning applies an inductive transfer learning mech-

anism to improve performance in neural networks. In other

words, multi-task learning trains tasks in parallel, using a

shared or common representation. In multi-task learning, a

neural network is trained jointly for multiple tasks and has

been proven to improve predictive performance in tasks,

with the prerequisite being that the tasks share conceptual

similarity, or are not in competition [50]. Figure 3

represents the multi-task learning architecture adopted in

this research study. As can be seen, the spine of the net-

work is a fully connected network (FCN) feature extracted

convolutional block (the shared convolutional block).

Consequently, let us represent the shared convolutional

block as:

f ðx; hÞ ð21Þ

where x 2 X and h represent the parameters of the function

f. Therefore, for each output, y, we define an output func-

tion gyðf ðxÞ; hyÞ, where hy are the parameters from the

output-specific layer and y 2 Y, where Y denotes the set of

outputs. For this study, the function f of the shared con-

volutional block is approximated using a 1-dimensional

fully connected convolutional network (FCN), as depicted

in Fig. 2. Consequently, the CNN and FCN networks are

gold standard state-of-the-art deep neural networks, typi-

cally adopted for computer vision and image recognition

tasks. However, the FCN and CNN networks have been

used in non-image classification by acting as a feature

extractor.

Similarly, the model was trained in a greedy, layer-wise

manner, which involves successively adding a new hidden

layer to the model and refitting, allowing the newly added

model to learn the inputs from the existing hidden layer,

while keeping the weights for the existing hidden layers

fixed. This aids to reduce/eliminate the vanishing gradient

problem encountered in neural networks. Consequently,

each layer was trained sequentially starting from the bot-

tom layer (input), with each subsequent layer learning a

higher-level representation of the layer below [4, 26].

3.4 Multi-layer perceptron (MLP)

Artificial neural networks (ANN) are considered as com-

plex predictive models, due to their ability to handle multi-

dimensional data, nonlinearity, and adept learning ability

and generalisation [23]. The basic framework of a neural

network incorporates four atomic elements, namely:

Fig. 2 Structure of a typical

CNN
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(i) nodes, (ii) connections/weights, (iii) layers, and (iv)

activation function. In the MLP, the neurons represent the

building blocks. These neurons, which are simple pro-

cessing units, each have weights that return weighted sig-

nals and an output signal, which is achieved using an

activation function. The MLP reduces error by optimisation

algorithms or functions, such as backpropagation

[10, 25, 47].

In an MLP, the set of nodes are connected together by

weighted connections, which can be analogous to the

coefficients in a regression equation. These weighted

connections represent the connecting interactions. The

optimal weights of each connection between a set of layers

are calculated during each backward pass of a training

dataset, which is also used for weight optimisation using

the derivatives obtained from the input and predicted val-

ues of the training data [24]. The layers represent the

network topology, representing neuron interconnections.

Within the network, the transfer function or activation

function represents the transfer function or state of each

neuron. The basic process in a single neuron is presented in

Fig. 4. In the MLP, an external input vector is fed into the

model during training. In the case of binary classification

problems, during the training, the output is clamped to

either 0 or 1, via the sigmoid activation function. For this

present study, given that the nature of the study was

regression-based, real-valued forecasting was performed

using real-valued loss functions, such as mean squared

error (MSE). A particular variation of neural networks is

the feed-forward neural network. This is widely used in

modelling many complex tasks, with the generic architec-

ture depicted in Fig. 5. As the figure shows, the elementary

model structure comprises three layers, namely the input,

hidden, and output layers, respectively. In feed-forward

neural networks (FFNN), each individual neuron is inter-

connected to the output of each unit within the next layer.

Consequently, it has been proven that an MLP, trained

to minimise a loss or cost function between an input and

output target variable using sufficient data, can accurately

produce an estimate of the posterior probability of the

output classes based on the discriminative conditioning of

the input vector, which is the applied approach in this

study.

3.5 Random forest

The Random Forest algorithm is an ensemble learning

algorithm—these are algorithms that obtain their final

results as aggregates of the individual forecasts of the many

generated classifiers. In other words, the random forest

comprises a collection of T tree-structured classifiers

fT1ðX; h1Þ; T2ðX; h2Þ; . . .; TT ðX; hT Þg, where X ¼
fx1; x2; . . .; xpg is a p-dimensional independent and identi-

cally distributed (i.i.d) random vector of input features, and

each hi 2 R represents the parameters for each individual

classifier, which casts its vote for the most popular class at

the input vector X. The output of the ensembles contains T
outputs, fŶ1 ¼ T1ðXÞ; Ŷ2 ¼ T2ðXÞ; . . .; ŶT ¼ TT ðXÞg,
where Ŷt ¼ 1; . . .; T is the predicted class from the t-th

tree. The final output is an aggregate of all the predicted

classes, which is the class with the majority vote.

The training procedure for the random forest algorithm

is as follows. Consider a dataset comprising n samples,

Fig. 3 Multi-task deep neural network adopted in this study
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D ¼ fðX1; Y1Þ; ðX2; Y2Þ; . . .; ðXn; YnÞg, where Xi, i ¼
1; 2; . . .; n is a vector of input features and Yi corresponds to
the class label (i.e., True or False in binary classification).

Training a random forest on this dataset is as follows.

1. Draw a randomly sampled bootstrap observation (with

replacement) from the n observations in the training

data.

2. From this bootstrap, grow a tree using the rules: select

the best split from a (randomly selected) subset of

m features. In other words, keep m as a tuning

parameter for the algorithm. Grow the tree until no

further split is possible, and the tree is also not pruned

back.

3. Repeat the preceding steps until T trees are grown.

When m ¼ n, then the best split at each node is

selected from all the features.

For this study, given that the focus is on the inference of a

numerical outcome data Y, the random forest regressor

function from the scikit-learn1 package in Python was

adopted instead of the classifier. The assumption that the

input training data are independently drawn from the joint

distribution of (X, Y) and is made up of nðpþ 1Þ tuples

ðx1; y1Þ; ðx2; y2Þ; :::; ðxn; ynÞ. In the regressor, the random

forest prediction function is an unweighted average over

the collection of individual learners

hðxÞ ¼ ð1=KÞ
PK

k¼1 hðx; hkÞ.

3.6 Support vector machine

Classical learning algorithms are trained by minimising the

error on the training dataset and this process is called

Fig. 4 Schematic representation of the basic process in a single neuron

Fig. 5 Multi-task deep neural

network adopted in this study

1 RandomForest Regressor documentation can be found online at:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html
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empirical risk minimisation (ERM). Many machine learn-

ing algorithms learn using ERM, such as neural networks

and regression-based algorithms. However, the support

vector machine is based on the structural risk minimisation

(SRM) principle, a statistically relevant method [46]. Some

studies have proven that this method results in improved

generalisation performance, given that SRM is obtained by

reducing the upper bound of the generalisation error

[9, 16, 49]. The support vector algorithm was developed by

Russian statisticians Vapnik and Lerner [52].

To describe the inner working of the SVM, consider

input data X ¼ fxi; x2; . . .; xng, where n represents the

number of samples having two distinct classes (i.e., True

and False). Assume each class associated to label yi ¼ 1 for

true and yi ¼ 0 for false. For linear input data, we define a

hyperplane f ðXÞ ¼ 0 that separates the given data. We

define a linear function f of the form:

f ðXÞ ¼ WTX þ b ¼
Xm
j¼1

wjxj þ b ¼ 0 ð22Þ

where W 2 Rn�1, and b is a scalar. Together, the vector, W,

and b can be used to define the position of the hyperplane.

The output of the model uses f(X) to create a hyperplane

that classifies the input data to either class (i.e., True or

False). It is important to note that, for an SVM, the satis-

fying conditions for the hyperplane can be presented as

yif ðxiÞ ¼ yiðWTxi þ bÞ� 1; i ¼ f1; 2; . . .; ng ð23Þ

For nonlinear classification tasks, the kernel-based SVM

can be adopted. In this case, the data to be classified are

mapped to a high-dimensional feature space where linear

separation using a hyper-plane is possible. Consider a

nonlinear vector, UðXÞ ¼ ð/1ðXÞ; . . .;/lðXÞÞ, which can be
used to map the m-dimensional input vector X to an l-

dimensional feature space. The linear decision function,

therefore, used to make this transformation can be given as

f ðXÞ ¼ sign

	Xn
i;j¼1

aiyiðUðXjÞ þ b



ð24Þ

Although using SVM for nonlinear classification by

working in the high-dimensional feature space results in

benefits, for instance modelling complex problems, there

are drawbacks, brought about by excessive computational

requirement and overfitting. The SVM described in this

section is traditionally a classifier, indicating that it is

mainly applied to classifcation problems. However, the

problem under investigation is a regression (i.e., real-val-

ued forecasting) problem. For this class of problems, the

support vector regression (SVR) algorithm is applied

instead. The SVR still adopts the same properties as the

SVM, but replaces the decision boundary in the

classification problem with a match between the vector and

a position in the data plane [20]. Consequently, the support

vectors participate to find the closest match between the

data points and the actual function representing them.

4 Numerical study

4.1 Description of the parametric stochastic
model

A soft-inplane hingeless rotor with four main rotor blades

which is similar to the BO105 rotor is addressed in this

paper [21]. The results are generated at a non-dimensional

forward speed (advance ratio) of 0.3. The rotor has 4

blades, a radius (R) of 4.94 m, hover tip speed (XR) of

198.12 m/s, chord equal to 8 percent of radius, rotor

solidity of 0.10 and a thrust coefficient to solidity ratio of

0.07. The mass per unit length of the blade (m0) is 6.46 kg/

m. In this section, the influence of material and geometric

uncertainties on the (a) cross-sectional stiffness (b) natural

frequencies of the non-rotating and rotating blades and

(c) aeroelastic response of the composite rotor blade are

investigated. In doing so, the intention is to quantify the

uncertainty involved in the fabrication process and its

effect on the system level response.

The blade flap bending stiffness ðEIyÞ, blade lag bending
stiffness ðEIzÞ and blade torsion stiffness (GJ) are consid-

ered to be random. These input quantities are representa-

tive of simulating the manufacturing variability as they are

expressed as functions (product) of material and geometric

parameters. It is intuitive to realize that material properties

are prone to higher degree of variation than that of geo-

metric parameters during a fabrication process as the for-

mer stems from a micro-mechanical model and thus,

approximation in homogenization and constitutive laws

may lead to modelling uncertainty being propagated to the

macro-scale. Additionally, the advanced manufacturing

processes have developed significantly higher precision in

producing exact geometrical shapes. Having said this, the

complexity associated with fabricating irregular geometries

may introduce errors.

Therefore, the combined effect of material and geo-

metric parameters are studied, with the rational outcome of

the former being more sensitive on the response as it suf-

fers from a higher level of randomness. As the random

parameters involve cross-sectional stiffnesses of the rotor

blade, it is practical to assume that all realizations corre-

sponding to these parameters will be positive and therefore,

they are assumed to be log-normally distributed. However,

the ML-based stochastic framework employed here is

generalized so that it can deal with all possible proba-

bilistic distributions.
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Murugan et al. [39] conducted a systematic study of the

effect of uncertainty in composite material properties on

the blade stiffnesses. They found that 5 % coefficient of

variation (C.O.V.) was typical of composite material

microlevel properties such as Young’s modulus and Pois-

son’s ratios. A value of 10 % C.O.V. was more represen-

tative of the higher level of dispersion which can occur for

helicopter blades [42]. When the microlevel properties with

10 % C.O.V. were inserted into a composite blade analysis

program, the values of C.O.V. for EIy, EIz and GJ were

obtained as 6.88, 8.93 and 8.44, respectively. To err on the

side of caution, we assume a higher value of 10 % C.O.V.

on the blade stiffnesses in this paper to account for material

uncertainty as well as some defects which may creep into

the material during service life. The description of the

random parameters is given in Table 1. Note that these

quantities are non-dimensionalized by m0X
2R4.

The aeroelastic response quantities of interest which are

studied as part of the stochastic analysis here are: (i) blade

first flap rotating frequency (xf
1), (ii) blade second flap

rotating frequency (xf
2), (iii) blade first lag bending fre-

quency (xL
1), (iv) blade second lag bending frequency (x

L
2),

(v) blade first torsion frequency (xT
1 ), (vi) power required

by main rotor (P), (vii) vibratory longitudinal hub force

(f 4Xx ), (viii) vibratory lateral hub force (f 4Xy ), (ix) vibratory

vertical hub force (f 4Xz ), (x) vibratory rolling hub moment

(m4X
x ), (xi) vibratory pitching hub moment (m4X

y ), (xii)

vibratory yawing hub moment (m4X
z ), (xiii) vibration

objective function (J) defined in Eq. (25), and (xiv) lowest

damped stability mode (Damping).

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf 4Xx Þ2 þ ðf 4Xy Þ2 þ ðf 4Xz Þ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm4X

x Þ2 þ ðm4X
y Þ2 þ ðm4X

z Þ2
q ð25Þ

It can be observed from Eq. (25), that J can be evaluated

readily from the predicted force and moment terms. In spite

of this, we attempt to capture the trend of J separately as an

individual quantity as it is commonly used as objective

function in aeroelastic design optimization frameworks

[35]. This is intended for assessing the accuracy of ML

techniques in capturing the stochastic trend of J. If the

approximation quality is found to be satisfactory, there may

be a huge scope towards potential application of ML in

aeroelastic optimization under uncertainty frameworks in

future.

For training all the ML models, 100 training points had

been initially generated using a Latin hypercube sampling

(LHS) scheme [37]. This was implemented with the help of

the ’’lhsdesign’’ built-in function of MATLAB and the

’’maximin’’ option which maximises the minimum distance

between points. However, it was observed that the actual

FE model of the rotor blade did not converge for 4 of those

points in the experimental design. Therefore, the ML

models were eventually trained on the basis of the

remaining 96 realizations of stochastic input parameters

and converged aeroelastic responses.

4.2 Adaptive Gaussian process

The MATLAB-based DACE platform was employed to

implement the GP model in this work [33]. The squared

exponential correlation function was used to construct the

GP and 10-fold cross-validation (CV) was performed to

access the model accuracy. The starting point, lower bound

and the upper bound of the hyperparameters in the corre-

lation function were adopted as, [10 10 10], [0.1 0.1 0.1]

and [20 20 20], respectively, for each of the response

quantities.

The root mean squared error (RMSE) obtained by GP is

reported in Table 2. Note that the numerical values for all

Table 1 Description of random parameters considered for the

stochastic rotor blade analysis

Variables Distribution Mean C.O.V.

EIy Lognormal 0.021 0.1

EIz Lognormal 0.0201 0.1

GJ Lognormal 0.007688 0.1

Table 2 RMSE values obtained from performing 10-fold CV by

different ML techniques

Responses GP CNN MLP RF SVR

xf
1

0.00012 0.00031 0.03291 0.01675 0.05014

xf
2

0.04709 0.00135 0.02741 0.02047 0.04865

xL
1

0.00255 0.00378 0.05612 0.03221 0.06135

xL
2

0.04609 0.00023 0.01134 0.01362 0.03975

xT
1

0.01275 0.00020 0.03824 0.01342 0.03858

P 4.97 �10�6 0.00025 0.02075 0.02385 0.05747

f 4Xx 3.25 �10�5 0.00011 0.09812 0.00676 0.03721

f 4Xy 5.68 �10�5 0.00069 0.01764 0.01345 0.04227

f 4Xz 0.00161 0.00213 0.06002 0.02177 0.03978

m4X
x 1.69 �10�5 0.00028 0.04848 0.01352 0.03768

m4X
y 1.37 �10�5 0.00084 0.02225 0.02208 0.04206

m4X
z

0.00109 0.00032 0.04240 0.01873 0.04410

J 9.13 �10�6 0.00023 0.02454 0.01491 0.04303

Damping 0.01279 0.00196 0.01726 0.03234 0.05432

The lowest RMSE values corresponding to each stochastic response

quantity have been indicated in bold, and illustrates the best per-

forming ML technique
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the response quantities other than the natural frequencies

are small in magnitude (ranging from 10�1 to 10�5) as they

are non-dimensional, and therefore, a non-relative statisti-

cal error metric (without denominator) such as RMSE has

been selected in this work. It can be observed from the

RMSE values in Table 2, that GP achieved a decent level

of accuracy in estimating most of the response quantities.

Since RMSE is not a relative error metric, in order to

access the level of accuracy achieved for the respective

response quantity, an idea of the magnitude of that

response quantity is necessary. This can be obtained by

referring to the mean values of the actual or predicted

response quantities corresponding to a test dataset reported

in Table 4. In particular, while approximating the follow-

ing four response quantities f 4Xz , m4X
z , J, and damping,

relatively high errors by GP were observed due to their

nonlinear fluctuations.

As an attempt to improve the approximation of GP for

the above four response quantities, an adaptive sampling

strategy by using the inherent predictive variance feature of

GP is proposed. This is explained as follows:

• A GP model is built on the 96 input design points and

for each of the above four response quantities (evalu-

ated at these 96 design points).

• 10,000 random realizations of input variables are

generated by MCS and the above GP model is used to

predict the four response quantities corresponding to the

realizations. The MSE by GP is also obtained corre-

sponding to these 10,000 points with the help of the

predictive variance feature of GP.

• The MSE obtained is normalized over the mean of the

respective predicted response quantity and sorted in

descending order.

• It is observed for all of the four response quantities,

only the first 1000 MSE values are relatively large

compared to the remaining 9000 values. So, only the

first 1000 MSE values are taken into consideration to

focus on the highly erroneous regions.

• The realizations of the input variables corresponding to

the first 1000 MSE values are stored. This is to identify

the region in the input design space where the GP

predictor does not capture the response trend adequately

and therefore, needs additional sample points in those

regions.

• With the help of these 1000 input design points

identified in the above step, the input space is

partitioned into 3 clusters, corresponding to each of

the four response quantities. This grouping is done

according to the magnitude of the error obtained while

approximating the response quantities. The purpose is

to provide most number of points in the first cluster

which consists of the input points for which maximum

error was achieved. Similarly, the second cluster is

represented by fewer points than the first cluster and

more points than the third cluster. The third cluster

consists of the least number of points as it corresponds

to the input space for which minimum error was

achieved. Intuitively the size of the original cluster will

vary according to the quality of the approximation of

the respective response quantity. Thus, the initial size of

the first cluster of f 4Xz and m4X
z is not necessarily

identical.

• Next, the number of representative points of each

cluster are obtained by the k-means clustering tech-

nique, implemented using the built-in MATLAB func-

tion ’kmeans’. For each of the response quantities, the

first, second and third clusters consist of 10, 6 and 4

points, respectively. Thus, the input design space of

cluster 1 is represented by more points (fine partition-

ing) so as to capture the response trends precisely in the

erroneous regions compared to the second and third

clusters. These 20 additional input points generated for

each of the four response quantities are shown in Fig. 6.

Responses from the actual FE model are calculated for

the above 80 additionally generated input points. However,

78 responses could be obtained as m4X
z did not converge for

two points. In order to check the improvement in the GP

predictions of the four response quantities, 10-fold CV is

performed on (96?20) samples of f 4Xz , J, and damping and

(96?18) samples of m4X
z . The RMSE values obtained for

f 4Xz improve from 0.00161 to 0.00107, m4X
z improves from

Fig. 6 Adaptive input sample generation with predictive variance

feature of GP and k-means clustering
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0.00109 to 0.00071, J improves from 9.13 �10�6 to 8.51

�10�6 and damping improves from 0.01279 to 0.00924.

For testing the performance of all the ML techniques

trained on the initial 96 samples, the above 78 additionally

generated points are used. This can be viewed as a type of

concise MCS as all of the above 78 points resulted from

applying k-means clustering on 10,000 MCS samples (as

discussed previously). Moreover, these 78 points corre-

spond to the input design space where the GP prediction

was erroneous, thus, it is expected that all the ML tech-

niques will be put to severe test upon subjecting them to

this test dataset.

4.3 Convolution neural network:
implementation details

In this study, the FCN neural network adopted is (see

Fig. 2) a multi-task learning approach as depicted in Fig. 3.

For its implementation, the Python-based Tensorflow

software has been used [1]. In our model, the shared con-

volutional block had a CNN and Max pooling layer, fol-

lowed by a fully connected (i.e., dense) layer and the

regression layer. The CNN had 128 filters, with a kernel of

length ð1� 2Þ. A pooling layer of size ð1� 2Þ is applied

after the CNN layer, after which a flatten layer is applied to

transform the extracted features from the CNN and pooling

layers to a one-dimensional vector. The fully connected

(dense) layer is applied after the flatten layer to perform

representation learning between the one-dimensional vec-

tor and labels. Finally, the regression layer is applied with a

linear activation function to learn to make the inferences.

In order to make the input data compatible with the CNN, it

must be transformed to a manner that can be accepted as

input. For CNNs, two-dimensional data inputs (i.e., having

nrows � ncolumns) must be transformed to 3-dimensional

tensors, corresponding to (ntimesteps � nrows � ncolumnsÞ.
Therefore, for this current study, each data point in the

original input with dimension ð1� 14Þ (i.e., number of

responses) is reshaped to a 3-dimensional image corre-

sponding to ð1� 1� 14Þ, treating it as a single instance of

an image comprising ð1� rows� columnsÞ. During model

training, input data with three variables are used to train the

model in a shared training approach, which is multi-task

learning, in such a manner that the predicted responses are

all learnt in a single training regime.

To optimise the parameters within a model, stochastic

gradient-based optimisation algorithms are generally used.

For this study, the Adam optimizer was adopted. The

learning rate value was determined as ð1� 10�6Þ using a

grid search mechanism. This study adopted a loss function

based on the RMSE. Therefore, the RMSE was calculated

on the training data to update the model parameters with

each iteration (epoch).

The mini-batch stochastic gradient descent was applied

using the Adam optimiser to minimise the RMSE. The

performance of deep neural networks depends on prede-

termined hyperparameters, which are obtained using an

optimization process. Unlike model parameters, which are

learned using an optimization function to minimise an

objective (or loss) function, hyperparameters are not

learned during the model training. Many hyperparameter

optimization methods exist, such as random search, grid

search, and Bayesian optimization. However, for this arti-

cle, we applied a grid search framework for hyperparam-

eter optimization of all the machine learning models

adopted [?].For this study, the hyperparameter optimization

method can be described in the following manner: Con-

sider a dataset U, with an index of n possible hyperpa-

rameters h. The grid search method simply requires the

selection of a set of values for each hyperparameter

ðh1. . .hkÞ that minimizes the validation loss. In other

words, the grid search algorithm executes all the possible

combinations of values in a ’grid’ format, such that the

number of trials in a grid search is S ¼
Qn

n�1 jhðkÞj.
The information on the trainable parameters is provided

as follows. First layer is the input layer, so the input is a

1� 3 tensor. In the second layer (i.e., first convolution

layer), the input to the layer is the output from layer 1 and

since the filter size for convolution layer 1 is ð1� 2Þ, the
number of parameters in this layer is ððð1� ninput�
filtersizeÞ þ biasparameterÞ � nfilterÞ, which is

ð1� 3� 2Þ þ 1Þ � 128Þ ¼ 896. For the dense (fully-con-

nected) layers, since each layer has 32 units, the number of

trainable parameters for each layer is calculated as

ð1� ninputfromCNNÞ þ biasparameterÞ � nunitsÞ, which is

ððð1� 128Þ þ 1Þ � 32Þ, which is 4,128.

As it is evident from the above calculations that the

number of trainable parameters are significantly high and

may lead to overfitting in the model. The dropout technique

was applied to control the overfitting in the model.

Specifically, a dropout of 0.2 (20 %) was applied in

training the deep learning model. Also, some part of the

training data (10 %) was allocated for model validation,

using the shuffle method (i.e., randomly shuffling the

training dataset).

4.4 Multi layer perceptron: implementation
details

In this study, we adopted an MLP, which had a shared

neural network block, and one hidden layer of densely

connected neurons, made of 32 units in Tensorflow [1].

The network adopted the Adam optimiser, and a learning
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rate of ð1� 10�3Þ. Just as with the CNN, the loss function

adopted was the RMSE. The model was trained for 1,000

epochs. Similar to the deep CNN model training described

in Sect. 4.3, the MLP was trained using similar parameters

for the optimiser. Consequently, the model training regime

was run for 300 epochs with a batch size of 16 and learning

rate, a ¼ 1� 10�3. The first-moment exponential decay

was b1 ¼ 0:001, while the second-moment exponential

decay was set as b2 ¼ 0:999.

The number of parameters in each MLP layer is calcu-

lated using the formula ðnunits � nfeaturesÞ, which is

ð32� 2Þ ¼ 64. Note that nfeatures refers to the 2 connections

among the 3 inputs. For the second (fully connected) block,

each layer, fully connected to a response variable has

ðnunits þ biasparameterÞ parameters, which is ð32þ 1Þ ¼ 33

parameters. The dropout scheme adopted for the MLP

model was the same as that of the CNN model to limit the

overfitting.

4.5 Random forest: implementation details

The random forest model in Tensorflow [1] was trained

using an input dataset and 10-fold CV for model parameter

tuning to ensure generalisation. For the specific model

adopted in this study, we selected to train a fixed number of

trees in the forest. For this, the number of trees was set as

100 and given that – as earlier stated – the random forest is

an ensemble method that is trained by creating multiple

decision trees, the number of trees parameter is used to

specify the number of trees to be used in the process. In this

study, given that the total number of features m ¼ 3 is

relatively small, the study adopted a bagging (bootstrap

aggregation) method of training the algorithm. To train our

model, we adopted the MSE to be used in measuring the

quality of the split, which is equivalent to variance

reduction in a feature selection regime.

4.6 Support vector machine: implementation
details

As previously stated, the support vector regressor maps the

training data into a higher-dimensional feature space, using

a function and subsequently computing a hyperplane that

maximises the distance between the margins of the target

feature. However, the support vector regressor has many

parameters that must be set for accurate parameter fore-

casting. These parameters, which are not optimised with

model training, are referred to as hyperparameters. For this

study, arriving at an optimal configuration for the hyper-

parameters was achieved using a grid search framework.

For the SVR, the key hyperparameters include the kernel

type, the kernel coefficient, the regularization parameter,

and the epsilon value �. Consequently, the selected � value

for this study was set as 1.0, while the kernel function used

was the radial basis function (RBF). The kernel function

used was defined as c ¼ 1=ððnfeaturesÞ � XvarianceÞ, where

nfeatures refers to the number of input features (i.e., 3) and

Xvariance denotes the variance of these input features. For

implementation, Tensorflow software was utilized [1].

Note that for this study, the multitask learning frame-

work is only applied to the deep learning models (CNN and

MLP), primarily to reduce the training time required to

train a model for each output response. Given that the other

shallow learning models trained relatively quickly, it was

not very time consuming to loop through the individual

output responses in each training cycle.

4.7 Results and discussion

The RMSE obtained from performing 10-fold CV by dif-

ferent ML techniques is presented in Table 2. The lowest

RMSE values corresponding to each stochastic response

quantity have been indicated in bold and thereby illus-

trating the best performing ML technique. From the results

obtained in Table 2, it can be observed that out of all the

ML techniques, GP and CNN are the most accurate. The

results obtained by all the ML techniques on the test dataset

are presented in terms of boxplots in Fig. 7 and RMSE

values in Table 3. Figure 7 and Table 3 reveal that in

addition to GP and CNN, MLP also achieves a satisfactory

level of accuracy. The response statistics (mean and stan-

dard deviation) of the stochastic response quantities are

reported in Table 4.

It can be observed from Table 4 that the standard

deviation is high for the first torsion frequency, the second

flap frequency and the second lag frequency. The first lag

and flap frequencies show a low effect of the elastic stiff-

ness uncertainty due to their strong dependence on the

rotation speed. Vibration levels can increase substantially

when the rotor frequencies approach multiples of the main

rotor speed. Regions for the safe operation of the main

rotor in terms of RPM are selected by carefully avoiding

the reasons where rotating frequencies approach the mul-

tiples of the rotating speeds. The results in this paper show

that an uncertainty analysis must be conducted to ensure

that material uncertainty does not cause frequency shifts

which can result in high vibration levels.

As can be expected, the effect of uncertainty of the

stiffnesses on the rotor power is much less, as this is a

higher order effect. The six vibratory loads consists of three

vibratory forces and moments acting on the rotor hub.

Vibratory hub loads transmitted by the main rotor to the

fuselage is the main cause of vibration. The three vibratory

forces are the longitudinal, lateral and vertical forces and
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are indicated by subscripts x, y and z, respectively. The

three vibratory moments are the rolling, pitching and

yawing moment and are indicated by subscripts x, y and z,

respectively. The substantial effect of uncertainty can be

clearly observed on the six vibratory hub loads. In partic-

ular, a high impact of uncertainty relative to the mean is

seen in the yawing hub moment. The cumulative effect of

uncertainty on the helicopter is shown in J, and again it can

be seen to be quite substantial relative to the mean. Con-

siderable effect of uncertainty is also shown in the damp-

ing. Damping in the modes for the periodic system is

indicative of the possibility of the aeroelastic instability

known as flutter. Typically, flutter occurs when damping

becomes negative and this is a self excited oscillation

which can cause the amplitude of motion of the rotor to

increase inexorably until failure. While lag dampers are

often used to alleviate damping, the uncertainty results

show that sufficient factor of safety must be used in lag

damper design to alleviate the effect of perturbation in the

damping simulation results due to uncertainty in the

material properties.

These results indicate that a robust and reliability design

optimization approach is needed for helicopter optimiza-

tion. The GP, CNN and MLP methods are shown in this

Fig. 7 Boxplots of the

stochastic response quantities

corresponding to the test dataset

by (a) actual FE-based
simulations (b) GP (c) CNN
(d) MLP (e) RF (f) SVR
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paper to be the most suitable for performing uncertainty

quantification for such problems. Note that typically,

vibration is minimised using the objective function J and

constraints are imposed on the blade rotating frequencies

and damping. The damping should remain positive and the

frequencies should be kept away from multiples of the

main rotor speed. Uncertainty can cause a deterministic

design to become infeasible. From a practical perspective,

uncertainty quantification allows a systematic approach to

determine margins of safety which can be used in design

for frequencies, vibratory hub loads and aeroelastic

damping. The use of uncertainty quantification also pre-

vents the need for overly conservative designs based on

high values of factor of safety which can lead to excess

weight and the resulting deleterious consequences for a

flight vehicle structure.

5 Summary and conclusions

The novelty of the work lies in the application of advanced

data-driven learning techniques, such as convolution neural

networks and multi-layer perceptron, random forests, sup-

port vector machines and adaptive Gaussian process and

utilizing their multi-layered structure for capturing the

nonlinear response trends to develop an efficient grey-box

physics-informed ML framework for stochastic rotor

analysis. Specifically, this work improves upon the accu-

racy aspect by metamodelling the nonlinear stochastic rotor

response trends by entailing limited expensive-to-generate

physics-based simulations from detailed FE models. Thus,

the work is of practical significance as (i) it accounts for

manufacturing uncertainties, (ii) accurately quantifies their

effects on nonlinear response of rotor blade and (iii) makes

the otherwise computationally prohibitive simulations

viable by the use of ML.

A comparative assessment of advanced deep and shal-

low supervised learning techniques is presented. These

data-driven techniques have been trained to learn from the

stochastic aeroelastic response trends and build corre-

sponding physics-based meta-models of the system,

thereby eliminating the need to perform high-fidelity sim-

ulations on the actual FE model. For simulating the man-

ufacturing variability, the combined effect of material and

geometric randomness have been taken into account.

Important findings from the results obtained in this study

include:

• In general, high sensitivity of the rotor aeroelastic

output responses to the input elastic stiffness uncer-

tainty reveals that considering manufacturing variability

in analyzing helicopter rotors is pivotal to simulate their

actual behaviour.

• To be specific, few response parameters like the first

torsion frequency, vibratory hub loads and damping

have a substantial effect due to the input perturbations.

The highest sensitivity has been observed in the yawing

hub moment. This suggests that sufficient factor of

safety should be considered in the rotor design to

(i) prevent frequency shifts which can result in high

vibration levels and, (ii) avoid the occurrence of the

aeroelastic instability condition known as flutter and

Table 3 RMSE values obtained

from approximation of the test

dataset by different ML

techniques

Responses GP CNN MLP RF SVR

xf
1

0.001124 0.004763 0.002725 1.212949 1.212918

xf
2

0.150462 0.099628 0.101499 3.625389 3.625389

xL
1

0.002497 0.001488 0.003031 0.669514 0.669522

xL
2

0.097519 0.06667 0.067394 3.417177 3.417177

xT
1

0.05913 0.061847 0.08274 4.972982 4.97219

P 7.11 �10�6 0.000155 0.000135 2.063416 2.063416

f 4Xx 4.33 �10�5 8.89�10�5 0.000194 0.004356 0.001848

f 4Xy 6.76 �10�5 8.57�10�5 0.000101 1.999475 1.999475

f 4Xz 0.00151 0.001518 0.001131 0.007447 0.006816

m4X
x

0.000674 0.000692 0.000692 2.034228 2.034228

m4X
y 2.43 �10�5 2.75�10�5 0.000172 0.001019 0.002021

m4X
z

0.001781 0.00203 0.002111 2.077397 2.077397

J 1.48 �10�5 6.34�10�5 0.000103 0.010228 0.002553

Damping 0.015089 0.00937 0.009964 2.054043 2.054043

The lowest RMSE values corresponding to each stochastic response quantity have been indicated in bold,

and illustrates the best performing ML technique
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accordingly, design lag dampers which are used to

alleviate damping.

• The results achieved highlight the fact that CNN and

GP are the most accurate models followed by MLP. RF

and SVM mostly failed to capture the response trends,

with a very few exceptions where some response

quantities were decently predicted. The accuracy

obtained by CNN, GP and MLP is worth acknowledg-

ing as (i) a high proportion of variation in the input

parameters was considered (ii) the prediction test

dataset consisted of the points from the stochastic input

space where GP initially proved to be vulnerable.

Additionally, an adaptive sampling strategy was

devised by using the predictive variance feature of GP

(i) to improve the accuracy by adding a nominal

number of points to the experimental design and (ii) the

additional points generated were used to create the test

dataset in which the other models could be validated.

For extending this research in a future direction, it will be

worth investigating the effect of uncertainties on different

rotor models. This will create additional datasets based on

different physical insights on the structural system. Also,

this work does not account for spatially varying uncer-

tainties, which may be prevalent for helicopter rotor

models. This will require integration of random field

models for the stochastic elastic stiffness parameters with

the present computational framework and is a potential

direction for future investigation. Since a decent level of

accuracy is achieved by CNN, GP and MLP, these machine

learning models can be extended for applications of opti-

mization under uncertainty of composite rotor blades.

Although the deep learning techniques may be hard to

train, once the ideal model configuration is achieved, they

can easily be employed to solve more expensive problems

such as the optimal design of the blades. The capability of

these methods in operating in high-dimensional spaces will

be advantageous to GP and conventional surrogate mod-

elling approaches which easily tend to collapse in these

complex scenarios. Therefore, deep and shallow neural net

driven robust or reliability based design of composite

helicopter rotor blades for vibration control will be an

interesting extension of this present work. One of the

approaches to solve the optimization problem can be

minimizing the vibration (denoted by the term J) with the

constraints imposed on the blade rotating frequencies and

damping to ensure the frequencies are kept away from the

multiples of the main rotor speed and the damping remains

positive.
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