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Abstract: Objectives: Functional connectivity triggered by naturalistic stimuli (e.g., movie clips),
coupled with machine learning techniques provide great insight in exploring brain functions such
as fluid intelligence. However, functional connectivity is multi-layered while traditional machine
learning is based on individual model, which is not only limited in performance, but also fails to
extract multi-dimensional and multi-layered information from the brain network. Methods: In
this study, inspired by multi-layer brain network structure, we propose a new method, namely
weighted ensemble model and network analysis, which combines machine learning and graph theory
for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical
theory were jointly employed. The functional connectivity and graphical indices computed using
the preprocessed fMRI data were then all fed into an auto-encoder parallelly for automatic feature
extraction to predict the fluid intelligence. In order to improve the performance, tree regression and
ridge regression models were stacked and fused automatically with weighted values. Finally, layers of
auto-encoder were visualized to better illustrate the connectome patterns, followed by the evaluation
of the performance to justify the mechanism of brain functions. Results: Our proposed method
achieved the best performance with a 3.85 mean absolute deviation, 0.66 correlation coefficient and
0.42 R-squared coefficient; this model outperformed other state-of-the-art methods. It is also worth
noting that the optimization of the biological pattern extraction was automated though the auto-
encoder algorithm. Conclusion: The proposed method outperforms the state-of-the-art reports, also
is able to effectively capture the biological patterns of functional connectivity during a naturalistic
movie state for potential clinical explorations.

Keywords: functional magnetic resonance imaging; functional connectivity; weighted ensemble
model and network analysis; fluid intelligence

1. Introduction

The human brain can be viewed as a complex network with an enormous amount of
locally segregated structural regions; although each region is dedicated to different func-
tionalities, together they maintain globally functional communications among different
cognitive resources. One of the most important non-invasive approaches to measure brain
functional connectivity (FC) is the functional magnetic resonance imaging (fMRI), which
reflects the changes in the blood oxygen level-dependent (BOLD) signal [1]. As one of
the major advancements in recent fMRI data analyses, functional connectivity is used to
measure the temporal dependency of neuronal activation patterns in different brain regions
and the communications between these regions [2]. Traditional FC analysis was based on
specific experimental paradigms or resting state; recent studies have shown that naturalistic
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stimuli, which forms ecologically valid paradigms and approximates real life, could im-
prove compliance of the participants [3] and hence increase test-retest reliability [4]. Indeed,
functional connectivity with high ecological validity assessed through naturalistic stimulus
has been found more reliable than that assessed in the resting state [5]. Additionally, while
exposed to this natural stimulus, the processing of sensory information would depend on
the topological structure, especially the hierarchical and modular connections [6].

Many neuroimaging studies have shown that the relationship between biological
function and cognitive function can be established using certain statistical measurements
(e.g., Pearson correlation). However, statistical methods (e.g., parametric methods) tend
to over-fit the data and yield a quantitatively increased certainty of the statistical esti-
mates, while failing to generalize to novel data [7]. Furthermore, it may be impaired by
high-dimensional situations (e.g., FC) [7]. On the other hand, machine learning methods
with well-established processing standards could extract biological patterns and leverage
individual-level prediction simultaneously from the neuroimaging data [8]. By further
integrating FC analysis into the machine learning framework, a data-driven approach
named connectome-based predictive modeling (CPM) could even predict individual dif-
ferences in traits and behaviours [9]. Coupled with the alerting score method, Rosenberg
et al. found that CPM could predict sustained attention ability using resting-state fMRI
data; this finding may be applied to describe the new insight regarding the relationship
between FC and cognitive ability [10]. In predicting fluid intelligence, Abigail et.al. found
that a specific-task-based predictive model outperformed the resting-state-based model;
this revealed that identifying the brain patterns in a given group could provide a unique
brain-fluid intelligence relationship [11].

Using machine learning techniques, the physiologically important representations
buried within fMRI data could also be excavated and captured [12]. For example, using
deep learning and fMRI, Plis et al. found that deep nets could sift and keep the latent
relation and biological patterns from neuroimaging data [13]. These studies indicate that
deep neural nets not only could be used to infer the presence of brain-behavior (e.g., FC
and human behavior) relationships and bring new representation to explain the neural
mechanisms, but also can be used as the fingerprint to translate neuroimaging findings
into practical utility [14]. However, traditional machine learning models based on a single
model were limited in model generalization and model performance [9]. Previous studies
have demonstrated that ensemble learning, proposed by Breiman et al. [15], has been
integrated with bootstrap sampling and multiple classifiers to improve generalization. In
addition, the overfitting issue would also be eliminated by using ensemble learning [16].
Inspired by the fact that the brain networks are hierarchical with information processed in
different layers [6], combining hierarchical structure and ensemble learning could be an
effective way to improve the performance of models and extract biological information
from data.

In this study, we propose a new machine learning hierarchical structure to predict the
fluid intelligence (reflects basic cognitive ability), using the biological patterns extracted
by examining the naturalistic functional connectivity. A new regression method based
on machine learning and graph theory, namely weighted ensemble model and network
analysis (WENA), has been developed for this prediction problem. Compared with the
traditional CPM, we used a self-supervised learning method named auto-encoder (AE) to
extract non-linear and deep information from the functional connectivity measurements
and the graphical theory indices based on fMRI data. To further boost the prediction
performance, we also proposed a novel approach, namely weighted stacking (WS), which
comprised of a multi-stacking layer structure for WENA to improve the effectiveness of
model fusion. The comparative analysis showed that the proposed method outperforms
the state-of-the-art methods reported. The results also revealed the existing coherence
between biological fluid intelligence and neuroimaging reflection using the proposed
data-driven approach.
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2. Materials and Methods
2.1. Data Acquisition

The data of 464 participants, aged from 18 to 88 years old, were downloaded from the
population-based sample of the Cambridge Centre for Ageing and Neuroscience (Cam-
CAN, http://www.cam-can.com, accessed on 10 December 2021). The subjects without
behavioral/demographical data and/or neuroimaging data (fMRI or MRI) were excluded
from this study; hence, in total, 461 control participants without mental illnesses and
neurological disorders were included in this work. The fluid intelligence score (FIS) and
demographical information about the participants are shown in Table 1.

Table 1. Demographic information of the subjects.

Total Number Age FIS Gender
(Female/Male)

461 54.64 ± 18.63 32.97 ± 6.30 231/230

The fMRI data were recorded while subjects were watching a clip of the movie by
Alfred Hitchcock named “Bang! You’re Dead”. According to a previous neural synchro-
nization study, the full 25-min episode was condensed to 8 min [17]. Participants were
instructed to watch, listen, and pay attention to the movie.

The data were collected using a 3T Siemens TIM Trio System with a 32-channel
head coil at the MRC Cognition Brain and Science Unit, Cambridge, UK. For each par-
ticipant, a 3D-structural MRI was obtained using a T1-weighted sequence (generalized
auto-calibrating partially parallel acquisition; repetition time = 2250 ms; echo time = 2.99 ms;
inversion time = 900 ms; flip angle α = 9◦; matrix size 256 mm × 240 mm × 19 mm; field of
view = 256 mm × 240 mm × 192 mm; resolution = 1 mm isotropic; accelerated factor = 2)
during the movie-watching period.

2.2. Experimental Pipeline

To predict the brain fluid intelligence, the proposed WENA method is integrated
with a series of models via hierarchically functional networks. Figure 1 illustrates the
overall structure of the system. To start with, the raw fMRI data was preprocessed and
the FCs (12,720 FCs for each subject) from 160 regions of interest (ROIs) computed; the
graphical theory indices (including degree centrality, the ROI’s strength, local efficiency and
betweenness centrality) were also obtained in parallel within this step. The indices were
entered into the AE module and encoded as AE features; decoded AE patterns were then
obtained. Finally, all features were fed into WS structure to obtain the FIS for each subject.

http://www.cam-can.com
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Figure 1. The overall procedure of the proposed method. (A) Data preprocessing. (B) Encoded func-
tional connectivity and graphical theory indices. The AE was used in this step to extract features 
and biological patterns from the network indices. (C) The structure of the weighted stacking fusion 
model (three-layer structure). Firstly, the features extracted from network edges and graphical the-
ory indices were trained in the first layer. In the next layer, weighted operators based on the training 
error caused by the last layer of the training model were added into the label predicted by the last 
layer, and these weighted-prediction labels were used as training features in next layers. The final 
predicted labels were the weighted sum of labels from different models. 

Figure 1. The overall procedure of the proposed method. (A) Data preprocessing. (B) Encoded
functional connectivity and graphical theory indices. The AE was used in this step to extract features
and biological patterns from the network indices. (C) The structure of the weighted stacking fusion
model (three-layer structure). Firstly, the features extracted from network edges and graphical theory
indices were trained in the first layer. In the next layer, weighted operators based on the training
error caused by the last layer of the training model were added into the label predicted by the last
layer, and these weighted-prediction labels were used as training features in next layers. The final
predicted labels were the weighted sum of labels from different models.

2.3. Data Preprocessing

Data preprocessing was carried out using the Data Processing Assistant for Statistical
Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm, accessed on 10 December
2021) and a few necessary hand-crafted MATLAB scripts (MATLAB 2018a). Initially, the
first 5 volumes were discarded to reduce the impact from the instability of the magnetic
field. The preprocessing procedure consisted of naturalistic fMRI-included slice-timing
correction, realignment, spatial normalization (3 × 3 × 3 mm3) and smoothing [6 mm full
width at half maximum (FWHM)]. First, slice-timing corrections were used for different

http://www.fil.ion.ucl.ac.uk/spm
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signal acquisitions between each slice and motion effect (6 head motion parameters). The
possible nuisance signals, which include linear trends, global signals, and individual mean
WM and CSF signals, were removed via multiple linear regression analysis and temporal
band-pass filtering (pass band 0.01–0.08 Hz). The calculation of head motion was done
according to the following formula:

Head_Motion =
1

M− 1

√∣∣∣∆dx1
i

∣∣∣2 + ∣∣∣∆dy1
i

∣∣∣2 + ∣∣∣∆dz1
i

∣∣∣2 + ∣∣∣∆dx2
i

∣∣∣2 + ∣∣∣∆dy2
i

∣∣∣2 + ∣∣∣∆dz2
i

∣∣∣2 (1)

where M represents the number of time points of each subject; dx1
i
/dx2

i
, dy1

i
/dy2

i
and

dz1
i
/dz2

i
are translations/rotations at each time point in the x, y and z planes. ∆dx1

i
repre-

sents the difference between x1
i and x1

i−1. Furthermore, the subjects with translational
motion > 2.5 mm, rotation > 2.5◦, and mean absolute head displacement (mFD) > 0.5 mm
were excluded in this study. Next, the fMRI data were spatially normalized to the Montreal
Neurological Institute (MNI) space by using Dosenbach [18]. Finally, the fMRI data were
smoothed with a Gaussian kernel of 6 mm full width at half maximum (FWHM) to decrease
spatial noise.

2.4. Functional Connectivity and Network Property

For each participant, the whole-brain functional connectivities between all 160 brain
regions were constructed pairwise from the preprocessed fMRI data, according to Dosen
Bash [18]. The FCs for each ROI pair computed using the Pearson’s correlation (PC), mutual
information (MI) [19] and distance correlation (DistCorr) [20] were calculated respectively,
then further averaged over time toward the BOLD signals per subject. Once the whole-
brain network was available, numerous measures could be expressed in terms of a graph.
A threshold (the highest 20% of the weights) was set to sparse the constructed network.
Graph theory analysis was performed on the sparse network for each subject with different
FC calculation strategies. The graph theory indices included the degree centrality (DC), the
ROI’s strength (RS), local efficiency (LE) and betweenness centrality (BC). Specifically, DC
is the number of existing connections among target nodes. RS is the average strength of
existing connections that relates to the same target node. The LE of a node is the average
of the inverse of the minimum path length between the target node and other nodes. The
BC of a node is the number of shortest paths between two nodes [21]. Finally, the features
based on FC and graph theory indices were used for further feature representation via AE
and regression.

2.5. Feature Encoder and Network Pattern Construction

Each subject’s Nnode × Nnode connectivity matrices, which were concatenated to give
an Nsubject × Nedge matrix (fully weighted), and graph theory indices, which were an
Nsubject × Ngraph indices matrix, were then entered into AE (Figure 1A). The number of
epochs was 500 and the hidden nodes was set to 50 [22]. The AE, illustrated in Figure 2,
is a special type of neural network which is capable of conduct feature engineering. All
models were initially trained using different AE features; these features were extracted
from network patterns and graphical indices. To prevent overfitting and accuracy bias due
to the reuse of the same data, the extracted features were split into training and test sets
for 10-fold cross-validation. The vectors x ∈ R were encoded into hidden representation
h ∈ R′ by the activation function f :

h = f(Wx + b) (2)
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The hidden representation h was decoded to reconstruct the data h ∈ R by the
activation function:

r = g
(
W′h + b′

)
(3)

where W and W’ are the weight matrices, b and b’ represent the bias vectors, and the classic
sigmoid (x) = 1/(1 + e−x) has been adopted as the activation function for f and g.

Effectively a nonlinear principal components analysis (PCA) [23], the AE can be trained
in a fully unsupervised manner. The AE seeks the optimal parameters W, W’, b and b’ via
the gradient descent algorithm to minimize the reconstruction error L(x, r) = ‖x− r‖2.
In order to prevent overfitting, a weighted constraint parameter was used to regularize
L′(x, r), as shown in Equation (4), where ε is the regularization parameter.

L′(x, r) = L(x, r) + ε‖W‖2
2 (4)

The whole-brain FC was then entered into the AE to extract and preserve the main
information of the network, according to the loss function minimum criterion [24].

2.6. Weighted Ensemble Models and Network Analysis Framework

All models were initially trained using different AE features; these features were ex-
tracted from network patterns and graphical indices. Predictive models were implemented
and merged using a multi-stacking layer approach, namely weighted stacking (WS). On
its first layer, basic regression models were used to predict FIS from neuroimaging data.
Weighted operators were then obtained to measure the performance of each model. The
formula of the weight operator W is shown in (5).

Wi =

Correlation Coefficienti
Mean Absolute Errori

∑n
i=1

Correlation Coefficienti
Mean Absolute Errori

(5)

where n is the number of features, correlation coefficient refers to the correlation between
the real label and predicted label of each first-level training model, and mean absolute error
measures the absolute error between the real label and predicted label of each first-layer
training model.

On the second layer, predictions from the first-level models were multiplied by the W
coefficient and then stacked with other regression models. Finally, the fusion factors were
set to fuse the weighted stacking models, and fusion operator W’ was defined in (6).

W′ j =

Correlation Coefficient′ j
Mean Absolute Error′ j

∑m
j=1

Correlation Coefficient′ j
Mean Absolute Error′ j

(6)
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where m is the number of regression models, correlation coefficient indicates the correlation
coefficient between the real label and predicted label of each second-level training model,
and mean absolute error is the mean absolute error between the real label and predicted
label of each second-layer training model.

In this study, the basic regression models employed for WENA were the ensemble
tree regression (ETR) and ridge regression (RR) models. A support vector regression (SVR)
model with Gaussian kernel and an extreme learning machine regression (ELMR) model
were also used to compare with the performance of WENA and test the robustness of the
proposed framework.

2.7. Parameter Test of Proposed WENA

To further explore the impact of the model parameters, the stacking layers from
2 layers to 4 layers with different FC construction methods and model fusion strategies
were used to train the WENA model. Additionally, in order to reduce the effect of other
parameters on performance, different regression models were trained via the same set of
AE features.

2.8. Methods Comparison

In this study, we compared the performance of WENA against a range of conventional
stacking-structure regressions, including the ETR, RR, SVR and ELMR models. Each FC
pattern and network property was fed for the principal component analysis (PCA) and
independent component analysis (ICA), respectively. The dimension reduction number of
PCA and ICA is in consistent with the AE. Extracted features were used to train the WENA
framework; the results were also compared with using AE methods for feature extraction.
All methods were tested in features based on three FC construction methods.

3. Evaluation Metrics

The mean absolute deviation (MAE), Pearson correlation coefficient (R value) and
R-squared coefficient (R2 value) between the real values and predicted values were used to
evaluate the performance of the proposed method.

Biological Pattern Visualization

Each AE feature was evaluated by using the RelifF method [25], and the feature with
the largest RelifF value was considered to be the biomarker with biological significance.
Pearson correlation was used to evaluate the relationship between age and AE features to
extract age-related and biological patterns. The biological patterns corresponding to the
chosen AE features were extracted via the weight value of the AE and visualized [26].

4. Experiment Results

We compared the performance of WENA method with different weighted stack-
ing models and FC construction methods. Table 2 illustrated that the proposed WENA
achieved the best performance for fluid intelligence prediction across three functional
connectivity construction methods. The performance of MI-based features obtained the
highest performance with an MAE of 3.85, an R value of 0.66 and an R2 value of 0.42. The
best FIS prediction of each network construction was shown in Figure 3. Furthermore,
conventional stacking structures and feature engineering methods were used to compare
with the proposed WENA method based on AE features. Table 3 showed that the conven-
tional stacking model based on SVR achieved the best performance (the MAE was 4.25,
R value was 0.53, and R2 was 0.26), while the PC network construction method and basic
SVR model achieved the best MAE, with a value of 4.20 (the R value was 0.53 and R2 was
0.28). Compared with conventional feature engineering methods with the MI network
construction method, WENA achieved the following performance: MAE of 4.12, an R value
of 0.58 and an R2 value of 0.33 for PCA methods; and MAE of 4.77, an R value of 0.32 and
an R2 value of 0.10 for ICA methods.
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Table 2. The performance of different weighted-stack models and model fusion.

Network Feature Reduction Classification Strategy MAE R R2

PC

AE

WS- ETR 4.21 0.57 0.31
WS–RR 4.07 0.59 0.33
WS-SVR 4.21 0.55 0.28

WS-ELMR 4.47 0.54 0.21
WENA 4.05 0.61 0.36

MI

WS-ETR 4.06 0.63 0.36
WS- RR 3.90 0.64 0.39
WS-SVR 4.11 0.60 0.35

WS-ELMR 4.43 0.57 0.24
WENA 3.85 0.66 0.42

DistCorr

WS-ETR 4.20 0.56 0.31
WS- RR 4.32 0.56 0.28
WS-SVR 4.38 0.52 0.25

WS-ELMR 4.55 0.52 0.19
WENA 4.16 0.58 0.34
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Figure 3. The best prediction performance of FIS based on different construction methods. (A) The 
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= 0.61). (B) The network based on multi information (MAE = 3.85, R2 = 0.42. R = 0.66). (C) The network 

Figure 3. The best prediction performance of FIS based on different construction methods. (A) The
regression performance based on network based on Pearson’s correlation (MAE = 4.05, R2 = 0.36,
R = 0.61). (B) The network based on multi information (MAE = 3.85, R2 = 0.42. R = 0.66). (C) The
network based on DistCorr (MAE = 4.16, R2 = 0.34. R = 0.58). (Left: The performance of regression;
the x-coordinate represents the predicted label, while the y-coordinate represents the real label. Right:
The distribution of label differences; the x-coordinate represents the number of subjects, while the
y-coordinate represents the difference between the predicted label and real label).
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Table 3. The performance of conventional stacking models and single models. The performance of conventional stacking
methods under different FC construction methods were obtained in order to compare the performance of WENA.

Network Feature Reduction Classification
Strategy MAE R R2

PC

AE

Stacking—ETR 4.26 0.53 0.28
Stacking—RR 5.05 0.054 0.0041

Stacking—SVR 4.25 0.53 0.26
Stacking—ELMR 12.16 0.27 0.0039

MI

Stacking—ETR 4.20 0.54 0.29
Stacking—RR 5.05 0.038 0.0042

Stacking—SVR 4.42 0.50 0.21
Stacking—ELMR 11.62 0.23 0.0010

DistCorr

Stacking—ETR 4.25 0.54 0.29
Stacking—RR 5.04 0.25 0.055

Stacking—SVR 4.33 0.25 0.061
Stacking—ELMR 11.98 0.23 0.0038

MI (Basic
regression models)

ETR 4.22 0.54 0.29
RR 4.23 0.52 0.23

SVR 4.20 0.53 0.28
ELMR 4.41 0.49 0.18

Stacking layers and model fusion strategies were used to test the robustness of the
proposed WENA. Figure 4 showed that the number of stacking layers could affect the
performance of WENA, and that the three-layer structure was optimized. Additionally,
Table 3 showed that the proposed WENA method outperformed conventional stacking
models which were without the WS structure and single basic regression models without
a stacking structure. Furthermore, both Figure 4 and Table 3 revealed that the proposed
WENA method was robust to different FC construction methods. Figure 5 showed that
WENA including the ETR and RR models outperformed WENA integrated with other
regression models, including SVR and ELM models.
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Figure 4. The influence of stacking layers on performance, including MAE, R value and R2 value.
(A). MAE of WENA with different stacking layers. (B). R value of WENA with different stacking
layers. (C). R2 value of WENA with different stacking layers. (The x-coordinate represents the
MAE, R value and R2 value, while the y-coordinate represents the number of model-stacking layers;
e.g., 4 layers means this stacking model consisted of four layers).
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It has been noticed that there was a significant correlation between age and FIS
(R = 0.65, p < 0.001). There were also substantial differences between the network AE
feature and age in the FC pattern (R = −0.34, p < 0.001), BC pattern (R = 0.59, p < 0.001)
and LE pattern (R = 0.46, p < 0.001), while there was no significant relationship found
between other graph theory indices (DC and RS) and age. The most discriminative age-
related FC with network-property patterns was visualized via AE, as well as the important
ROIs extracted by WENA (shown in Figures 4 and 6, Tables 4–6). These results revealed
that the most biological patterns extracted by WENA were the sensorimotor network,
cingulo-opercular network, occipital network and cerebellum network.
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Table 4. The performance of different feature engineering methods based on MI features. The
performance of conventional dimension-reduction methods under different FC construction methods
were obtained in order to compare the performance of the AE.

Feature
Reduction

Method

Classification
Strategy Method MAE R R2

PCA WS

WS—ETR 4.25 0.54 0.29
WS—RR 4.37 0.55 0.23

WS—SVR 4.24 0.54 0.27
WS—ELMR 4.58 0.52 0.19

WENA 4.12 0.58 0.33

ICA WS

WS—ETR 4.86 0.27 0.0065
WS—RR 4.92 0.30 0.0097

WS—SVR 4.77 0.33 0.092
WS—ELMR 5.24 0.25 0.0013

WENA 4.77 0.32 0.10

Table 5. The state-of-the-art of fluid intelligence score prediction.

Feature MAE R textbfR2

[27] fMRI – 0.2~0.5 –
[28] fMRI – 0.25~0.3 –
[29] fMRI – 0.26 –

Table 6. The full name and abbreviations in this study.

Full Name Abbreviations

Auto-encoder AE
Functional connectivity FC

Functional magnetic resonance imaging fMRI
Blood oxygen level-dependent BOLD

Connectome-based predictive modeling CPM
Weighted ensemble model and network analysis WENA

Weighted stacking WS
Fluid intelligence score FIS
Pearson’s correlation PC
Mutual information MI
Distance correlation DistCorr

Degree centrality DC
ROI’s strength RS
Local efficiency LE

Betweenness centrality BC
Principal components analysis PCA

Tree regression ETR
Ridge regression RR

Support vector regression SVR
Extreme learning machine regression ELMR

Independent component analysis ICA
Mean absolute deviation MAE

Pearson correlation coefficient R value
R-squared coefficient R2 value
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5. Discussion

In this study, we have developed a new regression method based on machine learning
and graph theory namely WENA, to extract biological patterns from functional connectivity
and predict fluid intelligence effectively. The results indicate that (a) the proposed method
outperforms the state-of-the-art reports; (b) our proposed framework is robust toward
different network construction methods and variables; (c) the patterns extracted using this
method have been found with interesting biological interpretations. These patterns were
significantly related to age, which are found may stem from the sensorimotor network,
cingulo-opercular network, occipital network and cerebellum network.

The proposed WENA architecture also outperforms other traditional methods in
terms of FIS prediction (shown in Tables 2–4). In particular, ensemble learning models
(including bagging, stacking and boosting), which consisted of several single machine
learning models [30], outperformed the single machine learning model. The single machine
learning algorithm was limited in model generalization and model performance [9], while
the performance of ensemble learning could be improved via using bootstrap replicates,
and bagging could be further improved via stacking [31]. Unlike deep learning, which
risks overfitting and lacking model generalization [32], ensemble learning could integrate
with bootstrap samples and multiple classifiers, which could lead to the enhancement of
model generalization and reduction of model overfitting [15,33].

The proposed WENA based on WS methods and model fusion also outperformed
traditional stacking methods (see Table 3). The proposed method was based on a self-
supervised learning mechanism (AE); it could extract non-linear features and principal
modes from FC data across a population [34]. It also has been found that the performance of
WENA based on WS outperformed that of WENA based on principal component analysis
(PCA) and independent component analysis (ICA) (see Table 4). As traditional approaches
in neuroscience, PCA and ICA were both for linear features, the performances based on
PCA features and ICA features were influenced by their unsupervised dimension reduction
nature [35]. By contrast, the AE could represent high-layer features and abstract low-level
features (e.g., cerebrospinal fluid, cortical thickness and gray matter tissue volume) from
neuroimaging data, also create general latent feature representation and improve the
performance [12,36]. For example, via the AE and fMRI, Suk et al. extracted nonlinear
hidden features from neuroimaging data and improved diagnostic accuracy [36].

However, it should be noted that the network construction methods were used and
compared in this study (shown in Table 1), and our results showed that the performance
of machine learning is impacted by FC construction methods (shown in Tables 1 and S1).
For example, while WENA was robust to network construction methods for improving the
performance of FIS prediction, however, the number of stacking layers and the regression
methods could affect the performance of WENA (seen in Figures 4 and 7). In all, our results
revealed that the proposed WENA model achieved the best regression accuracy on FC
constructed via MI methods (MAE = 3.85, R = 0.66, R2 = 0.42). Furthermore, the proposed
WENA was better than other conventional methods and the state-of-the-art (shown in
Table 4).
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The proposed WENA methods achieved improvements in the prediction of fluid
intelligence from neuroimaging data, it was also able to decode the biological age-related
patterns from the naturalistic fMRI data (shown in Table 3). Fluid intelligence, as a highly
age-related cognitive trait, could offer objective evidence in understanding naturalistic
neuroimaging data for the ageing problem. For example, fluid intelligence, the ability to
think and solve problems under limited knowledge situations [37], tends to decline with
ageing due to reductions in the executive function of the prefrontal cortex [38]. In our study,
FIS was positively correlated to age, and extracted AE features were negatively related to
age (p < 0.05). Furthermore, the functional networks extracted via the AE spatial filter were
the sensorimotor network, cingulo-opercular network, occipital network and cerebellum
network. To be specific, AE features which corresponded to the sensorimotor network and
the cerebellum network were significantly positively correlated to age, which demonstrated
compensatory existing age-related decline in motor function [39]. In line with our study,
the existence of increased sensorimotor and cerebellum functional connectivity has been
found in elders, supporting the previous report on the increased interactivities found
across the networks with ageing [40]. Similarly, AE features which corresponded to the
cingulo-opercular network and occipital network were significantly negatively associated
with age, also in line with previous studies [41]. Previous studies have also shown that the
sensorimotor network was associated with sensory processing and the occipital network
was related to visual preprocessing [41]. Additionally, the cingulo-opercular network,
also referred to as the salience network, decreased with age, which was the neural factor
that affected visual processing speed [42]. These brain functions were closely related to
movie-watching experience and ageing issues, as well as fluid intelligence. Therefore,
these studies supported that our methods could decode biological patterns and revealed
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that network patterns, consisting of the sensorimotor, cingulo-opercular, occipital and
cerebellum networks, contributed to the prediction of fluid intelligence as well as the
ageing problem.

However, several limitations should be noted. Firstly, the WENA model was unable to
clearly reflect the quantitative relationship between age, functional connectivity and fluid
intelligence. Secondly, the robustness of the proposed methods should be further tested
using samples from other resources. Finally, the overfitting problem in the training dataset
should be carefully considered, though ensemble learning could reduce it to some degree.

6. Conclusions

In this study, we have proposed a new method, namely WENA, to predict fluid
intelligence and mine deep network information through naturalistic fMRI data, which is
based on ensemble learning, FC analysis and graph theory analysis. The results indicate
that the proposed method outperformed mainstream state-of-the-art methods for the
problem of interest. As a deep network, once the classifier choice and stack level have been
optimized, the performance of WENA is found to be rather robust. Special ageing-related
network patterns and their property patterns were also able to be extracted via WENA.
It was found that the sensorimotor, cingulo-opercular and occipital-cerebellum regions
are the most impactful regions for the prediction of fluid intelligence. Our future work
will focus on addressing the existing limitations of the proposed method, hence better
predicting human behavior and observing human brain states.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/neurosci2040032/s1, Table S1. The performance of conventional stacking models and
single models. Table S2. The performance of different feature method based on MI features.
Figure S1. The influence of stacking-level on performance, including MAE, R value and R2 value.
Figure S2. The influence of regression models choice on performance of WENA with different
network construction methods.
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