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Abstract

In this thesis, we present an approach to characterising fast-reaction lim-

its of systems with nonlinear diffusion, when there are either two reaction-

diffusion equations, or one reaction-diffusion equation and one ordinary dif-

ferential equation on unbounded domains. Here, we replace the terms of the

form uxx in usual reaction-diffusion equation, which represent linear diffusion,

by terms of form φ(u)xx, representing nonlinear diffusion. For appropriate

initial data, in the fast-reaction limit k → ∞, spatial segregation results in

the two components of the original systems each converge to the positive

and negative points of a self-similar limit profile f(η), where η = x√
t
, that

satisfies one of four ordinary differential systems. The existence of these self-

similar solutions of the k → ∞ limit problems is proved by using shooting

methods which focus on a, the position of the free boundary which separates

the regions where the solution is positive and where it is negative, and γ,

the derivative of −φ(f) at η = a. The position of the free boundary gives us

intuition how one substance penetrates into the other, so for specific forms of

nonlinear diffusion, the relationship between the given form of the nonlinear

diffusion and the position of the free boundary is also studied.

Key Words: Nonlinear diffusion; Reaction diffusion problem; Fast reaction;

Free boundary; Self-similar solution.
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Notation

R+ := {x : 0 ≤ x <∞}

s+ := max {0, s}

s− := min {0, s}

ST := {(x, t) : 0 < x <∞, 0 < t < T}

QT := {(x, t) : x ∈ R, 0 < t < T}

Ωκ := {ξ ∈ W 1,2((0, κ))| ξ = 0 at x = 0}

FRT := {ξ ∈ C1 ([0, R]× [0, T ]) | ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T )}

FT := {ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0}

F̂T := {ξ ∈ C1(QT ) : ξ(·, T ) = 0 and supp ξ ⊂ [−J, J ]× [0, T ]

for some J > 0}

a: the position of the free boundary which separates the regions where

f(η) > 0 and where f(η) < 0 and lim
η↗a

f(η) = 0 = lim
η↘a

f(η).

γ := − lim
η↗a

φ′(f(η))f ′(η).

f(η; a, γ): self-similar solution of the k →∞ limit problems for given a, γ.

b(a, γ) :=


lim
η→0

f(η; a, γ), half-line case,

lim
η→−∞

f(η; a, γ), whole-line case.

d(a, γ) := lim
η→∞

f(η; a, γ).
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Chapter 1

Introduction

The reaction diffusion problem

ut = uxx − kuv, (x, t) ∈ (0,∞)× (0, T )

vt = −kuv, (x, t) ∈ (0,∞)× (0, T )

u(0, t) = U0, for t ∈ (0, T )

u(x, 0) = 0, v(x, 0) = V0, for x ∈ (0,∞)

(1.1)

originates from the chemical reaction

A+B
k→ C,

occurring in a semi-infinite region. Here u represents concentration of the

chemical A which may disperse in the substrate through diffusion, v repre-

sents concentration of the immobile substrate B, and k is the rate constant

of the reaction (which is positive). The chemical reaction can be modelled for

simplicity by the one-dimensional spatial domain (0,∞) with u = U0 at the

surface x = 0. That u and v are nonnegative is natural since they typically

correspond to concentration of chemical substances.

In [17], Hilhorst, van der Hout and Peletier studied the asymptotic be-

haviour of k-dependent solutions (uk, vk) of (1.1) as k →∞ (i.e. the reaction

1



is very fast). They established a free boundary problem which is satisfied in

the limit when solution (uk, vk) converges to a self-similar limit (u, v)
(
x√
t

)
as k → ∞. The free boundary has the form x = a

√
t, where a > 0 and

divides the area in which the mobile chemical A is present from the area

where A is absent. The fast-reaction limit of (1.1) can be motivated by the

study of penetration of radio-labeled antibodies into tumourous tissue since

the attachment of antibodies to antigens in the tissue may react very fast.

Modelling can give rise to other systems related to (1.1) such that the

fast-reaction limit in which one mobile substance invades a mobile substrate.

Among other problems, Crooks and Hilhorst [10] studied the system analo-

gous to (1.1) when reactant u and substrate v are both mobile, for example,

when carbonic acid penetrates into water. In this case, the substrate will

diffuse, which is modelled by introducing a term dvvxx where dv > 0. The

paper [10] is concerned with the free boundary problems in the limit that

k → ∞ in four cases: dv > 0 with two mobile reactants, dv = 0 with one

mobile and one immobile reactant, problems defined on the spatial domain

(0,∞) as in (1.4) and also on the whole real line R, which can arise, for

instance, in modelling neutralisation of an acid and a base that are initially

separated. In all four cases, the free boundary has the form x = a
√
t where

the constant a is determined by a different equation in each case and plays

an important role in characterising the rate of penetration of one substance

into the other in the limit k → ∞. When the problem is considered on the

spatial domain R with dv > 0, the constant a in the corresponding limit is

not necessarily positive. Note that when a > 0, substance u penetrates into

substance v, while on the other hand, v penetrates into u when a < 0. For

each of the problems with dv ≥ 0 on both the spatial domains R and (0,∞),

an explicit formula is given in [10] for the self-similar limit function.

2



Nonlinear diffusion is needed in certain modelling scenarios to describe

processes involving fluid flow, heat transfer or diffusion. For instance, it

can describe the flow of an isentropic gas through a porous medium [8].

The analogue of (1.1) with nonlinear diffusion in bounded multi-dimensional

domains is studied in [18] by Hilhorst, van der Hout and Peletier. They

consider the substrate u with nonlinear diffusion modelled with a term ∆φ(u),

where φ(u) =
∫ u
0
D(s)ds and D is the diffusivity of the medium. Under

assumptions in [18], D(s) may vanish at s = 0, so the equation for u need

not be uniformly parabolic. Thus [18] focuses on weak solutions since it is

possible that the system studied has no classical solution. In studying of the

multi-dimensional limiting free boundary problems in [18], the free boundary

Γ(t) of the limit problem is assumed as a smooth surface that lies entirely

within the bounded domain and varies smoothly with t.

Unlike in the case of linear diffusion, explicit self-similar solutions to

the limit problems obtained in the nonlinear diffusion case are not readily

available. We briefly mention here two distinct alternative approaches that

have been used previously to investigate self-similar solutions in the one-

dimensional nonlinear diffusion case. Atkinson and Peletier [2] studied a

self-similar solution on a bounded domain by looking first at the initial value

problem starting at the free boundary, and then investigating how the value

of this solution at η = 0 depends on the position of the free boundary. Similar

problems but on unbounded domain are studied by Craven and Peletier [7]

using a shooting method. These ideas will form the starting point for proving

existence of self-similar solutions for the limit problems derived in this thesis

in Chapter 3.

A prototype for the form of nonlinear diffusion considered with this thesis

is (um)xx, where m > 1. Throughout this thesis, we will consider nonlinear
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diffusion terms of the form φ(u)xx, where the function φ ∈ C2(R), φ and φ′

are assumed to be strictly increasing with

φ(s) > 0 as s > 0 and φ′(s) = φ(s) = 0 when s = 0. (1.2)

In studying existence of self-similar solutions in Chapter 3 and Section 4.4,

we will also require that φ satisfies∫ 1

0

φ′(f)

f
df <∞ and

∫ ∞
1

φ′(f)

f
df =∞. (1.3)

Here the self-similar solutions of the limit problems with nonlinear diffusion

have the same ansatz as in the linear diffusion case, in the sense that w(x, t) =

f(η) where η = x/
√
t, see [2, 7]. Note that this contrasts with the famous

family of special solutions of the porous medium equation ut = (um)xx known

as Barenblatt solutions, that represent heat release from a point source and

take as initial data a Dirac mass, where m appears explicitly in the solution

ansatz. In this thesis, our initial data is bounded and we always consider

self-similar solutions of the form f(x/
√
t), and will study how the profile f

of these solutions is affected by the nonlinear diffusion.

We treat two pairs of problem with nonlinear diffusion terms on the spatial

domains R+ and R. The first pair of problems defined on the half-strip

ST := {(x, t) : 0 < x <∞, 0 < t < T}, one with ε > 0 and the other with

ε = 0, are

ut = φ(u)xx − kuv, (x, t) ∈ (0,∞)× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ (0,∞)× (0, T ),

u(0, t) = U0, εφ(v)x(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = uk0(x), v(x, 0) = vk0(x), for x ∈ R+.

(1.4)

As in [17] kuv is the contribution of a chemical reaction where k determines

the reaction rate. We define, as in [10], the initial data for the limiting
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self-similar solutions as

u∞0 =

 U0 x = 0,

0 x > 0,
v∞0 =

 0 x = 0,

V0 x > 0,

which equal constant initial conditions on the half-line in [17], where U0 and

V0 are positive constants, and choose the initial data uk0, v
k
0 that satisfy

(i) uk0, v
k
0 ∈ C2(R+);

(ii) 0 ≤ uk0 ≤ U0, 0 ≤ vk0 ≤ V0;

(iii) uk0 → u∞0 , v
k
0 → v∞0 in L1(R+) as k →∞.

(iv) For each r > 0, there exists a continuous function ωr : R+ 7→ R+ with

ωr(µ)→ 0 as µ→ 0 and

‖uk0(·+ δ)− uk0(·)‖L1((r,∞)) + ‖vk0(·+ δ)− vk0(·)‖L1((r,∞)) ≤ ωr(δ),

for all k > 0, δ < r
4
.

For both ε = 0 and ε > 0, we will prove the existence and uniqueness

of weak solutions (uk, vk) of problem (1.4) for every k > 0, and study the

asymptotic behaviour of (uk, vk) as k → ∞. As we will see, the limits u of

uk and v of vk are separated by a free boundary and given by the positive

and negative parts respectively of a function w, that is

u = w+ and v = −w−,

where s+ = max{0, s} and s− = min{0, s}. We show that this limit function

w has one of two self-similar forms, depending on whether ε > 0 or ε = 0.

The function f : R+ → R decribes a self-similar limit solution such that

w(x, t) = f(η) where η = x/
√
t for (x, t) ∈ ST . There is a free boundary
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at η = a with f(η) > 0 when η < a and f(η) < 0 when η > a and the

self-similar solution f(η) satisfies the boundary conditions f(a) = 0 and

γ := − lim
η↗a

φ′(f(η))f ′(η). (1.5)

When ε > 0, the existence of self-similar solutions is proved by using a two-

parameter shooting methods focusing on a and γ. When ε = 0, γ has a

specific form, namely

γ =
aV0
2
,

and the existence of self-similar solutions is proved by a one-parameter shoot-

ing, since γ depends on a.

The second pair of problems is defined on the strip QT := {(x, t) : x ∈ R,

0 < t < T}, one with ε > 0 and the other one with ε = 0 are
ut = φ(u)xx − kuv, (x, t) ∈ R× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ R× (0, T ),

u(x, 0) = uk0(x), v(x, 0) = vk0(x), for x ∈ R,

(1.6)

where we define, as in [10] that

u∞0 =

 U0 x < 0,

0 x > 0,
v∞0 =

 0 x < 0,

V0 x > 0,

with U0, V0 positive constants, k as in (1.4) and initial data uk0, v
k
0 satisfy

(i) uk0, v
k
0 ∈ C2(R);

(ii) 0 ≤ uk0 ≤ U0, 0 ≤ vk0 ≤ V0;

(iii) uk0 → u∞0 , v
k
0 → v∞0 in L1(R) as k →∞.
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(iv) There exists a continuous function ω : R+ 7→ R+ with ω(µ) → 0 as

µ→ 0 and

‖uk0(·+ δ)− uk0(·)‖L1(R) + ‖vk0(·+ δ)− vk0(·)‖L1(R) ≤ ω(δ),

for all k > 0, δ ∈ R.

Note that for simplicity, we use the same notation u∞0 , v
∞
0 for both half-

line and whole line functions.

We again consider both the case of two mobile reactants where ε > 0,

and the case of one mobile and one immobile reactant, when ε = 0. Similar

to the half-line case, we also prove the existence and uniqueness of weak

solutions (uk, vk) of problem (1.6), and study the convergence to self-similar

limit profiles (u, v) as k → ∞. We use arguments similar to those in half-

line case to prove the existence of a self-similar limit solution f of (1.6). If

ε > 0, we may have a < 0, a = 0 and a > 0 where f(a) = 0, since a is not

necessarily positive in the whole-line case.

The work of this thesis continues and extends earlier studies of fast-

reaction limits [10][17][18] and self-similar solutions with nonlinear diffusion

[2][7], by introducing the nonlinear function φ, in both the case of two mobile

reactants (ε > 0) in addition to that of one mobile reactant (ε = 0) and in

considering the whole-line problem (1.4) in addition to the half-line problem

(1.6). In [18], the existence of weak solutions is proved by looking at a se-

quence of uniformly parabolic problems in which φ′n(u) ≥ 1
n

and studying

the solutions in the limit as n→∞. We exploit some ideas and an iterative

method from [18], but our domains are unbounded and when ε > 0, the

equations for both u and v of (1.4) and (1.6) have nonlinear diffusion and

are not uniformly parabolic. In the problems treated in [10], where the dif-

fusion is linear and the problems are studied in unbounded domains, a series
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of cut-off functions and auxiliary functions are introduced to prove various

estimates of uk, vk that are useful in studying the k → ∞ limit. Here, we

consider φ(uk), φ(vk) rather than uk, vk and in order to deal with the non-

linear diffusion, alternative methods and additional procedures are needed.

Note that we know of no explicit self-similar solutions for the k → ∞ limit

problems with nonlinear diffusion that are obtained here. In previous stud-

ies [2, 7], they treated the single equation where the solutions were always

non-negative. In this thesis, we have sign-changing solutions since the free

boundary separates regions where the solutions are positive and where the

solutions are negative. Here, our self-similar solutions satisfy a certain equa-

tion when they are positive, and a different equation where they are negative.

We exploit ideas from [2, 7] and investigate our self-similar limit problems

that involve these two equations.

The rest of the thesis is organised as follows. In Chapter 2, we study the

half-line problem (1.4), starting with the uniqueness of weak solutions for

(1.4). Under the assumptions on φ in (1.2), the equations for u, v need not

be uniformly parabolic when ε > 0, so the existence of weak solution for (1.4)

are proved in Theorem 2.9 by an iterative method. Section 2.3 is concerned

with passing to the limit as k →∞ of the weak solutions (uk, vk), via some a

priori estimates and a key bound on kukvk in L1(ST ), independent of k and

ε ≥ 0 which is proved in Theorem 2.31. The k → ∞ limit (uk, vk) of (1.4)

is characterised as a self-similar solution of the problem first in Theorem 3.3

when ε > 0, and then in Theorem 3.11 when ε = 0, the existence of self-

similar solutions is proved later in Section 3.3 and 3.4. Chapter 3 focuses on

properties of the parameters a in the studying of the self-similar solution f ,

the position of free boundary which separates the region where the solution

is positive and where it is negative, and −γ, the negative gradient of φ(f)
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at η = a, and prove some preliminary results that are useful in deducing

existence of self-similar solutions. We split the self-similar solutions into two

parts depending on whether η < a or η > a, and study the properties of

b(a, γ), d(a, γ), defined respectively as the value of f when η = 0 and as the

limit of f when η →∞, of the self-similar solution f(η). Then the existence

of self-similar solutions when ε > 0 is proved in Section 3.3 by using a two-

parameter shooting method, shooting from η = a with γ, the derivatives of

−φ(f) at a, to U0 and−V0. When ε = 0, the existence of self-similar solutions

is proved in Section 3.4 by using a one-parameter shooting method. Chapter

4 contains the whole-line counterparts of the study of the half-line problem

in Chapters 2-3. In Chapter 5, we consider a specific family of φ′(f) = fm−1

where m > 2 is a constant, and investigate how the free boundary position a

is affected by m. Note that with fixed U0, V0, there exists a unique self-similar

solution which determines a and γ. At the end of Chapter 5, we prove some

further results under the additional conditions that U0, V0 < 1 and m ≥ 2.

In particular, if ε = 0, we find that if m1 > m2, then am1 < am2 which is

proved in Theorem 5.6. This result indicates that when m getting smaller,

one substance penetrates into the other faster. If ε > 0, the relationship

between a and m depends on different cases that γm1 > γm2 or γm1 < γm2

when am1 < am2 . Note that it is not clear whether or not the results in

Section 5.1.1 can be extended to U0, V0 ≥ 1.

There has been a lot of activity on related research problems in recent

years, some of which has been useful for this research. We briefly discuss two

papers concerned with fast-reaction limits for systems modelling competing

species. In [16], Hilhorst, Martin and Mimura considered a competition-

diffusion system for two competing species in multi-dimensional bounded

spatial domains and studied the behaviour of the free boundary that arises

9



in the fast reaction limit. They provided a strong formulation of the fast re-

action limit problem under some regularity assumption on the free boundary

and derived conditions that are satisfied on the free boundary. We will ex-

ploit the idea to obtain the free boundary conditions of the limit problems in

Theorem 3.1. Similar problems but with inhomogeneous Dirichlet boundary

conditions are investigated in [9], where Crooks, Dancer, Hilhorst, Mimura

and Ninomiya studied the k → ∞ limit problem and gave numerical com-

putations of some two-dimensional patterns of the reaction-diffusion system

and of the limiting free boundary problem. The method in [9] for estimating

differences in space translates on bounded spatial domains is used in Lemma

2.12.

In studying self-similar solutions, various previous works could potentially

be helpful in extending this research further. We mention two papers, [5]

and [24], both of which study the self-similar solution u(x, t) = f(x/
√
t) of

ut = (|u|m−1ux)x where m > 0, by looking at a transformed problem. In

[5], Bouillet and Gomes related the self-similar solution satisfying equation

−1
2
ηf ′(η) = [fm−1(η)f ′(η)]′, and a singular elliptic equation

−yy′′ = 2fm−1, (1.7)

where y =
∫ f
0
η(s)ds. Duijn, Gomes and Zhang Hongfei studied the solution

of transformed problem (1.7), where the flux λ = 1
2
y(0) considered in [24]

for single equation plays the similar role as γ from earlier in (1.5) and the

numerical results given in [24] suggest λ is decreasing in m, which can be

seen in Theorem 5.6 when ε = 0. When ε > 0, it is not clear how to prove

this rigorously, but it gives valuable intuition in studying relationship of a,

γ and m.

One interesting potential extension of this work is investigating conver-

gence of self-similar solutions when there are two different φ for the two com-
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ponents, for example, one with nonlinear diffusion term φ(u)xx and another

one with linear diffusion term vxx. From [10], we can give the self-similar

solution when η > a, namely

f(η) = −V0 − Ae−
a2

4

∫ ∞
η

e−
s2

4 ds,

where A = lim
η↘a

f ′(η) satisfies the free boundary condition

lim
n↘a

f ′(η) = lim
η↗a

φ′(f(η))f ′(η).

Another interesting investigation would be self-similar limit problems with

nonlinear diffusion studied in multi-dimensional spatial domains. The self-

similar solution f(η) in multi-dimensions may take the same form as the

one-dimensional problems in this thesis, where η = x√
t
, and f(η) > 0 satisfies

the equations

∆φ(f) +
1

2
η∇f = 0,

see [25, p.406]. Again, it is important to study the set of η on which f(η) = 0

in multi-dimension, since it separates the region where f > 0 from where

f < 0. Furthermore, in the study of self-similar limit problems in one-

dimension, it would be interesting to derive sufficient conditions that ensure

a > 0 or a < 0 , since the sign of a determines which substance penetrates

into the other. The extension of this to higher dimensions would be to derive

sufficient conditions for the set {η : f(η) = 0} to have a particular form.
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Chapter 2

The half-line case: Problem

(1.4)

In this chapter, we prove the existence and uniqueness of weak solutions of

Problem (1.4) when ε > 0 in Section 2.1 by first studying an approximate

problem on the bounded spatial domain (0, R) and then studying the limit

when R → ∞. In Section 2.2, we prove some a priori bounds that will be

used to prove the existence and uniqueness of weak solutions when ε = 0 and

to study the k → ∞ limit problems both when ε > 0 and ε = 0 in Section

2.3. Our strategy takes advantage of some ideas from [10] and [18].
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2.1 Existence and uniqueness of weak solu-

tions for ε > 0

Let ε > 0. We consider first an approximate problem to (1.4). Given R > 1,

consider the problem

ut = φ(u)xx − kuv, in (0, R)× (0, T ),

vt = εφ(v)xx − kuv, in (0, R)× (0, T ),

u(0, t) = U0, φ(v)x(0, t) = 0, for t ∈ (0, T ),

φ(u)x(R, t) = 0, φ(v)x(R, t) = 0, for t ∈ (0, T ),

u(x, 0) = u0,R, v(x, 0) = v0,R, for x ∈ (0, R),

(2.1)

where u0,R, v0,R ∈ C2(R+) are such that 0 ≤ u0,R ≤ U0, 0 ≤ v0,R ≤ V0 and

u0,R = uk0β
R, v0,R = −(V0 − vk0)βR + V0, (2.2)

where the family of cut-off functions βR ∈ C∞(R+) with R > 1 are defined

as

βR =

 1 x ≤ R− 1,

β1(x+ 2−R) x ≥ R− 1.

with β1 ∈ C∞ (R+) is a non-negative cut-off function such that 0 ≤ β1(x) ≤ 1

for all x ∈ R+, β1(x) = 1 when x ≤ 1 and β1(x) = 0 when x ≥ 2.

Since φ′(s) may vanish at s = 0, the equations for u and v as ε > 0 in

problem (2.1) need not be uniformly parabolic and it is possible that there

is no classical solution. Thus we are led to introduce a notion of a weak

solution.

Now define

ΩR :=
{
α ∈ W 1,2(0, R)| α = 0 at x = 0

}
, (2.3)
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and let û ∈ C∞(R+) be a smooth function that û = U0 when x = 0 and

û = 0 when x > 1.

Definition 2.1. A pair (uR, vR) ∈ L∞ ((0, R)× (0, T ))×L∞ ((0, R)× (0, T ))

is called a weak solution of (2.1) if

(i) φ(uR) ∈ φ(û) + L2(0, T ; ΩR), φ(vR) ∈ L2(0, T ;W 1,2(0, R));

(ii) (uR, vR) satisfies∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt

=

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

vRξtdxdt

=

∫ T

0

∫ R

0

εφ(vR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,

where ξ ∈ FRT := {ξ ∈ C1 ([0, R]× [0, T ]) | ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T )}.

We use the following comparison theorem for (2.1) to prove the uniqueness

of the weak solution of (2.1).

Lemma 2.2. Suppose that ε ≥ 0 and (uR, vR), (uR, vR) be such that

(a) uR, uR ∈ L∞((0, R)× (0, T )]);

(b) φ(uR) ∈ φ(uR(0, ·)) + L2(0, T ; ΩR), φ(uR) ∈ φ(uR(0, ·)) + L2(0, T ; ΩR);

(c) uRt, uRt, φ(uR)xx, φ(uR)xx ∈ L1((0, R)× (0, T ));

(d) vR, vR ∈ L∞((0, R)× (0, T ));

(e) If ε > 0, φ(vR), φ(vR) ∈ L2(0, T ;W 1,2(0, R)), vRt, vRt, φ(vR)xx, φ(vR)xx ∈

L1((0, R)× (0, T ));
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(uR, vR), (uR, vR) satisfy

uRt ≥ φ(uR)xx − kuRvR, uRt ≤ φ(uR)xx − kuRvR, in (0, R)× (0, T ),

vRt ≤ εφ(vR)xx − kuRvR, vRt ≥ εφ(vR)xx − kuRvR, in (0, R)× (0, T ),

uR(0, ·) ≥ uR(0, ·), φ(vR)x(0, ·) ≤ φ(vR)x(0, ·), on (0, T ),

φ(uR)x(R, ·) ≥ φ(uR)x(R, ·), φ(vR)x(R, ·) ≤ φ(vR)x(R, ·), on (0, T ),

uR(·, 0) ≥ uR(·, 0), vR(0, ·) ≤ vR(0, ·), on (0, R).

Then

uR ≥ uR, vR ≤ vR in (0, R)× (0, T ).

Proof. Now take a smooth non-decreasing convex function m+ : R → R

with

m+ ≥ 0, m+(0) = 0,
(
m+
)′

(0) = 0, m+(r) ≡ 0 for r ≤ 0, m+(r) = r − 1

2
,

for r > 1. For α > 0, we define the functions

m+
α (r) := αm+

( r
α

)
,

which approximate the positive part of r as α→ 0 and (m+
α )′(r)→ sgn+(r)

as α→ 0. Let w = φ(uR)− φ(uR) and z = φ(vR)− φ(vR), we have

(uR − uR)t ≤ wxx − k(uRvR − uRvR), (2.4)

(vR − vR)t ≤ εzxx − k(uRvR − uRvR). (2.5)

Then multiplying (2.4) by (m+
α )
′
(w) and (2.5) by (m+

α )
′
(z) gives

(
m+
α

)′
(w)(uR − uR)t ≤

(
m+
α

)′
(w)wxx − k

(
m+
α

)′
(w)(uRvR − uRvR),(

m+
α

)′
(z)(vR − vR)t ≤ ε

(
m+
α

)′
(z)zxx − k

(
m+
α

)′
(z)(uRvR − uRvR),
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and adding these inequalities gives the following(
m+
α

)′
(w)(uR − uR)t +

(
m+
α

)′
(z)(vR − vR)t

≤
(
m+
α

)′
(w)wxx + ε

(
m+
α

)′
(z)zxx − k

[(
m+
α

)′
(w)−

(
m+
α

)′
(z)
]

(uRvR − uRvR).

(2.6)

Now integrating over (0, R)× (0, t0), where t0 ∈ (0, T ], gives∫ t0

0

∫ R

0

[(
m+
α

)′
(w)wxx + ε

(
m+
α

)′
(z)zxx

]
dxdt

=−
∫ t0

0

∫ R

0

[(
m+
α

)′′
(w)|wx|2 + ε

(
m+
α

)′′
(z)|zx|2

]
dxdt ≤ 0,

since (m+
α )
′′

(w), (m+
α )
′′

(z) ≥ 0 because m+
α is convex. So (2.6) yields∫ t0

0

∫ R

0

(
m+
α

)′
(w)(uR − uR)t +

(
m+
α

)′
(z)(vR − vR)tdxdt

≤− k
∫ t0

0

∫ R

0

[(
m+
α

)′
(w)−

(
m+
α

)′
(z)
]

(uRvR − uRvR)dxdt.

With the nonlinear function φ, we need to deal with (m+
α )′(w) and (m+

α )′(s)

to simplify the left hand side.

Denote s+ := max {s, 0} and

sgn(x) =


−1 x < 0,

0 x = 0

1 x > 0.

Now letting α→ 0 gives

lim
α→0

(
m+
α

)′
(w) = lim

α→0

(
m+
α

)′
(φ(uR)− φ(uR))→ sgn+(φ(uR)− φ(uR)).

Note that sgn+
[
φ(uR)− φ(uR)

]
= sgn+(uR − uR), since φ is increasing.

By [14, Lemma 7.6], which says that

(ut)
+ =

 ut u > 0,

0 u ≤ 0,
(2.7)
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we obtain∫ t0

0

∫ R

0

[
sgn+(uR − uR)(uR − uR)t + sgn+(vR − vR)(vR − vR)t

]
dxdt

=

∫ t0

0

∫ R

0

[(
(uR − uR)+

)
t
+
(
(vR − vR)+

)
t

]
dxdt

=

∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, t0)dx−

∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, 0)dx

≤− k
∫ t0

0

∫ R

0

[
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR)dxdt,

and the expression[
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR) ≥ 0.

Thus ∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, t0)dx

≤− k
∫ t0

0

∫ R

0

[
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR)dxdt ≤ 0. (2.8)

Hence [
(uR − uR)+ + (vR − vR)+

]
(·, t0)dx = 0 on (0, R).

�

The following corollary is immediately from Lemma 2.2.

Corollary 2.3. Let ε > 0. For given initial data u0,R, v0,R, there is at most

one solution (uR, vR) of (2.1).

If we take (uR, vR) = (0, 0) and (uR, vR) = (uR, vR), then take (uR, vR) =

(uR, vR) and (uR, vR) = (U0, V0) in Lemma 2.2, we can get the following.

Corollary 2.4. Let (uR, vR) be a weak solution of (2.1). Then we have

0 ≤ uR(x, t) ≤ U0 and 0 ≤ vR(x, t) ≤ V0, (2.9)

for (x, t) ∈ (0, R)× (0, T ).
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We will prove the existence of a weak solution of the appropriate problem

(2.1) using an iterative method inspired by [18]. As the first step in the

iteration we consider the problem
(
u
(1)
R

)
t

= φ
(
u
(1)
R

)
xx
− ku(1)R V0, (x, t) ∈ (0, R)× (0, T ),

u
(1)
R (0, t) = U0, φ

(
u
(1)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

u
(1)
R (x, 0) = u0,R(x), for x ∈ (0, R).

(2.10)

We will prove the existence and uniqueness of a weak solution u
(1)
R in the

following and then substitute u
(1)
R in the problem

(
v
(1)
R

)
t

= εφ(v
(1)
R )xx − ku(1)R v

(1)
R , (x, t) ∈ (0, R)× (0, T ),

φ
(
v
(1)
R

)
x

(0, t) = φ
(
v
(1)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

v
(1)
R (x, 0) = v0,R(x), for x ∈ (0, R),

(2.11)

and obtain a unique weak solution v
(1)
R . Our strategy is to replace V0 in

Problem (2.10) by v
(1)
R and again we will have a weak solution u

(2)
R , and so

on. In this way, we will obtain sequences
{
u
(m)
R

}
and

{
v
(m)
R

}
. Finally letting

m tend to infinity, we will obtain a solution of Problem (2.1) in the limit.

In order to be able to carry out this procedure, we first introduce a notion

of weak solutions for problems of the following type:
uRt = φ(uR)xx − kuRp, (x, t) ∈ (0, R)× (0, T ),

uR(0, t) = U0, φ(uR)x(R, t) = 0, for t ∈ (0, T ),

uR(x, 0) = u0,R(x), for x ∈ (0, R),

(2.12)
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and
vRt = εφ(vR)xx − kvRq, (x, t) ∈ (0, R)× (0, T ),

φ(vR)x(0, t) = φ(vR)x(R, t) = 0, for t ∈ (0, T ),

vR(x, 0) = v0,R(x), for x ∈ (0, R),

(2.13)

where 0 ≤ p ≤ V0 and 0 ≤ q ≤ U0 almost everywhere in (0, R)× (0, T ).

Definition 2.5. (I). A function uR ∈ L∞((0, R) × (0, T )) is called a weak

solution of problem (2.12) if

(i) φ(uR) ∈ φ(û) + L2(0, T ; ΩR);

(ii) uR satisfies ∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt

=

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRpdxdt,

where ξ ∈ FRT .

(II). A function vR ∈ L∞((0, R)× (0, T )) is called a weak solution of problem

(2.13) if

(i) φ(vR) ∈ L2(0, T ;W 1,2(0, R));

(ii) vR satisfies ∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

vRξtdxdt

=

∫ T

0

∫ R

0

εφ(vR)xξxdxdt+ k

∫ T

0

∫ R

0

ξvRqdxdt

where ξ ∈ FRT .
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Next we will quote the following lemma which is proved in the Appendix in

[18]. We will use it to prove the existence of weak solutions of (2.12) and

(2.13).

Lemma 2.6. Let
{
u
(n)
R

}
⊂ L∞((0, R) × (0, T )) and {φn} ⊂ C(R) be se-

quences with properties

u
(n)
R ⇀ uR in L2((0, R)× (0, T )),

φn is nondecreasing,

φn → φ uniformly on compact subset of R,

φn(u
(n)
R )→ χ in L2((0, R)× (0, T )),

then χ = φ(uR).

Now we can prove the following lemma.

Lemma 2.7. Let p, q ∈ L∞((0, R) × (0, T )) be such that 0 ≤ p ≤ V0, 0 ≤

q ≤ U0. Then problems (2.12) and (2.13) have unique weak solutions uR and

vR respectively with the following properties

0 ≤ uR ≤ U0, 0 ≤ vR ≤ V0 in (0, R)× (0, T ).

Proof. First we construct the solutions
{
u
(n)
R

}
,
{
v
(n)
R

}
of sequences of

uniformly parabolic problems in which φ in (2.12) and (2.13) have been

replaced by smooth functions φn where φn(U0) = φ(U0) and φ′n(u
(n)
R ) ≥ 1

n
.

Under these assumption on φn, the equations are parabolic non-degenerate

and we may apply standard quasilinear theory to obtain the existence and

uniqueness of classical solutions.
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We know that for 0 ≤ u
(n)
R ≤ U0, 0 ≤ v

(n)
R ≤ V0 by the usual parabol-

ic comparison principle. Multiplying the equation for u
(n)
R by φn(u

(n)
R ) and

integrating over (0, R)× (0, t0), where t0 ∈ (0, T ), give∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
φn

(
u
(n)
R

)
xx

dxdt

=

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)(
u
(n)
R

)
t
dxdt+ k

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
u
(n)
R pdxdt,

gives

−
∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
x

∣∣∣2 dxdt =

∫ R

0

[
Φ
(
u
(n)
R

)
(t0)− Φ

(
u
(n)
R

)
(0)
]

dx

+ k

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
u
(n)
R pdxdt,

then we have∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
x

∣∣∣2 dxdt ≤
∣∣∣∣∫ R

0

[
Φ
(
u
(n)
R

)
(t0)− Φ

(
u
(n)
R

)
(0)
]

dx

∣∣∣∣+ kU0V0φ(U0)RT,

since u
(n)
R ∈ L∞((0, R)× (0, T )), where Φ′(s) = φ(s).

To prove the L2 bound of φn

(
u
(n)
R

)
t
, we multiply the equation for u

(n)
R

by φn

(
u
(n)
R

)
t

and integrate over (0, R)× (0, t0), then

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
t

(
u
(n)
R

)
t
dxdt =

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
t
φn

(
u
(n)
R

)
xx

dxdt

− k
∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
t
u
(n)
R pdxdt.

Denoting N = φ′(U0), we get

1

N

∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
t

∣∣∣2 dxdt+
1

2

∫ R

0

∣∣∣φn (u(n)R

)
x

(t0)
∣∣∣2 dx

≤1

2

∫ R

0

∣∣∣φn (u(n)R

)
x

(0)
∣∣∣2 dx− k

∫ t0

0

∫ R

0

φn

(
u
(n)
R

)
t
u
(n)
R pdxdt,

because φ′ is increasing, so φ′(s) ≤ N for s ∈ [0, U0].
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We now estimate the last term by the Cauchy-Schwarz Inequality, which

yields

1

N

∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
t

∣∣∣2 dxdt

≤1

2

∫ R

0

∣∣∣φn (u(n)R

)
x

(0)
∣∣∣2 dx+ kC

[∫ t0

0

∫ R

0

(
φn

(
u
(n)
R

)
t

)2
dxdt

] 1
2

,

where C is a positive constant since 0 ≤ u
(n)
R ≤ U0 and 0 ≤ p ≤ V0.

This implies that∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
t

∣∣∣2 dxdt (2.14)

≤C1

∫ R

0

∣∣∣φn (u(n)R

)
x

(0)
∣∣∣2 dx+ kC2

[∫ t0

0

∫ R

0

(
φn

(
u
(n)
R

)
t

)2
dxdt

] 1
2

, (2.15)

where C1 and C2 are positive constants. With

X =

[∫ t0

0

∫ R

0

(
φn

(
u
(n)
R

)
t

)2] 1
2

,

we can write (2.15) as

X2 ≤ C1

∫ R

0

∣∣∣φn (u(n)R

)
x

(0)
∣∣∣2 dx+ kC2X,

from which we conclude that∫ t0

0

∫ R

0

∣∣∣φn (u(n)R

)
t

∣∣∣2 dxdt ≤ C3,

where C3 is a positive constant, since φn

(
u
(n)
R

)
x

(0) ∈ L1((0, R)).

Then we know that φn

(
u
(n)
R

)
is bounded in L∞((0, R)×(0, T )), φn

(
u
(n)
R

)
x

is bounded in L2((0, R) × (0, T )) and φn

(
u
(n)
R

)
t

is bounded in L2((0, R) ×

(0, T )). By [13, p.170], which says that W 1,1(Ω) ⊂ BV (Ω), we therefore have

φn

(
u
(n)
R

)
is bounded in BV ((0, R) × (0, T )) and there exists a subsequence{

u
(nj)
R

}
and a function χ1 ∈ BV ((0, R)× (0, T )) such that

φnj

(
u
(nj)
R

)
→ χ1 in L1((0, R)× (0, T )) as j →∞.
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As ε > 0, it follows similarly for v that there exists a subsequence
{
v
(nj)
R

}
and a function χ2 ∈ BV ((0, R)× (0, T )) such that

φnj

(
v
(nj)
R

)
→ χ2 in L1((0, R)× (0, T )) as j →∞.

We may choose these sequences such that

u
(nj)
R ⇀ uR, v

(nj)
R ⇀ vR in L2((0, R)× (0, T )),

and sequence {φn} such that φn → φ uniformly. By Lemma 2.6 we have

χ1 = φ(uR), χ2 = φ(vR). We know that φn

(
u
(n)
R

)
− φ(U0) is bounded in

L2(0, T ; ΩR) and φn

(
v
(n)
R

)
is bounded in L2(0, T ;W 1,2(0, R)), so there are

subsequences, again denote by
{
u
(nj)
R

}
and

{
v
(nj)
R

}
such that

φnj

(
u
(nj)
R

)
− φ(U0) ⇀ φ(uR)− φ(U0) in L2(0, T ; ΩR),

φnj

(
v
(nj)
R

)
⇀ φ(vR) in L2((0, R)× (0, T )).

By a standard limiting argument we can show that uR is a weak solution of

Problem (2.12) and vR is a weak solution of Problem (2.13).

The uniqueness is shown in a way similar to the proof of Lemma 2.2. �

We now return to problems (2.10) and (2.11). From Lemma 2.7 we im-

mediately deduce that u
(1)
R and v

(1)
R are weak solutions of (2.10) and (2.11).

We then define the sequences
{
u
(m)
R

}
and

{
v
(m)
R

}
inductively as following,

let u
(m)
R be the weak solution of the problem
u
(m)
Rt = φ

(
u
(m)
R

)
xx
− ku(m)

R v
(m−1)
R , (x, t) ∈ (0, R)× (0, T ),

u
(m)
R (0, t) = U0, φ

(
u
(m)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

u
(m)
R (x, 0) = u0,R(x), for x ∈ (0, R),

(2.16)
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let v
(m)
R be the weak solution of the problem
v
(m)
Rt = εφ(v

(m)
R )xx − ku(m)

R v
(m)
R , (x, t) ∈ (0, R)× (0, T ),

φ
(
v
(m)
R

)
x

(0, t) = φ
(
v
(m)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

v
(m)
R (x, 0) = v0,R(x), for x ∈ (0, R).

(2.17)

Then u
(m)
R and v

(m)
R satisfy

(i) φ
(
u
(m)
R

)
∈ φ(û) + L2(0, T ; ΩR), and

∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

u
(m)
R ξtdxdt

=

∫ T

0

∫ R

0

φ
(
u
(m)
R

)
x
ξxdxdt+ k

∫ T

0

∫ R

0

ξu
(m)
R v

(m−1)
R dxdt, (2.18)

where ξ ∈ FRT .

(ii) φ
(
v
(m)
R

)
∈ L2(0, T ;W 1,2(0, R)), and

∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

v
(m)
R ξtdxdt

=

∫ T

0

∫ R

0

εφ
(
v
(m)
R

)
x
ξxdxdt+ k

∫ T

0

∫ R

0

ξu
(m)
R v

(m)
R dxdt, (2.19)

where ξ ∈ FRT .

In the following, we prove the monotone dependence of u
(m)
R , v

(m)
R on m.

Lemma 2.8. The problem (2.16) and (2.17) have unique solutions with the

following properties

(i) u
(m)
R and v

(m)
R are weak solutions of problems (2.16) and (2.17);

(ii) 0 ≤ u
(m)
R ≤ u

(m+1)
R ≤ U0, 0 ≤ v

(m+1)
R ≤ v

(m)
R ≤ V0.
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Proof. The proof proceeds by induction. We first note that u
(1)
R and u

(2)
R

satisfy the equations

u
(1)
Rt = φ

(
u
(1)
R

)
xx
− ku(1)R V0,

u
(2)
Rt = φ

(
u
(2)
R

)
xx
− ku(2)R v

(1)
R ,

almost everywhere in (0, R)× (0, T ).

Since u
(1)
R , u

(2)
R satisfy identical initial and boundary conditions, u

(1)
R is a

subsolution for (2.16) with m = 2, since v
(1)
R ≤ V0, which implies u

(2)
R ≥ u

(1)
R .

Now consider v
(1)
R and v

(2)
R

v
(1)
Rt = εφ

(
v
(1)
R

)
xx
− ku(1)R v

(1)
R ,

v
(2)
Rt = εφ

(
v
(2)
R

)
xx
− ku(2)R v

(2)
R .

Since v
(1)
R , v

(2)
R satisfy identical initial and boundary conditions, v

(2)
R is a sub-

solution for (2.17) as m = 2, which implies v
(1)
R ≥ v

(2)
R . The proof of monotone

dependence of u
(m)
R and v

(m)
R of m for large values of m is similar. �

We can now establish the existence of a weak solution of Problem (2.1) when

ε is strictly positive.

Theorem 2.9. There exists a unique weak solution (uR, vR) of Problem (2.1)

such that

0 ≤ uR ≤ U0 and 0 ≤ vR ≤ V0.

Proof. Lemma 2.8 implies that the functions u
(m)
R and v

(m)
R tend (pointwise)

to functions uR, vR as m tends to infinity. By the proof of Lemma 2.7 we

conclude there are subsequences
{
u
(mj)
R

}
and

{
v
(mj)
R

}
such that

φ
(
u
(mj)
R

)
− φ(U0) ⇀ φ(uR)− φ(U0) weakly in L2(0, T ; ΩR),
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φ
(
v
(mj)
R

)
⇀ φ(vR) weakly in L2(0, T ;W 1,2(0, R)).

Then, by the Dominated Convergence Theorem and passing to the limits as

(2.18) leads to ∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt

=

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,

where ξ ∈ FRT . We can readily show uR is a weak solution of (2.12) with

p = vR. From DiBenedetto [11, Theorem 7.1], we conclude that uR ∈

C([0, R] × [0, T ]). Similarly, we know that vR is a weak solution of prob-

lem (2.13) with q = uR and we can conclude also that vR ∈ C([0, R]× [0, T ]).

It follows from Lemma 2.2 that (uR, vR) is the unique weak solution of prob-

lem (2.1). �

Next, we will prove the existence of weak solution of (1.4) with ε > 0 by

looking at (uR, vR) in the limit R → ∞. First, we prove some preliminary

estimates. In the following, C(L) denotes some L-dependent constant which

varies according to context.

Lemma 2.10. Suppose ε > 0 and L > 0. Then there exists a constant C(L)

independent of k such that if R > L+ 1, then

k

∫ T

0

∫ L+1

0

uRvRdxdt ≤ C(L). (2.20)

Proof. Introducing a cut-off function ϕ1 ∈ C∞(R+) such that 0 ≤ ϕ1(x) ≤ 1

for all x ∈ R+, ϕ1(0) = ϕ1
x(0) = 0,

ϕ1(x) =

 1 x ∈ [1, 2],

0 x ≥ 3.

26



Then given L ≥ 2, define the family of cut-off functions ϕL ∈ C∞(R+) by

ϕL(x) =


ϕ1(x) x ∈ [0, 1],

1 x ∈ [1, L],

ϕ1(x+ 2− L) x ≥ L.

(2.21)

Note that 0 ≤ ϕL ≤ 1 for all L, and ϕLx , ϕLxx are bounded in L∞(R+)

independently of L.

Multiplying the equation for uR by ϕL and integrating over (0, R)×(0, T )

gives that

k

∫ T

0

∫ L+1

0

uRvRϕ
Ldxdt =

∫ T

0

∫ L+1

0

φ(uR)ϕLxxdxdt+

∫ L+1

0

ϕLu0,Rdx

−
∫ L+1

0

ϕLuR(x, T )dx.

The fact that 0 ≤ uR ≤ U0, together with the Lebesgue’s Monotone Conver-

gence Theorem, yield (2.20). �

Lemma 2.11. Suppose ε > 0. Then for each L ≥ 1, φ(uR), φ(vR) are

bounded in L2
(
0, T ;W 1,2(0, L)

)
independently of k and R.

Proof. Now we introduce a cut-off function ψ1 ∈ C∞ (R+) such that 0 ≤

ψ1 ≤ 1 for x ∈ R+

ψ1 =

 1 x ≤ 1,

0 x ≥ 2.

Then given L ≥ 1, define the family of cut-off functions ψL ∈ C∞(R+) by

ψL =

 1 x ≤ L,

ψ1(x+ 1− L) x ≥ L.
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Clearly ψL, ψLx and ψLxx are bounded in L∞(R+) independently of L. Suppose

that R > L+ 1. Then multiplying the equation for uR by
[
φ(uR)−φ(U0)

]
ψL

and integrating over (0, R)× (0, T ) give∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRtdxdt

=−
∫ T

0

∫ L+1

0

|φ(uR)x|2ψLdxdt+
1

2

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]2
ψLxxdxdt

− k
∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRvRdxdt,

Now let F =

∫ uR

0

φ(s)ds, we have

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRtdxdt =

∫ L+1

0

[
F (x, T )− F (x, 0)

]
ψLdx

+

∫ L+1

0

φ(U0)
(
u0,R − uR(x, T )

)
ψLdx.

Thus∫ T

0

∫ L+1

0

|φ(uR)x|2ψLdxdt =−
∫ L+1

0

φ(U0)
(
u0,R − uR(x, T )

)
ψLdx

−
∫ L+1

0

[
F (x, T )− F (x, 0)

]
ψLdx

+
1

2

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]2
ψLxxdxdt

− k
∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRvRdxdt.

By (2.9) and the fact that φ is increasing with respect to uR, we know that

there exists some C such that

F =

∫ uR

0

φ(s)ds ≤ C,

We know φ(uR)− φ(U0) ∈ L∞((0, R)× (0, T )), then Lemma 2.10 yields∫ T

0

∫ L+1

0

|φ(uR)x|2dxdt ≤ C, (2.22)
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independently of k and R. If ε > 0, the estimate for φ(vR)x can be proved

likewise, using the equation for vR. �

In order to prove that the sets {uR}R>0, {vR}R>0 are each relatively com-

pact in L2
loc(R+×(0, T )), we now prove estimates of space and time translates

of uR, vR.

It is convenient to introduce a shorthand notation for space and time

translates. Given a function h, let

Sδh(x, t) := h(x+ δ, t), Tτh(x, t) := h(x, t+ τ), (2.23)

for all (x, t) in a suitable space-time domain and appropriate δ and τ .

Lemma 2.12. Suppose ε > 0. Then for each L > 0 and r ∈ (0, 1), there

exists a constant C(L), independent of k and δ, such that∫ T

0

∫ L+1

r

|φ(SδuR)− φ(uR)|2dxdt ≤ C(L)|δ|2,∫ T

0

∫ L+1

r

|φ(SδvR)− φ(vR)|2dxdt ≤ C(L)|δ|2,

for all δ ∈ R, |δ| ≤ r.

Proof. As a result of the gradient bounds in Lemma 2.11, this can be proved

by adapting the proof of Lemma 2.6 in [9]. Indeed∫ T

0

∫ L+1

r

|φ(uR)(x+ δ, t)− φ(uR)(x, t)|2dxdt

=

∫ T

0

∫ L+1

r

∣∣∣∣∫ 1

0

φ(uR)x(x+ θδ, t) · δdθ
∣∣∣∣2 dxdt

≤|δ|2
∫ 1

0

∫ T

0

∫ L+1

r

|φ(uR)x(x+ θδ, t)|2 dxdtdθ

≤|δ|2
∫ T

0

∫ L+2

0

|φ(uR)x(x, t)|2 dxdt

≤C|δ|2.
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An analogous estimate for vR can be obtained using similar arguments. �

Lemma 2.13. Suppose ε > 0. Then for each L > 0, there exists a constant

C(L) independent of k and τ ∈ (0, T ) such that∫ T−τ

0

∫ L+1

0

|φ(TτuR)− φ(uR)|2dxdt ≤ τC(L),∫ T−τ

0

∫ L+1

0

|φ(TτvR)− φ(vR)|2dxdt ≤ τC(L).

Proof. The proof takes the advantage of [10, Lemma 2.16], see also [9,

Lemma 3]. Since we have nonlinear diffusion terms, we also need to deal

with the nonlinearity φ. Let ψL be as in the proof of Lemma 2.11. Then it

follows using the Mean Value Theorem that∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|2 dxdt

=

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|φ′(ρ) |TτuR − uR| dxdt

≤N
∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)| |TτuR − uR| dxdt,

where ρ ∈ [0, U0] and N = φ′(U0) such that φ′(s) ≤ N for all s ∈ [0, U0],

since φ′ is increasing. Then we have∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|2 dxdt

≤N
∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|
[∫ τ

0

(uR)s(x, t+ s)ds

]
dxdt

=N

∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ (TτuR)− φ(uR)|φ(uR)xx(x, t+ s)dxdtds

−Nk
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|uR(x, t+ s)vR(x, t+ s)dxdtds

=I1 + I2 + I3,
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with

I1 := −N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|x φ(uR)x(x, t+ s)dxdtds,

I2 := −N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLx |φ(TτuR)− φ(uR)|φ(uR)x(x, t+ s)dxdtds,

I3 := −Nk
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|uR(x, t+ s)vR(x, t+ s)dxdtds.

I1 can be split into two terms and by using Cauchy-Schwarz inequality and

using the property ψL ≤ 1 yield

|I1| =
∣∣∣∣−N ∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLφ(TτuR)xφ(uR)x(x, t+ s)dxdtds

+N

∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLφ(uR)xφ(uR)x(x, t+ s)dxdtds

∣∣∣∣
≤2τN

{∫ T

0

∫ L+1

0

|φ(uR(x, t))x|2 dxdt

} 1
2

.

which is bounded by Lemma 2.11.

By (2.9) and the Cauchy-Schwarz inequality, there exist C independent

of k such that

|I2| = sup |ψLx |NC
∫ τ

0

∫ T−τ

0

∫ L+1

L

|φ(uR)x(x, t+ s)| dxdtds

≤ sup |ψLx |NCτ
{∫ T−τ

0

∫ L+1

L

|φ(uR)x(x, t+ s)|2 dxdt

} 1
2

ds,

which is bounded by (2.22) and the fact that sup |ψLx | is bounded independent

of L.

The last term is easier to handle, by (2.9) we get

|I3| ≤ 2MτN

∫ T

0

∫ L+1

0

kuRvRdxdt,

which is bounded by Lemma 2.10. An analogous estimate for vR can be

obtained by using similar arguments. �
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We can now establish the existence of a weak solution of the original

problem (1.4) of ST when ε > 0. Now with

ΩJ :=
{
α ∈ W 1,2((0, J))| α = 0 at x = 0

}
,

and define

FT :=
{
ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0} .

Theorem 2.14. Let ε > 0. Given k > 0, there exists a weak solution

(uk, vk) ∈ (L∞(ST ))2 of (1.4) such that for each J > 0,

(i) φ(uk) ∈ φ(û) + L2(0, T ; ΩJ), φ(vk) ∈ L2(0, T ;W 1,2((0, J)))

(ii) (uk, vk) satisfies∫
R+

uk0ξ(x, 0)dx+

∫∫
ST

ukξtdxdt =

∫∫
ST

φ(uk)xξxdxdt+ k

∫∫
ST

ξukvkdxdt,∫
R+

vk0ξ(x, 0)dx+

∫∫
ST

vkξtdxdt =

∫∫
ST

εφ(vk)xξxdxdt+ k

∫∫
ST

ξukvkdxdt,

where ξ ∈ FT .

Proof. Let u0,R, v0,R be as in the formulation of problem (2.2) and note that

as R→∞, u0,R → uk0, v0,R → vk0 in C1
loc(R+). Then given Rn →∞, it follows

from the Fréchet-Kolmogorov Theorem (see, for example, [3, Corollary 4.27])

and (2.9), Lemma 2.12 and 2.13, that there exist subsequences
{
Rnj

}
and

functions uk ∈ L∞(ST ) and vk ∈ L∞(ST ) such that

uRnj → uk, vRnj → vk strongly in L2
loc(ST ) and a.e. in ST

as j → ∞. Now we know that φ(uRnj ) − φ(U0) is bounded in L2(0, T ; ΩJ)

and φ(vRnj ) is bounded in L2(0, T ;W 1,2(0, J)) by Lemma 2.11, then we have

as j →∞

φ(uRnj )− φ(U0) ⇀ φ(uk)− φ(U0) in L2(0, T ; ΩJ),
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φ(vRnj ) ⇀ φ(vk) in L2(0, T ;W 1,2((0, J))).

By the Dominated Convergence Theorem we can then easily pass to the limit

in the weak form of (1.4). �

We use the following comparison principle theorem for (1.4) to show the

uniqueness of the weak solution of (1.4). Note that this result covers both

the case ε > 0 and the case ε = 0.

Lemma 2.15. Let ε ≥ 0 and (u, v), (u, v) be such that

(a) u, u ∈ L∞(ST );

(b) φ(u) ∈ φ(u(0, ·)) + L2(0, T ; ΩJ), φ(u) ∈ φ(u(0, ·)) + L2(0, T ; ΩJ);

(c) ut, ut, φ(u)xx, φ(u)xx ∈ L1(ST );

(d) v, v ∈ L∞(ST ), vt, vt ∈ L1(ST );

(e) If ε > 0, φ(v), φ(v) ∈ L2(0, T ;W 1,2((0, J))), φ(v)xx, φ(v)xx ∈ L1(ST );

and (ū, v̄), (u, v) satisfy

ut ≥ φ(u)xx − kuv, ut ≤ φ(u)xx − kuv, in ST ,

vt ≤ εφ(v)xx − kuv, vt ≥ εφ(v)xx − kuv, in ST ,

u(0, ·) ≥ u(0, ·), εφ(v)x(0, ·) = εφ(v)x(0, ·) = 0, on (0, T ),

u(·, 0) ≥ u(·, 0), v(0, ·) ≤ v(0, ·), on R+.

Then

u ≥ u, v ≤ v in ST .
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Proof. The proof are similar to the proof of Lemma 2.2. Now take function

m+ as in the proof of Lemma 2.2 and let w = φ(u)−φ(u) and z = φ(v)−φ(v),

we have

(u− u)t ≤ wxx − k(uv − uv), (2.24)

(v − v)t ≤ εzxx − k(uv − uv). (2.25)

Let ψL be as in the proof of Lemma 2.11. Multiplying (2.24) by (m+
α )
′
(w)ψL

and (2.25) by (m+
α )
′
(z)ψL and then adding these inequalities yield

(
m+
α

)′
(w)ψL(u− u)t +

(
m+
α

)′
(z)ψL(v − v)t

≤
(
m+
α

)′
(w)ψLwxx + ε

(
m+
α

)′
(z)ψLzxx − kψL

[(
m+
α

)′
(w)−

(
m+
α

)′
(z)
]

(uv − uv),

(2.26)

integrating over R× (0, t0), where t0 ∈ (0, T ], gives the following∫ t0

0

∫
R+

ψL
[(
m+
α

)′
(w)wxx + ε

(
m+
α

)′
(z)zxx

]
dxdt

≤−
∫ t0

0

∫
R+

ψLx
[
m+
α (w)

]
x

dxdt− ε
∫ t0

0

∫
R+

ψLx
[
m+
α (z)

]
x

dxdt

=

∫ t0

0

∫
R+

ψLxx
[
m+
α (w) + εm+

α (z)
]

dxdt,

since (m+
α )
′′

(w), (m+
α )
′′

(z) ≥ 0 because m+
α is convex. So (2.26) yields∫ t0

0

∫
R+

(
m+
α

)′
(w)(u− u)t +

(
m+
α

)′
(z)(v − v)tdxdt

≤
∫ t0

0

∫
R+

ψLxx
[
m+
α (w) + εm+

α (z)
]

dxdt

−k
∫ t0

0

∫
R+

ψL
[(
m+
α

)′
(w)−

(
m+
α

)′
(z)
]

(uv − uv)dxdt,

and letting α→ 0 gives

lim
α→0

(
m+
α

)′
(w) = lim

α→0

(
m+
α

)′
(φ(u)− φ(u))→ sgn+(φ(u)− φ(u)).
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Clearly

sgn+ [φ(u)− φ(u)] = sgn+(u− u),

since φ is increasing. Denoting u+ := max {u, 0}. [14, Lemma 7.6] gives the

following ∫ t0

0

∫
R+

ψL
[(

(u− u)+
)
t
+
(
(v − v)+

)
t

]
dxdt

=

∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, t0)dx

−
∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, 0)dx

≤
∫ t0

0

∫
R+

ψLxx(w
+ + εz+)dxdt

− k
∫ t0

0

∫
R+

ψL
[
(sgnw)+ − (sgnz)+

]
(uv − uv)dxdt,

and the expression

[
(sgnw)+ − (sgnz)+

]
(uv − uv) ≥ 0.

Thus∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, t0)dx

≤
∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, 0)dx+

∫ t0

0

∫
R+

ψLxx(w
+ + εz+)dxdt

≤
∫ t0

0

∫
R+

ψLxx

{[
φ(u)− φ(u)

]+
+ ε
[
φ(v)− φ(v)

]+}
dxdt, (2.27)

which is bounded independently of L and t0 by the definition of ψL and in par-

ticular, ψLxx 6= 0 only if x ∈ [L,L+ 1]. Now using Lebesgue’s Monotone Con-

vergence Theorem we deduce that [(u−u)+ + (v− v)+] ∈ L∞ (0, T ;L1(R+)),

thus (2.27) tends to 0 as L→∞. Hence

[
(u− u)+ + (v − v)+

]
(·, t0) = 0 on R+.
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The following corollary is immediately from Lemma 2.2.

Corollary 2.16. Let ε ≥ 0. For given initial data uk0, v
k
0 , there is at most

one solution (uk, vk) of (1.4).

If we take (u, v) = (0, 0) and (u, v) = (uk, vk), then take (u, v) = (uk, vk) and

(u, v) = (U0, V0) in Lemma 2.2, we can get the following.

Corollary 2.17. Let ε ≥ 0 and (uk, vk) be a weak solution of (1.4). Then

for given k > 0, we have

0 ≤ uk(x, t) ≤ U0 and 0 ≤ vk(x, t) ≤ V0 for (x, t) ∈ ST . (2.28)

The existence of weak solutions of (1.4) when ε = 0 are proved in Theorem

2.26 in next Section.

2.2 A priori bounds, existence and unique-

ness of weak solutions for ε = 0

In this section, we prove some a priori estimates for ε = 0 and for ε > 0 that

will be used both in proving existence of a weak solution of (1.4) when ε = 0

and in the next section, to study the limit of (1.4) as k →∞.

The next bound for kukvk is key in the following. The proof is similar to

Lemma 2.10, but here the estimates are proved over ST which is unbounded.

The strategy to obtain the estimate is to consider the integral over (1,∞)×

(0, T ) by studying the equation of uk and the integral over (0, 1)× (0, T ) by

studying the equation of vk.
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Lemma 2.18. There exists a constant C > 0, independent of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.4), we have∫∫
ST

kukvkdxdt ≤ C.

Proof. Multiplying the equation for uk by the cut-off function ϕL defined

in Lemma 2.10 and integrating over R+ × (0, t0) where t0 ∈ (0, T ], we have

∫
R+

ϕLuk(x, t0)dx+ k

∫ t0

0

∫
R+

ϕLukvkdxdt

=

∫ t0

0

∫
R+

ϕLxxφ(uk)dxdt+

∫
R+

ϕLuk0dx,

it follows that there exists some C > 0 such that∫ L

1

ϕLuk(x, t0)dx+ k

∫ t0

0

∫ L

1

ϕLukvkdxdt ≤ C, (2.29)

independently of L, k > 0, by (2.28), the definition of ϕL and the fact

uk0 ∈ L1(R+). Letting L→∞ and using Lebesgue’s Monotone Convergence

Theorem give

k

∫ T

0

∫ ∞
1

ukvkdxdt ≤ C. (2.30)

Similarly, multiplying the equation for vk by ϕ̂ where ϕ̂ ∈ C∞(R+) is such

that 0 ≤ ϕ̂(x) ≤ 1, ϕ̂(x) = 1 for x ∈ [0, 1] and ϕ̂(x) = 0 for all x ≥ 2, then

integrating over R+ × (0, t0) for t0 ∈ (0, T ] yields

k

∫ t0

0

∫
R+

ϕ̂ukvkdxdt = ε

∫ t0

0

∫
R+

ϕ̂xxφ(vk)dxdt−
∫ 2

0

ϕ̂
[
vk(x, t0)− vk0

]
dx,

together with (2.28), imply that

k

∫ T

0

∫ 1

0

ukvkdxdt ≤ C, (2.31)
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independently of k > 0 and of ε ≥ 0. Then the result follows from (2.29)

and (2.31). �

In the following, we prove that uk and |vk(x, t0)− V0| are bounded inde-

pendently of ε in L1(R+).

Lemma 2.19. There exists a constant C > 0, independent of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.4), we have∫
R+

uk(x, t0)dx ≤ C and

∫
R+

|vk(x, t0)− V0|dx ≤ C, (2.32)

for all t0 ∈ [0, T ].

Proof. The estimate for uk is immediately from (2.29) and the Monotone

Convergence Theorem.

Now choose a smooth convex function m : R→ R with

m ≥ 0, m(0) = 0, m′(0) = 0, m(r) = |r| − 1

2
for |r| > 1.

For each α > 0, define the functions

mα(r) := αm(
r

α
),

which approximate the modulus function as α → 0. Denote v̂ = vk − V0,

ẑ = φ(vk)− φ(V0).

Now with ψL as in the proof of Lemma 2.11, we have∫
R+

m′α(ẑ)ψLẑxxdx =−
∫
R+

m′α(ẑ)ψLx ẑxdx−
∫
R+

m′′α(ẑ)ψL|ẑx|2dx

≤−
∫
R+

[
mα(ẑ)

]
x
ψLxdx

=

∫
R+

mα(ẑ)ψLxxdx.
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Multiplying the equation of v̂ by m′α(ẑ)ψL and integrating over R+ × (0, t0),

we obtain ∫ t0

0

∫
R+

m′α(ẑ)ψLv̂tdxdt =ε

∫ t0

0

∫
R+

m′α(ẑ)ψLẑxxdxdt

−k
∫ t0

0

∫
R+

m′α(ẑ)ψLukvkdxdt.

Letting α→ 0 and [14, Lemma 7.6] yields∫
R+

|v̂(x, t0)|ψLdx−
∫
R+

|v̂(x, 0)|ψLdx

≤ε
∫ t0

0

∫
R+

|ẑ|ψLxxdxdt− k
∫ t0

0

∫
R+

sgn(ẑ)ψLukvkdxdt. (2.33)

We know that ψLxx 6= 0 only when ψLxx ∈ [L,L + 1] and by Lemma 2.18,

the right-hand side of (2.33) is bounded independently of L and k. So it

follows from the fact that vk0 − v∞0 is bounded in L1(R+), there exists C > 0

independent of k, such that for all t0 ∈ [0, T ]∫
R+

|vk(x, t0)− V0|dx ≤ C.

�

By using the Mean Value Theorem and a priori bounds on uk, vk on

Corollary 2.17, we can get the following corollary of Lemma 2.19.

Corollary 2.20. There exists a constant C > 0, independent of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.4), we have∫
R+

φ(uk)(·, t0)dx ≤ C and

∫
R+

|φ(vk)(·, t0)− φ(V0)|dx ≤ C, (2.34)

for all t0 ∈ [0, T ].

Next we prove a bound for the L2-norm of the space derivatives φ(uk)x and

φ(vk)x.

39



Lemma 2.21. There exists C > 0, independent of ε ≥ 0 and k > 0, such

that for any solution (uk, vk) of (1.4),∫∫
ST

|φ(uk)x|2dxdt ≤ C, and ε

∫∫
ST

|φ(vk)x|2dxdt ≤ C. (2.35)

Proof. The proof follows the similar arguments in Lemma 2.11. Let ψL

be as in the proof of Lemma 2.11. Then multiplying the equation for uk by[
φ(uk)− φ(U0)

]
ψL and integrating over ST give∫∫

ST

[
φ(uk)− φ(U0)

]
ψLukt dxdt =

∫
R+

[
F (x, T )− F (x, 0)

]
ψLdx

+

∫
R+

φ(U0)
(
uk0 − uk(x, T )

)
ψLdx,

where F =

∫ uk

0

φ(s)ds.

Thus∫∫
ST

|φ(uk)x|2ψLdxdt =−
∫
R+

φ(U0)
(
uk0 − uk(x, T )

)
ψLdx

−
∫
R+

[
F (x, T )− F (x, 0)

]
ψLdx

+
1

2

∫∫
ST

[
φ(uk)− φ(U0)

]2
ψLxxdxdt

− k
∫∫

ST

[
φ(uk)− φ(U0)

]
ψLukvkdxdt.

Here the second term on the right-hand side is an integral over the unbounded

domain R+. By the Mean Value Theorem and (2.28), we obtain for s ∈ [0, U0]

such that

F (x, T )− F (x, 0) = φ(s)uk(x, T ),

which yields∣∣∣∣∫
R+

[F (x, T )− F (x, 0)]ψLdx

∣∣∣∣ ≤ φ(U0) sup
0≤t≤T

∫
R+

uk(x, t)dx,
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which is bounded by Lemma 2.19. Combining with Lemma 2.18, using

Lebesgue’s Monotone Convergence Theorem and letting L→∞ imply that

there exists a constant C > 0 such that∫∫
ST

|φ(uk)x|2dxdt ≤ C,

independently of k. If ε > 0, the estimate for φ(vk)x can be proved likewise,

using the equation for vk. �

The following estimates for the differences of space and time translates

of solutions will yield sufficient compactness both to obtain the existence of

solutions of (1.4) when ε > 0 and ε = 0, and to study the strong-interaction

limit k →∞. The estimates for the differences of space translates of solutions

are proved in the similar way to Lemma 2.15 [10], which importantly allows

ε = 0. Note that we need alternative procedures to deal with the nonlinear

diffusion, and the monotonicity properties of φ and Lemma 7.6 [14] are used

here.

Recall the notion for space and time translates introduced in (2.23).

Lemma 2.22. Suppose that ε ≥ 0 and let (uk, vk) be a solution of (1.4)

satisfying (2.28). Then for each r ∈ (0, 1), there exists a function Kr ≥ 0

independent of ε ≥ 0 and k > 0 such that Kr(δ) → 0 as |δ| → 0 and for all

|δ| ≤ r
4

and t ∈ (0, T ), we have∫ ∞
r

∣∣φ(uk)− φ(Sδu
k)
∣∣+
∣∣φ(vk)− φ(Sδv

k)
∣∣ dx ≤ Kr(δ).

Proof. Let

u := uk − Sδuk, w := φ(uk)− φ(Sδu
k),
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v := vk − Sδvk, z := φ(vk)− φ(Sδv
k), (2.36)

and define a cut-off function γ1r ∈ C∞(R+) such that 0 ≤ γ1r ≤ 1 and

γ1r (x) =


0 x ∈ [0, r/2],

1 x ∈ [r, 1],

0 x ≥ 2.

Then given L ≥ 1 define a family of cut-off function γLr ∈ C∞(R+)

γLr (x) =


γ1r (x) x ∈ [0, r],

1 x ∈ [r, L],

γ1r (x+ 1− L) x ≥ L.

Note that 0 ≤ γLr ≤ 1 for all L, and (γLr )x, (γLr )xx are bounded in both

L∞(R+) and L1(R+) independently of L. Then

ut = wxx − k
(
ukvk − SδukSδvk

)
, in

(r
4
,∞
)
× (0, T ),

vt = εzxx − k
(
ukvk − SδukSδvk

)
, in

(r
4
,∞
)
× (0, T ),

u(x, 0) = uk0 − Sδuk0, v(x, 0) = vk0 − Sδvk0 , for x ∈
(r

4
,∞
)
.

Let mα be as defined in the proof of Lemma 2.19, multiplying the equation

for u by m′α(w)γLr and integrating over
(
r
2
,∞
)
× (0, t0) give∫ t0

0

∫
R+

m′α(w)γLr utdxdt

=−
∫ t0

0

∫
R+

m′′α(w)|wx|2γLr dxdt+

∫ t0

0

∫
R+

mα(w)
(
γLr
)
xx

dxdt

− k
∫ t0

0

∫
R+

m′α(w)γLr
(
ukvk − SδukSδvk

)
dxdt

≤
∫ t0

0

∫
R+

mα(w)
(
γLr
)
xx

dxdt

− k
∫ t0

0

∫
R+

m′α(w)γLr
(
ukvk − SδukSδvk

)
dxdt,
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letting α→ 0 and by [14, Lemma 7.6], we have∫ ∞
r
2

|u(x, t0)|γLr dx ≤
∫ ∞
r
2

|u(x, 0)|γLr dx+

∫ t0

0

∫ ∞
r
2

|w|
(
γLr
)
xx

dxdt

− k
∫ t0

0

∫ ∞
r
2

γLr sgn(w)
(
ukvk − SδukSδvk

)
dxdt, (2.37)

similarly∫ ∞
r
2

|v(x, t0)|γLr dx ≤
∫ ∞
r
2

|v(x, 0)|γLr dx+ ε

∫ t0

0

∫ ∞
r
2

|z|
(
γLr
)
xx

dxdt

− k
∫ t0

0

∫ ∞
r
2

γLr sgn(z)
(
ukvk − SδukSδvk

)
dxdt. (2.38)

Adding (2.37) and (2.38) then gives∫ ∞
r
2

γLr {|u(x, t0)|+ |v(x, t0)|} dx

≤
∫ ∞
r
2

γLr {|u(x, 0)|+ |v(x, 0)|} dx+

∫ t0

0

∫
r
2

(
γLr
)
xx
{|w|+ ε|z|} dxdt

− k
∫ t0

0

∫ ∞
r
2

γLr [sgn(w) + sgn(z)]
(
ukvk − SδukSδvk

)
dxdt

≤
∫ ∞
r
2

γLr {|u(x, 0)|+ |v(x, 0)|} dx+

∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
{|w|+ ε|z|} dxdt,

(2.39)

because

[sgn(w) + sgn(z)]
(
ukvk − SδukSδvk

)
≥ 0. (2.40)

Now we prove the following bound for right-hand side of (2.39),∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
|w|dxdt

=

∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
|φ(uk)(x, t)− φ(uk)(x+ δ, t)|dxdt

=

∫ t0

0

∫ ∞
r
2

(
γLr
)
xx

∣∣∣∣∫ 1

0

δφ(uk)x(x+ θδ, t)dθdxdt

∣∣∣∣
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≤|δ|
∫ t0

0

∫ ∞
r
2

(
γLr
)
xx

∫ 1

0

∣∣φ(uk)x(x+ θδ, t)
∣∣ dθdxdt

≤|δ|

[∫ t0

0

∫ ∞
r
4

(
γLr
)2
xx

dxdt

] 1
2
[∫ t0

0

∫ ∞
r
4

∣∣φ(uk)x(x+ δ, t)
∣∣2 dxdt

] 1
2

.

By Lemma 2.21 and a similar estimate for z, we get∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
{|w|+ ε|z|} dxdt ≤ Kr|δ|, (2.41)

for some constant Kr. The result follows from (2.39), the fact that ‖uk0(· +

δ)− uk0(·)‖L1((r,∞)) + ‖vk0(· + δ)− vk0(·)‖L1((r,∞)) ≤ ωr(δ) where ωr(µ)→ 0 as

µ→ 0 and Lebesgue’s Monotone Convergence Theorem combining with the

Mean Value Theorem. �

The estimates for the difference of time translates are proved by using

similar methods to those in the proof of Lemma 2.13, passing to the limit as

L→∞ in integrals over (0, L+ 1) to obtain estimates on integrals over R+.

Lemma 2.23. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.4) satisfying

(2.28). Then there exists C > 0, independent of ε and k, for any τ ∈ (0, T )

that ∫ T−τ

0

∫
R+

|φ(Tτu
k)− φ(uk)|2dxdt ≤ τC,∫ T−τ

0

∫
R+

|φ(Tτv
k)− φ(vk)|2dxdt ≤ τC.

Proof. Let ψL be as in the proof of Lemma 2.11. Then it follows using the

Mean Value Theorem such that
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∫ T−τ

0

∫
R+

ψL|φ(Tτu
k)− φ(uk)|2dxdt

≤N
∫ T−τ

0

∫
R+

ψL
[
φ(Tτu

k)− φ(uk)
] (
Tτu

k − uk
)

dxdt,

where N = φ′(U0), because φ is increasing, and φ′ is bounded by N for

s ∈ [0, U0], then we have

∫ T−τ

0

∫
R+

ψL|φ(Tτu
k)− φ(uk)|2dxdt

≤N
∫ τ

0

∫ T−τ

0

∫
R+

ψL
[
φ
(
Tτu

k
)
− φ(uk)

]
φ(uk)xx(x, t+ s)dxdtds

−Nk
∫ τ

0

∫ T−τ

0

∫
R+

ψL
[
φ(Tτu

k)− φ(uk)
]
Tτu

kTτv
kdxdtds

=I1 + I2 + I3,

with

I1 := −N
∫ τ

0

∫ T−τ

0

∫
R+

ψL
[
φ(Tτu

k)− φ(uk)
]
x
φ(uk)x(x, t+ s)dxdtds,

I2 := −N
∫ τ

0

∫ T−τ

0

∫
R+

ψLx
[
φ(Tτu

k)− φ(uk)
]
φ(uk)(x, t+ s)dxdtds,

I3 := −Nk
∫ τ

0

∫ T−τ

0

∫
R+

ψL
[
φ(Tτu

k)− φ(uk)
]
Tτu

kTτv
kdxdtds.

I1 can be split into two terms and by the Cauchy-Schwarz inequality, using

the property ψL ≤ 1 and letting L→∞ yield

|I1| ≤ 2τN

{∫ T

0

∫
R+

∣∣φ(uk)x
∣∣2 dxdt

}
.

which is bounded by Lemma 2.21.

Then using the bounded for sup
∣∣ψLx ∣∣ independently of L, we have

|I2| ≤
(
sup

∣∣ψLx ∣∣)N ∫ τ

0

∫ T−τ

0

∫ L+1

L

∣∣φ(Tτu
k)− φ(uk)

∣∣ ∣∣φ(uk)x(x, t+ s)
∣∣ dxdtds,
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which vanishes as L→∞, since (2.28), Lemma 2.19 and Lemma 2.21.

The last term is easier to handle, by (2.28) and letting L→∞ we get

|I3| ≤ 2MτN

∫ T

0

∫
R+

ukvkdxdt,

which is bounded by Lemma 2.18. When ε > 0, the estimate for vk follows

likewise, using the equation for vk. When ε = 0, a similar but simpler argu-

ment applies, omitting the terms involving φ(vk)xx. �

The following lemma will be used to prove the convergence results of

(uk, vk) as ε → 0 and k → ∞ and to study the weak solutions of k → ∞

limit problems.

Lemma 2.24. Let (uk, vk) be weak solutions of (1.4) with k > 0 and ε ≥ 0.

Then

φ(uk)− φ(û) ∈ L2(0, T ;W 1,2
0 (R+)), (2.42)

and

ε[φ(vk)− φ(V0)] ∈ L2(0, T ;W 1,2(R+)), (2.43)

where û ∈ C∞(R+) is a smooth function such that û = U0 when x = 0 and

û = 0 when x > 1.

Proof. The result for uk follows from Corollary 2.17 and Corollary 2.20

which ensure that φ(uk) − φ(U0) ∈ L∞(ST ) and φ(uk) − φ(U0) ∈ L1(ST ),

together with Lemma 2.21 which ensures that φ(uk)x ∈ L2(ST ). If ε > 0, the

estimates for vk can be proved likewise. �

We can now prove a convergence result for solutions (uk, vk) of (1.4) as

ε→ 0.
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Lemma 2.25. Let k > 0 be fixed and (ukε , v
k
ε ) be solution of (1.4) satisfying

(2.28) with ε > 0. Then there exist (uk?, v
k
?) ∈ (L∞(ST ))2 such that up to a

subsequence, for each J > 0

φ(ukε)→ φ(uk?) in L2((0, J)× (0, T )),

ukε → uk? a.e. in (0, J)× (0, T ),

φ(vkε )→ φ(vk?) in L2((0, J)× (0, T )),

vkε → vk? a.e. in (0, J)× (0, T ),

φ(ukε)− φ(û) ⇀ φ(uk?)− φ(û) in L2
(
0, T ;W 1,2

0 (R+)
)
,

as ε → 0, where û ∈ C∞(R+) is a smooth function that û = U0 when x = 0

and û = 0 when x > 1.

Proof. It follows from Lemma 2.19, Lemma 2.21 and Corollary 2.17 that

φ(ukε) and φ(vkε )− φ(V0) are bounded independently of ε ≥ 0 in L2(ST ). By

Lemma 2.22 and Lemma 2.23, using the Riesz-Fréchet-Kolmogorov Theorem

[3, Theorem 4.26], yield that the sets
{
φ(vkε )− φ(V0)

}
ε>0

and
{
φ(ukε)

}
ε>0

are each relatively compact in L2 ((0, J)× (0, T )) for each J > 0. The weak

convergence of φ(ukε)−φ(û) in L2
(
0, T ;W 1,2

0 (R+)
)

follows from Lemma 2.24.

Then we know that φ(ukε) → φ(uk?) and φ(vkε ) → φ(vk?) almost everywhere

in (0, J)× (0, T ), so since φ−1 is continuous, then we have ukε → φ−1(φ(uk?))

and vkε → φ−1(φ(vk?)) almost everywhere in (0, J)× (0, T ). �

Recall that

FT :=
{
ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0} .

and

ΩJ :=
{
α ∈ W 1,2(0, J)| α = 0 at x = 0

}
.
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Lemma 2.15 and Lemma 2.25 enable the following result to be established.

Theorem 2.26. Let ε = 0 and k > 0. Then Problem (1.4) has a unique

weak solution (uk, vk) ∈ (L∞(ST ))2 for each J > 0 such that

(i) φ(uk) ∈ φ(û) + L2(0, T ; ΩJ), where û ∈ C∞(R+) is a smooth function

that û = U0 when x = 0 and û = 0 when x > 1;

(ii) (uk, vk) satisfies∫
R+

uk0ξ(x, 0)dx+

∫∫
ST

ξtu
kdxdt =

∫∫
ST

ξxφ(uk)xdxdt+ k

∫∫
ST

ξukvkdxdt,

(2.44)∫
R+

vk0ξ(x, 0)dt+

∫∫
ST

ξtv
kdxdt = k

∫∫
ST

ξukvkdxdt, (2.45)

for all ξ ∈ FT .

Proof. Multiplying (1.4) by ξ ∈ FT and integrating over ST yield that for

each ε > 0, solution (ukε , v
k
ε ) of (1.4) satisfy∫

R+

uk0ξ(x, 0)dx+

∫∫
ST

ξtu
k
εdxdt =

∫∫
ST

ξxφ(ukε)xdxdt+ k

∫∫
ST

ξukεv
k
εdxdt,

(2.46)∫
R+

vk0ξ(x, 0)dt+

∫∫
ST

ξtv
k
εdxdt = ε

∫∫
ST

ξxφ(vkε )xdxdt+ k

∫∫
ST

ξukεv
k
εdxdt.

(2.47)

Then the existence of a solution (uk, vk) to (2.44)-(2.45) follows by using Lem-

ma 2.25 to pass to the limit along a subsequence as ε → 0 in (2.46)-(2.47).

The uniqueness of (uk, vk) follows from the comparison principle proved in

Lemma 2.15. �
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2.3 Limit problem for (1.4) as k →∞

The a priori estimates of the previous section yield sufficient compactness to

establish the existence of limits of solutions of (1.4) as k → ∞, both when

ε > 0 and ε = 0.

Lemma 2.27. Let ε ≥ 0 be fixed and (uk, vk) be weak solutions of (1.4)

satisfying (2.28) with k > 0. Then there exists (u, v) ∈ (L∞(ST ))2 such that

up to a subsequence, for each J > 0 that

φ(uk)→ φ(u) in L2((0, J)× (0, T )),

uk → u a.e. in (0, J)× (0, T ),

φ(vk)→ φ(v) in L2((0, J)× (0, T )),

vk → v a.e. in (0, J)× (0, T ),

φ(uk)− φ(û) ⇀ φ(u)− φ(û) in L2
(
0, T ;W 1,2

0 (R+)
)
,

and for ε > 0

φ(vk)− φ(V0) ⇀ φ(v)− φ(V0) in L2
(
0, T ;W 1,2(R+)

)
,

as k →∞, where û ∈ C∞(R+) is a smooth function that û = U0 when x = 0

and û = 0 when x > 1.

Proof. The proof is directly analogous to that of Lemma 2.25, using bounds

independent of k in place of bounds independent of ε. The weak convergence

of φ(vk)− φ(V0) in L2 (0, T ;W 1,2(R+)) follows from Lemma 2.24. �

The following segregation result is a key to characterisation of the limits

u, v in Lemma 2.27.

Lemma 2.28. Let ε ≥ 0 and (u, v) be as in Lemma 2.27. Then

uv = 0 a.e. in ST . (2.48)
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Proof. It follows from Lemma 2.18 and Lemma 2.27 that uv = 0 almost

everywhere in ST combining with Lemma 2.17 and using Lebesgue’s Domi-

nated Convergence Theorem. �

To derive the limit problem, we set

wk := uk − vk, w := u− v. (2.49)

Then it follows from Lemma 2.27 and Lemma 2.28 that as a sequence kn →

∞,

wkn → w in L2 ((0, J)× (0, T )) for all J > 0 and a.e in ST ,

and that

u = w+, v = −w−,

where s+ = max {0, s} and s− = min {0, s}.

Lemma 2.29. Let ε ≥ 0 and (u, v) be as in Lemma 2.27. Then∫∫
ST

(u− v)ξtdxdt+

∫
R+

(u∞0 − v∞0 )ξ(x, 0)dx

=

∫∫
ST

(φ(u)− εφ(v))xξxdxdt, (2.50)

for all

ξ ∈ FT :=
{
ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0} .
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Proof. Multiplying the difference between the equations for uk and vk by

ξ ∈ FT and integrating over ST gives∫∫
ST

(uk − vk)ξtdxdt+

∫
R+

(uk0 − vk0)ξ(x, 0)dx

=

∫∫
ST

(φ(uk)− εφ(vk))xξxdxdt,

for which (2.50) follows using Lemma 2.27 and the fact that uk0 → u∞0 and

vk0 → v∞0 in L1(R+) as k →∞. �

Now define

D(s) :=

φ(s) s ≥ 0,

− εφ(−s) s < 0,
(2.51)

and the limit problem
wt = D(w)xx, in ST ,

w(x, 0) = w0(x) := −V0, for x > 0,

w(0, t) = U0, for t ∈ (0, T ).

(2.52)

Definition 2.30. A function w is a weak solution of (2.52) if

(i) w ∈ L∞(ST ),

(ii) D(w) ∈ D(ŵ) + L2(0, T ;W 1,2
0 (R+)), where ŵ ∈ C∞(R+) is a smooth

function with ŵ = U0 when x = 0 and ŵ = −V0 when x > 1,

(iii) w satisfies∫
R+

w0(x)ξ(x, 0)dx+

∫∫
ST

wξtdxdt =

∫∫
ST

D(w)xξxdxdt. (2.53)

for all ξ ∈ FT .
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Theorem 2.31. Let ε ≥ 0. The function w defined in (2.49) is a weak

solution of problem (2.52) and the whole sequence (uk, vk) in Lemma 2.27

converges to (w+,−w−).

Proof. The existence of a weak solution is a straight forward consequence of

Definition 2.30 and Lemma 2.29. The fact that the whole sequence (uk, vk)

converges to (w+,−w−) follows from the uniqueness results proved in Theo-

rem 2.32 when ε > 0 and in Theorem 2.33 when ε = 0. �

Now we prove the uniqueness of the weak solution of (2.52) for ε > 0.

Theorem 2.32. Let ε > 0, then there exists at most one solution w of the

limit problem (2.52).

Proof. Let w1, w2 be two weak solution of problem (2.52) and let ξ ∈

W 1,2((0, J)× (0, T )) be defined by

ξ(x, t) =

∫ T

t

[D(w1)(x, τ)−D(w2)(x, τ)]ψLdτ. (2.54)

where ψL as in proof of Lemma 2.11.

We know there exists ξm ∈ FT such that ξm → ξ in W 1,2((0, L)× (0, T ))

by the Meyers-Serrin Theorem (see [22] or [1, p.66]).

Now, subtracting (2.53) for w1 and w2 yields∫∫
ST

(w1 − w2)ξmtdxdt =

∫∫
ST

(D(w1)x −D(w2)x)ξmxdxdt,

with ξm ∈ FT . Then letting m → ∞, we deduce that for ξ ∈ W 1,2((0, L) ×

(0, T )) defined in (2.54) satisfies∫∫
ST

(w1 − w2)ξtdxdt =

∫∫
ST

(D(w1)x −D(w2)x)ξxdxdt.

Then we have
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0 =

∫∫
ST

(w1 − w2)(D(w1)−D(w2))ψ
Ldxdt

−
∫∫

ST

[D(w1)x −D(w2)x]

∫ T

t

[D(w1)x −D(w2)x]ψ
Ldτdxdt

+

∫∫
ST

[D(w1)x −D(w2)x]

∫ T

t

[D(w1)−D(w2)]ψ
L
xdτdxdt

=I1 + I2 + I3

where

I1 : =

∫∫
ST

(w1 − w2)[D(w1)−D(w2)]ψ
Ldxdt

I2 : =
1

2

∫
R+

ψL
[∫ T

0

(D(w1)x −D(w2)x)dt

]2
dx

I3 : =

∫∫
ST

ψLx [D(w1)x −D(w2)x]

∫ T

t

[D(w1)−D(w2)]dτdxdt.

Since ψLx is bounded, then with a positive constant C we get

|I3| ≤ C

∫ T

0

∫ L+1

L

|D(w1)x −D(w2)x|
∫ T

t

|D(w1)−D(w2)|dτdxdt

≤ C

[∫ T

0

∫ L+1

L

|D(w1)x −D(w2)x|2dxdt

] 1
2

[∫ T

0

∫ L+1

L

∣∣∣∣∫ T

0

D(w1)−D(w2)dτ

∣∣∣∣2 dxdt

] 1
2

,

by the Cauchy-Schwarz inequality, we obtain

|I3| ≤ CT

[∫ T

0

∫ L+1

L

|D(w1)x −D(w2)x|2dxdt

] 1
2
[∫ T

0

∫ L+1

L

|D(w1)−D(w2)|2dxdt

] 1
2

.

By using the Triangle inequality, we have[∫ T

0

∫ L+1

L

|D(w1)x −D(w2)x|2dxdt

] 1
2

≤

[(∫∫
ST

|D(w1)x|2 dxdt

) 1
2

+

(∫∫
ST

|D(w2)x|2 dxdt

) 1
2

]
,
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which is bounded independently of L by Definition 2.30.

Therefore with KT is a positive constant we have

|I3| ≤ KT

[∫ T

0

∫ L+1

L

|D(w1)−D(w2)|2dxdt

] 1
2

.

We know from Definition 2.30 that D(w1)−D(w2) ∈ L2(0, T ;W 1,2
0 (R+)),

then by Lebesgue’s Dominated Convergence Theorem, we have |I3| → 0 as

L→∞.

Therefore, since D is increasing, by Lebesgue’s Monotone Convergence

Theorem, we get

I1 + I2 →
∫∫

ST

(w1 − w2)(D(w1)−D(w2))dxdt

+
1

2

∫
R+

[∫ T

0

(D(w1)x −D(w2)x)dt

]2
dx,

as L→∞.

The result w1 = w2 follows from the fact that I1 + I2 is non-negative. �

The proof of Theorem 2.32 cannot refer to ε = 0, since D(w1)−D(w2) = 0

whenever w1, w2 are both negative. Therefore, we need an alternative method

to prove the uniqueness of weak solution when ε = 0. The proof is inspired

by [19, Proposition 5].

First, if we choose a smooth test function ξ̂ ∈ C∞0 (R+ × [0, T ]), the weak

solution w satisfies

(i) w ∈ L∞(ST ),

(ii) D(w) ∈ D(ŵ) + L2(0, T ;W 1,2
0 (R+)), where ŵ ∈ C∞(R+) is a smooth

function with ŵ = U0 when x = 0 and ŵ = −V0 when x > 1,

(iii) w satisfies∫
R+

w0(x)ξ̂(x, 0)dx+

∫∫
ST

wξ̂tdxdt =

∫∫
ST

D(w)xξ̂xdxdt. (2.55)
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The proof of the following result also works for ε > 0, so we will state

and prove it here for the general case ε ≥ 0.

Theorem 2.33. Let ε ≥ 0 and consider two solutions w, w̃ of problem (2.52)

with initial data w0, w̃0 respectively, then∫∫
ST

|w − w̃|dxdt ≤ C(T )

∫
R+

|w0 − w̃0|dx, (2.56)

and there exists at most one solution of problem (2.52) for given initial func-

tion w0.

Proof. We know that there exists ξ̂m ∈ C∞0 (R+ × [0, T ]) such that ξ̂m → ξ̂

in W 1,2
2 (ST ) as m→∞. Now we can rewrite (2.55) as∫

R+

w0(x)ξ̂m(x, 0)dx+

∫∫
ST

wξ̂mtdxdt =

∫∫
ST

D(w)ξ̂mxxdxdt,

with ξ̂m ∈ C∞0 (R × [0, T )), then letting m → ∞, we deduce that for all

ξ̂ ∈ W 1,2
2 (ST ) with ξ̂(·, T ) = 0 and ξ̂(0, ·) = 0, the difference w − w̃ satisfies

0 =

∫∫
ST

(w − w̃)(ξ̂t + aξ̂xx)dxdt+

∫
R+

(w0 − w̃0)ξ̂(x, 0)dx, (2.57)

where a :=


D(w)−D(w̃)

w − w̃
w 6= w̃,

0 otherwise.

Observe that a ∈ L∞(ST ), now consider a sequence {an} of smooth func-

tion such that 1
n
≤ an ≤ ‖a‖L∞(ST ) + 1

n
and

an − a√
an
→ 0 almost everywhere

in ST as n→∞.

Let ξ̃n ∈ W 1,2
2 (ST ) be the solution of problem

λ = ξ̃nt + anξ̃nxx, in ST ,

ξ̃n(0, t) = 0, t ∈ (0, T ),

ξ̃n(x, T ) = 0, x ∈ R+,

(2.58)
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where λ ∈ C∞c (R+ × [0, T )).

The existence of a solution to this problem follows from standard parabol-

ic theory, see for example [21, IV, Theorem 9.1]. We claim that the following

estimates hold,

(i) ‖ξ̃n‖L∞(ST ) ≤ C(‖λ‖L∞(ST ), T );

(ii)

∫∫
ST

an|ξ̃nxx|2 ≤ C(λ, T ).

The maximum principle and a comparison of ξ̃n with the functions ξ̃+n , ξ̂
−
n

defined by

ξ̃+n = eα(T−t), ξ̃−n = −eα(T−t),

where α = eT‖λ‖L∞(ST ), gives (i).

To prove (ii), multiplying the equation of ξ̃n by ξ̃nxx and integrating over

R+ × (t, T ), we get∫ T

t

∫
R+

λξ̃nxxdxdt =

∫ T

t

∫
R+

ξ̃ntξ̃nxxdxdt+

∫ T

t

∫
R+

an(ξ̃nxx)
2dxdt

=
1

2

∫
R+

(ξ̃nx)
2(t)dx+

∫ T

t

∫
R+

an(ξ̃nxx)
2dxdt.

We deduce from above that∫∫
ST

an(ξ̃nxx)
2dxdt ≤ ‖ξ̃n‖L∞(ST )‖λxx‖L1(ST ).

Using ξ̃n as a test function of (2.57), we obtain

0 =

∫∫
ST

(w − w̃)
[
λ+ (a− an)ξ̃nxx

]
dxdt+

∫
R+

(w0 − w̃0)ξ̃n(x, 0)dx.

We deduce by Hölder’s inequality and (ii) that
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lim
n→∞

sup

∣∣∣∣∫∫
ST

(w − w̃)(a− an)ξ̃nxx

∣∣∣∣
≤ lim

n→∞
sup

∥∥∥∥∫∫
ST

(w − w̃)
a− an√

an
)

∥∥∥∥
L2(ST )

∥∥∥√anξ̃nxx∥∥∥
L2(ST )

=0.

Thus, in the limit n→∞, we get∫∫
ST

(w − w̃)λdxdt ≤ C(‖λ‖L∞(ST ), T )

∫
R+

(w0 − w̃0).

Taking a sequence {λi}i∈N, λi ∈ C∞c (ST ) with ‖λi‖L∞(ST ) ≤ 2 and λi →

sgn(w − w̃) almost everywhere, we obtain by letting i→∞∫∫
ST

|w − w̃|dxdt ≤ C(T )

∫
R+

|w0 − w̃0|dx.

�

By Theorem 2.31, Theorem 2.32 and Theorem 2.33, we obtain the fol-

lowing.

Theorem 2.34. Let ε ≥ 0. Then there exists a unique solution w of the

limit problem (2.52).
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Chapter 3

The half-line case: self-similar

solutions for the limit problems

3.1 Self-similar solutions for the limit prob-

lems

The existence and uniqueness of the weak solution of problem (2.52) are

guaranteed by Theorem 2.34. In the following, we will prove that (2.52) has

a self-similar solution, which therefore be this unique weak solution. Our

strategy takes advantages of some ideas from [10] and [16].

We first state a free-boundary problem, including interface conditions,

that is satisfied by the solution w of (2.52) under some regularity assumptions

and conditions on the form of the free boundary.

Theorem 3.1. Let w be the unique weak solution of problem (2.52). Suppose

that there exists a function β : [0, T ]→ R+ such that for each t ∈ [0, T ],

w(x, t) > 0 if x < β(t) and w(x, t) < 0 if x > β(t).
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Then if t 7→ β(t) is sufficiently smooth and the functions u := w+ and

v := −w− are smooth up to β(t), the functions u, v satisfy

ut = φ(u)xx, in (x, t) ∈ ST : x < β(t),

vt = εφ(v)xx, in (x, t) ∈ ST : x > β(t),

〈φ(u)〉 = ε〈φ(v)〉 = 0, on ΓT := {(x, t) ∈ ST : x = β(t)} ,

〈v〉β′(t) = 〈φ(u)x − εφ(v)x〉, on ΓT := {(x, t) ∈ ST : x = β(t)} ,

u = U0, on {0} × [0, T ],

u(·, 0) = u∞0 (·), v(·, 0) = v∞0 (·), in R+,

(3.1)

where 〈·〉 denotes the jump across β(t) from {x < β(t)} to {x > β(t)},

〈α〉 := lim
x↘β(t)

α(x, t)− lim
x↗β(t)

α(x, t),

and β′(t) denotes the speed of propagation of the free boundary β(t).

Proof. We recall that (u, v) satisfies∫∫
ST

(u− v)ξtdxdt+

∫
R+

(u∞0 − v∞0 )ξ(x, 0)dx =

∫∫
ST

(φ(u)− εφ(v))xξxdxdt,

for all ξ ∈ FT .

Next we consider the time derivative term, and find that∫∫
ST

(u− v)ξtdxdt =

∫∫
ST

uξtdxdt−
∫∫

ST

vξtdxdt, (3.2)

and

d

dt

∫ β(t)

0

uξdx =

∫ β(t)

0

(utξ + uξt)dx+ lim
x↗β(t)

u(x, t)ξ(β(t), t)β′(t),

d

dt

∫ ∞
β(t)

vξdx =

∫ ∞
β(t)

(vtξ + vξt)dx− lim
x↘β(t)

v(x, t)ξ(β(t), t)β′(t),

from which we obtain
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∫∫
ST

(u− v)ξtdxdt+

∫
R+

(u∞0 − v∞0 )ξ(x, 0)dx

=−
∫ T

0

∫ β(t)

0

utξdxdt+

∫ T

0

∫ ∞
β(t)

vtξdxdt+

∫ T

0

〈u− v〉ξ(β(t), t)β′(t)dt.

(3.3)

Analysis of the diffusion term then gives∫ T

0

∫ β(t)

0

φ(u)xξxdxdt =

∫ T

0

lim
x↗β(t)

φ(u)xξ(β(t), t)dt

−
∫ T

0

∫ β(t)

0

φ(u)xxξdxdt,

ε

∫ T

0

∫ ∞
β(t)

φ(v)xξxdxdt =− ε
∫ T

0

lim
x↘β(t)

φ(v)xξ(β(t), t)dt

− ε
∫ T

0

∫ ∞
β(t)

φ(v)xxξdxdt,

and then combining these two equations yields∫ ∫
ST

(φ(u)x − εφ(v)x)ξxdxdt

=

∫ T

0

〈−φ(u)x + εφ(v)x〉ξ(β(t), t)dt−
∫ T

0

∫ β(t)

0

φ(u)xxξdxdt

+ ε

∫ T

0

∫ ∞
β(t)

φ(v)xxξdxdt. (3.4)

Therefore the computations (3.2), (3.3) and (3.4) yield∫ T

0

〈−u+ v〉ξ(β(t), t)β′(t)dt+

∫ T

0

〈−φ(u)x + εφ(v)x〉ξ(β(t), t)dt

=

∫ T

0

∫ β(t)

0

(φ(u)xx − ut) ξdxdt−
∫ T

0

∫ ∞
β(t)

(εφ(v)xx − vt) ξdxdt, (3.5)

for all ξ ∈ FT .

Now by using test functions with suitable support, namely supp ξ ⊂{
(x, t) ∈ ST

∣∣ x < β(t)
}

and supp ξ ⊂
{

(x, t) ∈ ST
∣∣ x > β(t)

}
, we obtain
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ut = φ(u)xx, in {(x, t) ∈ ST : x < β(t)} ,

vt = εφ(v)xx, in {(x, t) ∈ ST : x > β(t)} ,

and the remaining terms in (3.5) allow us to conclude that∫ T

0

〈−u+ v〉ξ(β(t), t)β′(t)dt+

∫ T

0

〈−φ(u)x + εφ(v)x〉ξx(β(t), t)dt = 0,

which gives

〈−u+ v〉β′(t) + 〈−φ(u)x + εφ(v)x〉 = 0 on ΓT := {(x, t) ∈ ST : x = β(t)} .

(3.6)

Now we know that D(w) is a continuous function of x for almost every

t ∈ [0, T ], since D(w) ∈ D(ŵ) + L2(0, T ;W 1,2(R+)) by Definition 2.30 (ii).

So 〈D(w)〉 = 0, which implies

− lim
x↘β(t)

εφ(−w−)− lim
x↗β(t)

φ(w+) = − lim
x↘β(t)

εφ(v)− lim
x↗β(t)

φ(u) = 0.

Therefore we get

〈φ(u)〉 = ε〈φ(v)〉 = 0. (3.7)

Moreover, since φ ∈ C2(R) is strictly increasing, u(·, t) is continuous across

β(t) and if ε > 0, v(·, t) is also continuous across β(t), so that

〈u〉 = 0 if ε ≥ 0, (3.8)

〈v〉 = 0 if ε > 0. (3.9)

Then (3.6) and the fact that 〈u〉 = 0 imply that

〈v〉β′(t) = 〈φ(u)x − εφ(v)x〉, on ΓT . (3.10)
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The following two limit problems are obtained by interpreting the inter-

face conditions on β(t).

Corollary 3.2. Let w and β : [0, t] → R+ satisfy the hypotheses of theorem

3.1. Then the functions u := w+, v := −w− satisfy one of limit problems

depending on whether ε > 0 or ε = 0. If ε > 0, then

ut = φ(u)xx, in {(x, t) ∈ ST : x < β(t)} ,

v = 0, in {(x, t) ∈ ST : x < β(t)} ,

vt = εφ(v)xx, in {(x, t) ∈ ST : x > β(t)} ,

u = 0, in {(x, t) ∈ ST : x > β(t)} ,

lim
x↗β(t)

u(x, t) = 0 = lim
x↘β(t)

v(x, t) for each t ∈ [0, T ],

lim
x↗β(t)

φ[u(x, t)]x = −ε lim
x↘β(t)

φ[v(x, t)]x for each t ∈ [0, T ],

u = U0, on {0} × [0, T ],

u(·, 0) = u∞0 (·), v(·, 0) = v∞0 (·), in R+,

(3.11)

whereas if ε = 0 and we suppose additionally that β(0) = 0 and t 7→ β(t) is
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a non-decreasing function, then

ut = φ(u)xx, in {(x, t) ∈ ST : x < β(t)} ,

v = 0, in {(x, t) ∈ ST : x < β(t)} ,

v = V0, in {(x, t) ∈ ST : x > β(t)} ,

u = 0, in {(x, t) ∈ ST : x > β(t)} ,

lim
x↗β(t)

u(x, t) = 0 for each t ∈ [0, T ],

V0β
′(t) = − lim

x↗β(t)
φ[u(x, t)]x for each t ∈ [0, T ],

u = U0, on {0} × [0, T ],

u(·, 0) = u∞0 (·), v(·, 0) = v∞0 (·), in R+,

(3.12)

where β′(t) denotes the speed of propagation of the free boundary β(t).

Proof. We have 〈u〉 = 0 from (3.8). From (3.9), we know that if ε > 0,

〈v〉 = 0, whereas if ε = 0, v(·, t) jumps across β(t). The fact that vt = 0 in

{(x, t) ∈ ST : x > β(t)} together with the initial condition that v∞0 (x) = V0

if x > 0 give the result that v(x, t) = V0 for all x ≥ β(t), since β(0) = 0 and

t 7→ β(t) is a non-decreasing function. It follows that if ε = 0

〈v〉 = V0 − 0 = V0 for all t ∈ [0, T ].

The normal derivative condition (3.10) implies that if ε > 0, then 〈φ(u)x −

εφ(v)x〉 = 0, so that

lim
x↗β(t)

φ[u(x, t)]x = −ε lim
x↘β(t)

φ[v(x, t)]x.

On the other hand, if ε = 0, then

V0β
′(t) = − lim

x↗β(t)
φ(u)x.

�
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Next we will prove that if we have a self-similar solution of (3.13), then

it is a weak solution of (2.52) in the sense of Definition 2.30. We will then

prove the existence of the self-similar solution of (3.13) by a two-parameter

method in Section 3.3.

Theorem 3.3. The unique weak solution w of problem (2.52) with ε > 0

has a self-similar form. There exists a function f : R+ 7→ R+ and a constant

a ∈ R+ such that

w(x, t) = f

(
x√
t

)
, (x, t) ∈ ST and β(t) = a

√
t, t ∈ [0, T ].

Denoting η =
x√
t
, f satisfies the system



− 1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, if η < a,

− 1

2
ηf ′(η) = [εφ′(−f(η))f ′(η)]′, if η > a,

f(0) = U0, lim
η→∞

f(η) = −V0,

lim
η↗a

f(η) = 0 = − lim
η↘a

f(η),

lim
η↗a

φ′(f(η))f ′(η) = ε lim
η↘a

φ′(−f(η))f ′(η),

(3.13)

where a prime denotes differentiation with respect to η.

Proof. Note first that from Theorem 2.34, we know that if w(x, t) = f
(
x√
t

)
is a weak solution of (2.52), then it is unique. We therefore need to show that

a solution to (3.13) exists, which will be postponed to Section 3.3, and that

if f satisfies (3.13), then it is a weak solution of (2.52), that is, it satisfies

Definition 2.30.

Now the weak solution of (2.52) satisfies∫∫
ST

wξtdxdt−
∫∫

ST

D(w)xξxdxdt = V0

∫
R+

ξ(x, 0)dx,
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where ξ ∈ FT . If we write w(x, t) = f

(
x√
t

)
, then since ξ(·, T ) = 0, the

left-hand side becomes∫∫
ST

f

(
x√
t

)
ξtdxdt−

∫ T

0

∫ a
√
t

0

t−
1
2φ′
(
f

(
x√
t

))
f ′
(
x√
t

)
ξxdxdt

+

∫ T

0

∫ ∞
a
√
t

t−
1
2 εφ′

(
−f
(
x√
t

))
f ′
(
x√
t

)
ξxdxdt

= V0

∫
R+

ξ(x, 0)dx+
1

2

∫∫
ST

xt−
3
2f ′
(
x√
t

)
ξdxdt

+

∫ T

0

∫ a
√
t

0

t−1(φ′(f)f ′)′ξxdxdt

+

∫ T

0

∫ ∞
a
√
t

t−1ε(φ′(−f)f ′)′ξxdxdt,

since lim
η↗a

φ′(f(η))f ′(η) = ε lim
η↘a

φ′(−f(η))f ′(η).

Since f satisfies (3.13), we therefore have∫∫
ST

wξtdxdt−
∫∫

ST

D(w)xξxdxdt

= V0

∫
R+

ξ(x, 0)dx+
1

2

∫∫
ST

xt−
3
2f ′
(
x√
t

)
ξdxdt

+

∫ T

0

∫ a
√
t

0

t−1(φ′(f)f ′)′ξxdxdt+

∫ T

0

∫ ∞
a
√
t

t−1ε(φ′(−f)f ′)′ξxdxdt

= V0

∫
R+

ξ(x, 0)dx.

and hence f satisfies Definition 2.30 (iii).

Next we will prove that f satisfies Definition 2.30 (ii). First, we introduce

some lemmas that will be used to prove φ(U0) − φ(f) ∈ L2((0, a)), φ′(f) ∈

L2((0, a)), φ(V0) − φ(−f) ∈ L2((a,∞)) and φ′(−f) ∈ L2((a,∞)). These

lemmas will also be useful later.

We define

γ := − lim
η↗a

φ′(f(η))f ′(η). (3.14)
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Note that

γ = −ε lim
η↘a

φ′(−f(η))f ′(η) when ε > 0,

which we can obtain from the free boundary condition of Problem (3.13).

Next, we prove the monotonicity of f .

Lemma 3.4. Suppose ε > 0. If f satisfies (3.13), then f ′(η) < 0 for all

η 6= a.

Proof. Suppose f is not monotonic, then there exists η0 6= a such that

f ′(η0) = 0, denote f0 := f(η0) 6= 0. Then defining the function by g : R →

R+

g(η) = f0 > 0, for all η ∈ R,

we have that g satisfies

−1

2
ηg′(η) = [φ′(g(η))g′(η)]′

g(η0) = f0, g′(η0) = 0,

but also

−1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′

f(η0) = f0, f ′(η0) = 0.

By Picard’s theorem and the uniqueness, it follows that f = g either for all

η < a or η > a, depending on whether f(η0) > 0 or f(η0) < 0. But this

contradict the boundary conditions in (3.13), so we know that f must be

monotonically decreasing. �

Next, we prove that γ defined in (3.14) is strictly positive when ε > 0. In

fact, γ is also strictly positive when ε = 0, see Corollary 3.12.
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Lemma 3.5. Suppose ε > 0. Let f be a solution of (3.13), then γ > 0.

Proof. If γ ≤ 0, then integrating the equation for η > a in (3.13) from a to

η yields

−1

2

∫ η

a

sf ′(s)ds = εφ′(−f(η))f ′(η) + γ. (3.15)

The left-hand side of (3.15) is positive since f ′ < 0 by Lemma 3.4 whereas

the right-hand side of (3.15) is negative since f ′ < 0 and γ ≤ 0. Therefore,

it follows that γ > 0 by the contradiction. �

It is clear that f ∈ L∞(ST ), so it satisfies Definition 2.30 (i). Now we

prove some properties of f ′.

Lemma 3.6. Suppose ε > 0. If f satisfies (3.13), then for η > a, f ′ is

monotonically increasing in η.

Proof. The results follow from the equation for f when η > a

−1

2
ηf ′(η) = −εφ′′(−f(η))(f ′(η))2 + εφ′(−f(η))f ′′(η).

The left-hand side is positive since 0 < a < η and the first term of right-hand

side is negative. Therefore f ′′ must be positive. �

In the following, we prove a bound for −f ′ when η > a.

Lemma 3.7. Suppose ε > 0. If f satisfies (3.13), then we have for η > a

−f ′(η) ≤ 4γ

η2 − a2
, (3.16)

and hence, in particular,

lim
η→∞

f ′(η) = 0. (3.17)
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Proof. Integrating the equation of f for η > a from a to η, we have

−1

2

∫ η

a

sf ′(s)ds = εφ′(−f(η))f ′(η) + γ.

Since f ′ < 0 is increasing and the right-hand side is positive, then

−1

4
f ′(η)(η2 − a2) ≤ εφ′(−f(η))f ′(η) + γ ≤ γ.

Therefore we obtain

−f ′(η) ≤ 4γ

η2 − a2
.

If we choose η > a+ 1 then

−f ′(η) <
4γ

2η − 1
, (3.18)

which vanishes as η →∞. �

The following lemma proves that φ(−f) converges to φ(V0) exponentially.

Lemma 3.8. Suppose ε > 0. If f satisfies (3.13), then for η > a we have

0 ≤ φ(V0)− φ(−f(η)) ≤ C

∫ ∞
η

e
−s2

4εφ′(V0) ds, (3.19)

where C = γe
a2

4εφ′(V0) .

Proof. Denote N = φ′(V0). We have φ′(−f) < φ′(V0) since f is monoton-

ically decreasing by Lemma 3.4 and φ′ is increasing. Then we get directly

from the equation of f for η > a that

η

2εN
[φ(−f)]′ ≤ −[φ(−f)]′′,

then multiplying by e
η2

4εN , we get{
e
η2

4εN [φ(−f)]′
}′
≤ 0,
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integrating from a to η yields

[φ(−f(η))]′ ≤ Ce
−η2
4εN , (3.20)

by Lemma 3.7, where C = γe
a2

4εN > 0. Then integrating from η to ∞ we get

φ(V0)− φ(−f(η)) ≤ C

∫ ∞
η

e
−s2

4εφ′(V0) ds.

�

We get the following corollary immediately from (3.20).

Corollary 3.9. Suppose ε > 0. If f satisfies (3.13), then for a < η < a+ 1

we have

0 ≤ −φ′(−f(η))f ′(η) ≤ D, (3.21)

where D = e
(a+1)2

4εφ′(V0)φ′(−f(a+ 1))f ′(a+ 1).

The following lemma yields a bound for −φ′(f(η))f ′(η) for η < a.

Lemma 3.10. If f satisfies (3.13), then for 0 ≤ η < a we have

0 ≤ −φ′(f(η))f ′(η) ≤ Ĉ, (3.22)

where Ĉ = −φ′(f(0))f ′(0).

Proof. Denote N̂ = φ′(U0), similarly to the proof of Lemma 3.8, we have{
e
η2

4N̂ [φ(f)]′
}′
≥ 0,

and then integrating from 0 to η we get

0 ≤ −φ′(f(η))f ′(η) ≤ Ĉe
−η2

4N̂ < Ĉ. (3.23)
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Now we have φ(U0)− φ(f) ∈ L2((0, a)), since Lemma 3.4 implies f(η) <

U0 for η < a, and −(φ(f))′ ∈ L2((0, a)) by Lemma 3.10. From Lemma 3.4

and Lemma 3.8, we know that φ(V0)− φ(−f) ∈ L2((a,∞)), since∫ a+1

a

|φ(V0)− φ(−f(s))|2ds < (φ(V0))
2,∫ ∞

a+1

|φ(V0)− φ(−f(s))|2ds <
∫ ∞
a+1

e
−s

4εφ′(V0) ds < 4εφ′(V0)e
−a−1

4εφ′(V0) .

Finally, −(φ(−f))′ ∈ L2((a,∞)) is implied by (3.18) and Corollary 3.9. It

therefore follows that if f satisfies (3.13), then it satisfies Definition 2.30 (ii)

that is

D(f) ∈ D(ŵ) + L2(0, T ;W 1,2
0 (R+)),

since by changing variables∫ T

0

∫ a
√
t

0

|φ(U0)− φ(w)(x, t)|2dxdt =

∫ T

0

√
t

∫ a

0

|φ(U0)− φ(f(s))|2dsdt ≤ 2

3
CT

3
2 ,

and ∫ T

0

∫ a
√
t

0

|φ(w)x|2dxdt =

∫ T

0

1√
t

∫ a

0

|φ′(f)f ′|2dsdt ≤ 2CT
1
2 ,

where C is a constant. Similar calculations can be done on (a
√
t,∞)×(0, T ).

Hence f satisfies Definition 2.30. It remains to prove the existence of solution

of Problem (3.13), which is done in Theorem 3.30 in Section 3.3. �

Similarly, we can prove that if we have a self-similar solution of (3.24)

when ε = 0, then it is a weak solution of (2.52) in the sense of Definition

2.30.
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Theorem 3.11. The unique weak solution w of problem (2.52) with ε = 0

has a self-similar form. There exists a function f : R+ 7→ R+ and a constant

a ∈ R+ such that

w(x, t) = f

(
x√
t

)
, (x, t) ∈ ST and β(t) = a

√
t, t ∈ [0, T ].

Denote η =
x√
t
, f satisfies the system

− 1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, if η < a,

f(η) = −V0, if η > a,

f(0) = U0,

lim
η↗a

f(η) = 0,

lim
η↗a

φ′(f(η))f ′(η) = −aV0
2
,

(3.24)

where a prime denotes differentiation with respect to η.

Proof. When ε = 0, we can only consider f for η < a, since f(η) = −V0 for

η > a. The proof of the fact that a solution of (3.24) yields a weak solution

of (2.52) is similar as the proof of Theorem 3.3 and the existence of solution

for problem (3.24) is proved in Theorem 3.34 by the shooting method. �

The following corollary follows from the fact that γ =
aV0
2

when ε = 0,

which is directly from the free boundary conditions on (3.24).

Corollary 3.12. Suppose ε = 0. Let f be a solution of (3.24), then γ =
aV0
2

is positive.

3.2 Self-similar solutions with ε > 0

We begin with some discussion of earlier work on self-similar solutions for

nonlinear diffusion problems. Let k(s) be continuous with k(0) = 0 and
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k(s) > 0 as s > 0. We introduce the notation k(s) for ease of comparison

with previous papers [2, 7], but, k clearly plays the same role as φ′ plays in

this thesis. Then the solutions of the nonlinear diffusion equation

ut = (k(u)x)x

can be studied in self-similar form

u(x, t) = f(η), η = xt−
1
2 ,

and f satisfies the equation

(k(f)f ′)
′
+

1

2
ηf ′ = 0. (3.25)

In [2], Atkinson and Peletier proved the existence and uniqueness of a self-

similar solution f(η) which satisfies (3.25) for 0 < η < a, where a > 0, under

the boundary conditions f(0) = U , lim
η→a

f(η) = 0 and lim
η→a

k(f(η))f ′(η) = 0.

They consider two cases in describing the dependence of a and U ,

A.

∫ ∞
1

k(s)

s
ds =∞;

B.

∫ ∞
1

k(s)

s
ds <∞.

They found that as U → ∞, a = a(U) tends to infinity in Case A whereas

a(U) tends to a finite limit in Case B. In this thesis, we only consider the case

when

∫ ∞
1

k(s)

s
ds =∞. The proof in [2] depends on a discussion of the func-

tion b(a), which is defined as the value at η = 0 of the solution f(η) = f(η; a)

of (3.25) with boundary conditions lim
η→a

f(η) = 0 and lim
η→a

k(f(η))f ′(η) = 0.

A similar problem in an unbounded interval 0 < η <∞ with boundary con-

ditions f(0) = U and lim
η→∞

f(η) = 0 is studied in [7] by Craven and Peletier.

Note that in [7], f(η) > 0 for all η > 0. The paper [7] proved the existence

and uniqueness of a weak solution by a shooting method where the initial
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value problem f(0) = U , f ′(0) = β is considered. We will adapt ideas of s-

tudying the function b(a) and shooting methods from [2, 7] to prove existence

of self-similar solutions in this thesis.

Now recall that γ := − lim
η↗a

φ′(f(η))f ′(η). Note that by Lemma 3.5 and

Corollary 3.12, γ is strictly positive, which contrasts with [2] where γ = 0.

We will study the existence of solution f that satisfies (3.13) with given

boundary conditions by splitting it into two parts: η < a where f(η) is

positive, and η > a where f(η) is negative. Then we will discuss the existence

and properties of lim
η→0

f(η) and lim
η→∞

f(η). These results will be used to study

b(a, γ), the value at η → 0 of the solution f(η) = f(η; a, γ), and d(a, γ), the

value at η → ∞ of the solution f(η) = f(η; a, γ), and also to implement a

two-parameter shooting method in Section 3.3.

First we consider f that satisfies the equation

−1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, 0 < η < a. (3.26)

At the boundaries we seek a solution that satisfies

f(0) = U0, (3.27)

lim
η↗a

f(η) = 0, lim
η↗a

φ′(f(η))f ′(η) = −γ. (3.28)

3.2.1 Solution in left-neighbourhood of η = a

We start by proving the local existence of a positive solution of (3.26) in a

left-neighbourhood of η = a, which satisfies the boundary conditions (3.28).

First we prove some estimates that will be used later.

Lemma 3.13. Suppose a > 0 and choose a1 < a. If f satisfies (3.26) and
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the boundary conditions (3.28), then∫ f(a1)

0

φ′(f)
2γ
a

+ f
df ≤ 1

2
a2. (3.29)

Proof. Integration of (3.26) from η to a yields

−1

2

∫ a

η

sf ′(s)ds = −γ − φ′(f(η))f ′(η).

In view of Lemma 3.4, f ′(η) is negative, then since a > 0

|φ′(f(η))f ′(η)| ≤ γ − 1

2
a

∫ a

η

f ′(s)ds.

Thus, for any a2 such that a1 < a2 < a , we have∫ a2

a1

φ′(f(η))|f ′(η)|
2γ
a

+ f(η)
dη ≤ 1

2
a(a2 − a1).

Since f is monotonic, this implies∫ f(a1)

f(a2)

φ′(f)
2γ
a

+ f
df ≤ 1

2
a2,

and (3.29) follows by letting a2 tend to a, so that f(a2) tends to zero. �

Next we prove the existence and uniqueness of the local solution by using

a method inspired by [2, Lemmas 4 and 5].

Lemma 3.14. For given a and γ, there exists δ > 0 such that for η ∈

(a−δ, a), equation (3.26) has a unique solution which is positive and satisfies

the boundary condition (3.28).

Proof. It is convenient to start by supposing that such a solution exists in

a left-neighbourhood of η = a. Integrating (3.26) from η to a yields

−1

2

∫ a

η

sf ′(s)ds = −γ − φ′(f(η))f ′(η), (3.30)
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and hence

1

f ′(η)
=

2φ′(f)∫ a
η
sf ′(s)ds− 2γ

. (3.31)

Since f is monotonic, with non-vanishing derivative, we can treat η as a

function of f , writing η = σ(f). Then (3.31) takes the form

dσ

df
=

−2φ′(f)∫ f
0
σ(s)ds+ 2γ

,

and σ(f) is a solution of this integro-differential equation which satisfies the

initial condition σ(0) = a and is defined and continuous on an interval [0, f̂ ]

for some f̂ > 0 and continuously differentiable on (0, f̂). An integration gives

σ(f) = a− 2

∫ f

0

φ′(θ)∫ θ
0
σ(s)ds+ 2γ

dθ, (3.32)

and if we set

τ(f) = 1− σ(f)

a
= 1− η

a
,

then (3.32) becomes

τ(f) = 2a−2
∫ f

0

φ′(θ)∫ θ
0

[1− τ(s)]ds+ 2γ
a

dθ. (3.33)

If the solution of (3.33) is unique, the corresponding solution of equation

(3.26) is also unique.

Now we prove (3.33) has a unique solution on [0, µ] for some µ > 0, from

which it follows that (3.26) has a unique solution on (a− δ, a).

Lemma 3.15. There exists µ > 0 such that (3.33) has a unique continuous

solution in 0 ≤ f ≤ µ, which is such that τ(0) = 0 and τ(f) > 0 if 0 < f ≤ µ.
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Proof. With µ to be chosen later, we denote by X the set of continuous

functions τ(f) defined on [0, µ], satisfying 0 ≤ τ(f) ≤ 1
2
. We denote by ‖ � ‖

the supremum norm on X. Then X is a complete metric space. On X we

introduce the map

M(τ)(f) =2a−2
∫ f

0

φ′(θ)∫ θ
0

[1− τ(s)]ds+ 2γ
a

dθ

≤4a−2
∫ µ

0

φ′(θ)

θ + 4γ
a

dθ.

It is clear that M(τ)(f) is well-defined, non-negative and continuous. More-

over, M(τ)(f) ≤ 1
2

if

4a−2
∫ µ

0

φ′(θ)

θ + 4γ
a

dθ ≤ 1

2
. (3.34)

Therefore, if µ is chosen small enough that (3.34) is satisfied, M maps X

into itself.

We also wish to ensure that M is a contraction map. Let τ1, τ2 ∈ X, we

have

‖M(τ1)−M(τ2)‖ ≤2a−2
∫ f

0

φ′(θ)

∫ θ
0
|τ1(s)− τ2(s)|ds{∫ θ

0
[1− τ1(s)]ds+ 2γ

a

}{∫ θ
0

[1− τ2(s)]ds+ 2γ
a

}
≤8a−2

∫ µ

0

φ′(θ)
θ(

θ + 4γ
a

)2dθ ‖τ1 − τ2‖

≤8a−2
∫ µ

0

φ′(θ)

θ + 4γ
a

dθ ‖τ1 − τ2‖,

and it follows that M is a contraction map if

8a−2
∫ µ

0

φ′(θ)

θ + 4γ
a

dθ < 1.

This constitutes our second restriction on µ, it clearly implies the first one,

(3.34). The result now follows from the standard fixed-point principle [12].�
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For any a > 0, the unique positive solution f(η), defined in a left-

neighbourhood of η = a, which satisfies the boundary conditions (3.28), may

be uniquely continued backward as a function of η. By Lemma 3.4, it will

increase monotonically as η decreases. There are then two possibilities, either

the solution can be continued back to η = 0, or else we have f(η)→∞ as η

decreases towards some non-negative value. We now show that the solution

can indeed be continued back to η = 0.

Lemma 3.16. For any given a, γ, the unique local solution of equation (3.26)

in Lemma 3.14 can be continued back to η = 0.

Proof. Suppose 0 ≤ a1 < a and f(η) → ∞ as η → a1. If there exist

a2 ∈ (a1, a) is such that f(a2) >
2γ
a

, then we have from (1.3) that∫ ∞
f(a2)

φ′(f)

f + 2γ
a

df >
1

2

∫ ∞
f(a2)

φ′(f)

f
df =∞. (3.35)

But the boundedness of the integral from (3.29), together with (3.35), implies

the boundedness of f(a1).

Now consider a1 ≤ η ≤ a− δ for δ > 0. Integrating (3.26) from η to a− δ

yields

−f ′(η) =
1

φ′(f(η))

(
γ − 1

2
(a− δ)f(a− δ) + ηf(η) +

∫ a−δ

η

f(s)ds

)
,

which implies for some constant C that −f ′(η) ≤ C for η ≤ a− δ. It follows

from [6, Theorem 1.186] that the solution can be continued back to η = 0.�

Now recall b(a, γ) = lim
η→0

f(η; a, γ), where γ := − lim
η↗a

φ′(f(η))f ′(η) with

γ > 0. Next we discuss the properties of b(a, γ).
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3.2.2 Properties of b(a, γ)

The following discussions on b(a, γ) are used in proving existence of self-

similar solution by shooting from η = a with a given choice of γ, the derivative

of φ(f), back to lim
η→0

f(η; a, γ).

Lemma 3.17. b(a, γ) has the following properties with fixed a:

(i) b(a, γ) is strictly monotonically increasing in γ;

(ii) b(a, γ) is a continuous function of γ and the Lipschitz constant is uni-

form in γ ∈ [γ0, γ3], where 0 ≤ γ0 ≤ γ3;

(iii) lim
γ→∞

b(a, γ) =∞.

Proof. (i) Denote fγi = f(η; a, γi). Let fγ1 and fγ2 be positive solutions

satisfying (3.26), (3.28) corresponding to γ = γ1, γ = γ2. Suppose b(a, γ) is

not strictly monotonically increasing in γ. Then it is possible to find γ1 > γ2

such that b(a, γ1) ≤ b(a, γ2) and η0 ∈ [0, a) such that fγ1(η0) = fγ2(η0) and

fγ1 > fγ2 on (η0, a), we denote f̄ := fγ1(η0) = fγ2(η0).

Integrating the equation (3.26) for fγ1 and fγ2 from η0 to a and obtain,

1

2
η0f̄ +

1

2

∫ a

η0

fγ1(s)ds = −γ1 − φ′(f̄)f ′γ1(η0), (3.36)

1

2
η0f̄ +

1

2

∫ a

η0

fγ2(s)ds = −γ2 − φ′(f̄)f ′γ2(η0). (3.37)

Subtract (3.37) from (3.36) gives

1

2

∫ a

η0

(fγ1(s)− fγ2(s))ds = (γ2 − γ1) + φ′(f̄)[f ′γ2(η0)− f
′
γ1

(η0)].

Since fγ1 > fγ2 on (η0, a), the left-hand side is positive. The right-hand side

is negative because f ′a2(η0) ≤ f ′a1(η0) at η0 and γ2 < γ1. We therefore have a
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contradiction. The function b(a, γ) must therefore be strictly monotonically

increasing in γ.

(ii) Let 0 < γ0 ≤ γ1 < γ2 ≤ γ3. Recall the function τ(f) from Lemma

3.14 and set τ(f) = τ(f ; γi) = τi, where i = 1, 2. Then

|τ(f ; γ1)− τ(f ; γ2)|

=2a−2

∣∣∣∣∣
∫ f

0

φ′(θ)∫ θ
0

[1− τ1(s)]ds+ 2γ1
a

dθ −
∫ f

0

φ′(θ)∫ θ
0

[1− τ2(s)]ds+ 2γ2
a

dθ

∣∣∣∣∣
=2a−2

∣∣∣∣∣∣
∫ f

0

φ′(θ)
{∫ θ

0
[τ1(s)− τ2(s)]ds+ 2γ2

a
− 2γ1

a

}
{∫ θ

0
[1− τ1(s)]ds+ 2γ1

a

}{∫ θ
0

[1− τ2(s)]ds+ 2γ2
a

}dθ

∣∣∣∣∣∣ .
Consider the function

L(θ; γ) =

(
θ +

2γ

a

)−1{∫ θ

0

[1− τ(s; γ)]ds+
2γ

a

}
, 0 < θ ≤ b(a, γ).

L(θ; γ) is a monotonically decreasing function of θ since

∂L

∂θ
=

(
θ + 2γ

a

)
[1− τ(θ)]−

∫ θ
0

[1− τ(s)]ds− 2γ
a(

θ + 2γ
a

)2
=

∫ θ
0

[τ(s)− τ(θ)]ds− 2γ
a

(1 + τ(θ))(
θ + 2γ

a

)2 < 0,

and L→ 1 as θ → 0. Therefore, when 0 < θ ≤ b(a, γ)

L[b(a, γ); γ] ≤ L(θ; γ) ≤ 1.

We can now write

|τ(f ; γ1)− τ(f ; γ2)| ≤ A(γ2 − γ1) +B

∫ f

0

φ′(θ)

θ + 2γ1
a

max
0≤s≤θ

|τ(s; γ1)− τ(s; γ2)|dθ,

where

A = 16a−1γ−20 φ(b(a, γ3)) {L[b(a, γ1); γ1]}−1 {L[b(a, γ2); γ2]}−1 ,

B = 2a−2 {L[b(a, γ1); a]}−1 {L[b(a, γ2); γ2]}−1 ,
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and if we set ω(f) = max
0≤θ≤f

|τ(θ; γ1)− τ(θ; γ2)|, then

ω(f) ≤ A(γ2 − γ1) +B

∫ f

0

φ′(θ)

θ + 2γ1
a

ω(θ)dθ.

Define the function

M(γ) = L[b(a, γ); γ] = [a b(a, γ) + 2γ]−1
[∫ a

0

f(η; γ)dη + 2γ

]
.

It was shown in (ii) that, since γi ≥ γ0(i = 1, 2),

f(η; γi) ≥ f(η; γ0) on [0, a).

Since f(η; γi) > 0 it follows that

M(γi) ≥ [a b(a, γi) + 2γi]
−1
[∫ a

0

f(η; γ0)dη + 2γ0

]
.

Moreover, γi ≤ γ3 and hence, in view of (ii), b(a, γi) < b(a, γ3). Therefore

M(γi) ≥ [a b(a, γ3) + 2γ3]
−1
[∫ a

0

f(η; γ0)dη + 2γ0

]
.

Thus it can be seen that the constants A and B are uniformly bounded for

γ ∈ [γ0, γ3].

It now follows from Gronwall’s Lemma (see [20, p.24]) and the fact that

f ≤ b(a, γ3), that τ(f ; γ) satisfies a Lipschitz condition in γ which is uniform

with respect to f ∈ [0, b(a, γ3)] and γ ∈ [γ0, γ3].

From this, and the observation that τ is continuously differentiable on

(0, 1] with

∂τ

∂f
= 2a−2

φ′(f)

f + 2γ
a

[L(f ; γ)]−1 ≥ 2a−2
φ′(f)

f + 2γ
a

,

we can write
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|τ(b(a, γ1); γ2)− τ(b(a, γ2); γ2)| =
∫ b(a,γ2)

b(a,γ1)

∂τ

∂f
(f, γ2)df

≥2a−2
φ′(f ∗)

f ∗ + 2γ2
a

[b(a, γ2)− b(a, γ1)],

by the Mean Value Theorem, for some f ∗ ∈ (b(a, γ1), b(a, γ2)). Now we

consider

|τ(b(a, γ1); γ2)− τ(b(a, γ2); γ2)| − |τ(b(a, γ1); γ1)− τ(b(a, γ1); γ2)|

≤|τ(b(a, γ1); γ1)− τ(b(a, γ2); γ2)| = 0.

Then we have

|τ(b(a, γ1); γ2)− τ(b(a, γ2); γ2)| ≤ |τ(b(a, γ1); γ1)− τ(b(a, γ1); γ2)| ≤ K|γ1 − γ2|,

since τ is Lipschitz continuous. Therefore

2a−2
φ′(f ∗)

f ∗ + 2γ2
a

[b(a, γ2)− b(a, γ1)] ≤ K|γ1 − γ2|.

We may conclude that the function b(a, γ) Lipschitz continuous in γ and

the Lipschitz constant is uniform in γ ∈ [γ0, γ3].

(iii) Integrating (3.26) from η to a yields

−φ′(f(η))f ′(η) = γ − 1

2

∫ a

η

sf ′(s)ds ≥ γ.

Then we integrate from η to a and obtain∫ f(η)

0

φ′(f)df ≥ γ(a− η),

letting η → 0 gives ∫ b(a,γ)

0

φ′(f)

f
df ≥ aγ.
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As φ′(f) is continuous on [0,∞) and φ′(0) = 0 then we have b(a, γ)→∞ as

γ →∞. �

Next, we discuss properties of b(a, γ) with fixed γ.

Lemma 3.18. b(a, γ) has the following properties with fixed γ:

(i) b(a, γ) is strictly monotonically increasing in a;

(ii) lim
a→0

b(a, γ) = 0;

(iii) b(a, γ) is Lipschitz continuous in a and the Lipschitz constant is uni-

form in a ∈ (a0, a3) and γ ∈ (γ0, γ3), where 0 ≤ a0 ≤ a3, 0 ≤ γ0 ≤ γ3;

(iv) lim
a→∞

b(a, γ) =∞.

Proof. (i) Denote fai = f(η; ai, γ). Let fa1 and fa2 be positive solutions

satisfying (3.26), (3.28) and corresponding to a = a1, a = a2. Suppose b(a, γ)

is not strictly monotonically increasing in a. Then it is possible to find

0 < a1 < a2 such that b(a2, γ) ≤ b(a1, γ) and η0 ∈ (0, a1) such that fa1(η0) =

fa2(η0) and fa1 < fa2 on (η0, a1), we denote f̄ := fa1(η0) = fa2(η0).

Integrating the equation for fa1 from η0 to a1 and the equation for fa2

from η0 to a2 yield,

1

2
η0f̄ +

1

2

∫ a1

η0

fa1(s)ds = −γ − φ′(f̄)f ′a1(η0), (3.38)

1

2
η0f̄ +

1

2

∫ a2

η0

fa2(s)ds = −γ − φ′(f̄)f ′a2(η0). (3.39)

Subtracting (3.38) from (3.39) gives

1

2

∫ a1

η0

(fa2(s)− fa1(s))ds+
1

2

∫ a2

a1

fa2(s)ds+ φ′(f̄)[f ′a2(η0)− f
′
a1

(η0)] = 0.

82



Since fa1 < fa2 on (η0, a1) and fa2 > 0 on (a1, a2), the first and second term

are positive. The third term is non-negative because f ′a2(η0) ≥ f ′a1(η0) at η0.

We therefore have a contradiction. The function b(a, γ) must therefore be

monotonically increasing in a.

(ii) Let a < 1, denote N = φ′(b(1, γ)), we have φ′(f) ≤ N by (i). Then

we get directly from (3.26) that

− η

2N
[φ(f(η))]′ ≤ [φ(f(η))]′′ for 0 < η < a,

which implies that {
e
η2

4N [φ(f(η))]′
}′
≥ 0,

and integrating from 0 to η then yields

[φ(f(η))]′ ≥ Ae
−η2
4N ,

where A = φ′(b(a, γ))f ′(0) < 0. Integrating from η to a we get

φ(f(η)) ≤ −A
∫ a

η

e
−s2
4N ds.

Now we integrate the equation (3.26) from 0 to a and obtain

1

2

∫ a

0

f(s)ds = γ − φ′(b(a, γ))f ′(0).

Then −A = γ +
1

2

∫ a

0

f(s)ds and we have −A→ γ is bounded as a→ 0.

Therefore lim
η→0

φ(f(η)) ≤ −A
∫ a

0

e
−s2
4N ds→ 0 as a→ 0 since e

−s2
4N is bound-

ed, which implies that lim
a→0

lim
η→0

f(η) = lim
a→0

b(a, γ) = 0.

(iii) Let 0 < a0 ≤ a1 < a2 ≤ a3. Recall the function τ(f) from Lemma

3.14 and set τ(f) = τ(f ; ai) = τi, where i = 1, 2. Then
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|τ(f ; a1)− τ(f ; a2)|

=

∣∣∣∣∣2a−21

∫ f

0

φ′(θ)∫ θ
0

[1− τ1(s)]ds+ 2γ
a1

dθ − 2a−22

∫ f

0

φ′(θ)∫ θ
0

[1− τ2(s)]ds− 2γ
a2

dθ

∣∣∣∣∣ ,
=

∣∣∣∣∣∣2
∫ f

0

φ′(θ)
{
a22
∫ θ
0

[1− τ2(s)]ds+ 2a2γ − a21
∫ θ
0

[1− τ1(s)]ds+ 2a1γ
}

a21a
2
2

{∫ θ
0

[1− τ1(s)]ds+ 2γ
a1

}{∫ θ
0

[1− τ2(s)]ds+ 2γ
a2

}
∣∣∣∣∣∣ ,

=2a−22

∫ f

0

φ′(θ)
∫ θ
0
|τ1(s)− τ2(s)|ds{∫ θ

0
[1− τ1(s)]ds+ 2γ

a1

}{∫ θ
0

[1− τ2(s)]ds+ 2γ
a2

}dθ

+
2(a22 − a21)
a22a

2
1

∫ f

0

φ′(θ)
∫ θ
0

[1− τ2(s)]ds+ 2γ
a1+a2

dθ{∫ θ
0

[1− τ1(s)]ds+ 2γ
a1

}{∫ θ
0

[1− τ2(s)]ds+ 2γ
a2

}
≤2a−22

∫ f

0

φ′(θ)
∫ θ
0
|τ1(s)− τ2(s)|ds{∫ θ

0
[1− τ1(s)]ds+ 2γ

a1

}{∫ θ
0

[1− τ2(s)]ds+ 2γ
a2

}dθ

+
2(a22 − a21)
a22a

2
1

∫ f

0

φ′(θ)∫ θ
0

[1− τ1(s)]ds+ 2γ
a1

dθ.

Let 0 < γ0 ≤ γ1 < γ2 ≤ γ3 and consider the function

L(θ; a, γ) =

(
θ +

2γ

a

)−1{∫ θ

0

[1− τ(s; a)]ds+
2γ

a

}
, 0 < θ ≤ b(a, γ).

L(θ; a) is clearly a monotonically decreasing function of θ, and L → 1 as

θ → 0. Therefore

L[b(a, γ); a] ≤ L(θ; a) ≤ 1 for 0 < θ ≤ b(a, γ).

It then follows that

|τ(f ; a1)− τ(f ; a2)| ≤ A(a2 − a1) +B

∫ f

0

φ′(θ)

θ + 2γ
a

max
0≤s≤θ

|τ(s; a1)− τ(s; a2)|dθ,

where
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A = 2
a1 + a2
a21a

2
2

∫ b(a1,γ)

0

φ′(θ)

θ + 2γ0
a1

dθ {L[b(a1, γ); a1]}−1

≤ 2
a1 + a2
a21a

2
2

∫ b(a1,γ3)

0

φ′(θ)

θ + 2γ0
a1

dθ {L[b(a1, γ); a1]}−1 ,

B = 2a−22 {L[b(a1, γ); a1]}−1 {L[b(a2, γ); a2]}−1 .

If we set ω(f) = max
0≤θ≤f

|τ(θ; a1)− τ(θ; a2)|, we then have

ω(f) ≤ A(a2 − a1) +B

∫ f

0

φ′(θ)

θ + 2γ
a

ω(θ)dθ.

Define the function

M(a, γ) := L[b(a, γ); a] = [a b(a, γ) + 2γ]−1
[∫ a

0

f(η; a, γ)dη + 2γ

]
.

It was shown in the proof of (i) that, since ai ≥ a0(i = 1, 2), f(η; ai, γ) ≥

f(η; a0, γ) on [0, a0). Since f(η; ai, γ) > 0 on [a0, a1) it follows that

M(ai, γ) ≥ [aib(ai, γ) + 2γ]−1
[∫ a0

0

f(η; a0, γ)dη + 2γ

]
.

By Lemma 3.17 (i), since γ > γ0, f(η; a, γ) ≥ f(η; a, γ0) on (0, a0), so that

M(ai, γi) ≥ [aib(ai, γ) + 2γ]−1
[∫ a0

0

f(η; a0, γ0)dη + 2γ0

]
.

Moreover, ai ≤ a3, γ ≤ γ3 and hence, b(ai, γ) < b(a3, γ3). Therefore

M(ai, γi) ≥ [a3b(a3, γ3) + 2γ3]
−1
[∫ a0

0

f(η; a0, γ0)dη + 2γ0

]
.

Thus it can be seen that the constant A and B are uniformly bounded on

the interval [a0, a3] and [γ0, γ3].

It now follows from Gronwall’s Lemma [20, p24] and the fact f ≤ b(a3, γ)

that τ(f ; a) satisfies a Lipschitz condition in a which is uniform with respect

to f ∈ [0, b(a3, γ)] and a ∈ [a0, a3].
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From this, and the observation that τ is continuously differentiable on

(0, 1] with

∂τ

∂f
= 2a−2

φ′(f)

f + 2γ
a

[L(f ; a)]−1 ≥ 2a−2
φ′(f)

f + 2γ
a

,

since [L(f ; a)] ≤ 1.

We can write

|τ(b(a1, γ); a2)− τ(b(a2, γ); a2)| =

∣∣∣∣∣
∫ b(a2,γ)

b(a1,γ)

∂τ

∂f
(f, a2)df

∣∣∣∣∣
≥2a−22

φ′(f ∗)

f ∗ + 2γ3
a2

|b(a2, γ)− b(a1, γ)|,

by the Mean Value Theorem, for some f ∗ ∈ (b(a1, γ), b(a2, γ)) and f ∗ ≥

b(a0, γ) > 0.

We may conclude by a similar argument to that in proof of Lemma 3.17

(ii) that the function b(a, γ) is Lipschitz continuous in a and the Lipschitz

constant is uniform in a ∈ (a0, a3) and γ ∈ (γ0, γ3).

Here we can prove the Lipshichtz constant is uniform in both a ∈ (a0, a3)

and γ ∈ (γ0, γ3) since we proved the monotonicity on γ of b(a, γ) on Lemma

3.17. This result will be used to prove b(a, γ) is a continuous function of both

a and γ.

(iv) Integrating (3.26) from η to a yields

−φ′(f(η))f ′(η) = γ − 1

2

∫ a

η

sf ′(s)ds,

then we have

−φ′(f(η))f ′(η) ≥ γ +
η

2
f(η) ≥ η

2
f(η).

For any a4 with η < a4 < a we obtain∫ f(η)

f(a4)

φ′(f)

f
df ≥ 1

4
(a24 − η2),

86



letting a4 → a and η → 0, ∫ b(a,γ)

0

φ′(f)

f
df ≥ 1

4
a2.

As φ′(f) is continuous on [0,∞) and φ′(0) = 0 then we have b(a, γ)→∞ as

a→∞. �

Now we prove that b(a, γ) is a continuous function of both a and γ by

using Lemma 3.17 (ii) and Lemma 3.18 (iii).

Lemma 3.19. b(a, γ) is a continuous function of γ and a.

Proof. Consider

|b(a, γ)− b(a0, γ0)| ≤ |b(a, γ)− b(a0, γ)|+ |b(a0, γ)− b(a0, γ0)|.

It was shown in the proof of Lemma 3.17 (ii) that b(a, γ) is uniformly con-

tinuous in γ ∈ [γ0, γ3], so there exists µ1 such that |b(a0, γ) − b(a0, γ0)| < δ
2

if |γ − γ0| < µ1. And by the proof of Lemma 3.18 (iii), there exists µ2 such

that |b(a, γ) − b(a0, γ)| < δ
2

if |a − a0| < µ2 and γ ∈ [γ0, γ3]. Therefore

|b(a, γ)− b(a0, γ0)| < δ
2

+ δ
2

= δ if |a− a1|+ |γ − γ0| ≤ max{µ1, µ2}. �

By similar arguments to those in Lemmas 3.17, 3.18 and 3.19 and the

fact that the particular choice of η = 0 in b(a, γ) = f(0; a, γ) plays no special

role, letting η0 ∈ [0,∞] play the same role as 0, we can obtain the following

corollary.

Corollary 3.20. For each fixed η0 ∈ (0, a), if f satisfies (3.26) and (3.28),

then f(η0; a, γ) is a continuous function of a and γ and is monotonically

increasing in both a and γ.
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3.2.3 Solution in right-neighbourhood of η = a

Now we consider f that satisfies the equation

−1

2
ηf ′(η) = ε[φ′(−f(η))f ′(η)]′, η > a. (3.40)

At the boundaries we require

lim
η→∞

f(η) = −V0, (3.41)

lim
η↘a

f(η) = 0, lim
η↘a

εφ′(−f(η))f ′(η) = −γ. (3.42)

We next prove the existence of a negative solution of (3.40) in a right-

neighbourhood of η = a, which satisfies the boundary conditions (3.42).

Lemma 3.21. For given a > 0, there exists δ > 0 such that in (a, a +

δ) equation (3.40) has a unique solution which is negative and satisfies the

boundary condition (3.42).

Proof. It is convenient to start by supposing that such a solution exists in

a right-neighbourhood of η = a. Integrating (3.40) from a to η then yields

−1

2

∫ η

a

sf ′(s)ds = γ + εφ′(−f(η))f ′(η), (3.43)

we write (3.43) in the form

1

f ′(η)
=

2εφ′(−f)

−
∫ η
a
sf ′(s)ds− 2γ

. (3.44)

Since f is monotonic by Lemma 3.4, with non-vanishing derivative, we can

treat η as a function of f , writing η = σ(f). Then (3.44) takes the form

dσ

df
=

2εφ′(−f)∫ 0

f
σ(s)ds− 2γ

,

and σ(f) is a solution of this integro-differential equation which satisfies the

initial condition σ(0) = a and is defined and continuous on an interval [f0, 0]
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for some f0 < 0, and is continuously differentiable on (f0, 0). An integration

gives

σ(f) = a− 2

∫ 0

f

εφ′(−θ)∫ 0

θ
σ(s)ds− 2γ

dθ, (3.45)

and if we set

τ(f) =
a

σ(f)
=
a

η
,

then (3.45) becomes

τ(f) =
1

1− 2a−2
∫ 0

f
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ
a

dθ. (3.46)

If the solution of (3.46) is unique, the corresponding solution of equation

(3.40) is also unique.

Lemma 3.22. There exists a µ > 0 such that (3.46) has a unique continuous

solution in −µ ≤ f ≤ 0, which is such that τ(0) = 1 and τ(f) < 1 if

−µ ≤ f < 0.

Proof. With µ to be chosen later, we denoted by X the set of continuous

functions τ(f) defined in [−µ, 0], satisfying 1
2
≤ τ(f) ≤ 1. We denote by ‖ �‖

the supremum norm on X. Then X is a complete metric space. On X we

introduce the map

M(τ)(f) =
1

1− 2a−2
∫ 0

f
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ
a

dθ

≥ 1

1 + 2a−2
∫ 0

−µ
εφ′(−θ)
θ+ 2γ

a

dθ
.

It is clear that M(τ)(f) ≤ 1 is well-defined, continuous. Moreover, M(τ) ≥ 1
2

if

1

1 + 2a−2
∫ 0

−µ
εφ′(−θ)
θ+ 2γ

a

dθ
≥ 1

2
,
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which gives

2a−2
∫ 0

−µ

εφ′(−θ)
θ + 2γ

a

dθ ≤ 1. (3.47)

Therefore, if µ is chosen so small that (3.47) is satisfied, M maps X into

itself.

We also wish to ensure that M is a contraction map. Let τ1, τ2 ∈ X and

choose µ ≤ γ
a
, we have

‖M(τ1)−M(τ2)‖ =2a−2

∥∥∥∥∥∥∥∥
∫ 0

f
εφ′(−θ)

∫ 0
θ

1
τ2(s)

− 1
τ1(s)

ds

(
∫ 0
θ

1
τ1(s)

ds− 2γ
a
)(
∫ 0
θ

1
τ2(s)

ds− 2γ
a
)

(1− 2a−2
∫ 0

f
εφ′(−θ)∫ 0

θ
1

τ1(s)
ds− 2γ

a

)(1− 2a−2
∫ 0

f
εφ′(−θ)∫ 0

θ
1

τ2(s)
ds− 2γ

a

)

∥∥∥∥∥∥∥∥
≤2a−2

∥∥∥∥∥
∫ 0

−µ
εφ′(−θ)

∫ 0

θ
τ1(s)−τ2(s)
τ1(s)τ2(s)

ds

(θ + 2γ
a

)2
dθ

∥∥∥∥∥
≤8a−2

∫ 0

−µ

−θεφ′(−θ)
(θ + 2γ

a
)2

dθ‖τ1 − τ2‖

≤8a−2
∫ 0

−µ

εφ′(−θ)
θ + 2γ

a

dθ‖τ1 − τ2‖.

It follows that M is a contraction map if

8a−2
∫ 0

−µ

εφ′(−θ)
θ + 2γ

a

dθ < 1.

This constitutes our third restriction on µ, it clearly implies the first one.

The result now follows from a standard fixed-point principle [12]. �

For any a > 0, the unique negative solution f(η) defined in a right-

neighbourhood of η = a, which satisfies the boundary conditions (3.42), may

be uniquely continued forward as a function of η. By the monotonicity, it

will decrease monotonically as η increases. There are then two possibilities.

Either the solution can be continued forward to η → ∞, or else we have

f(η) → −∞ as η increases towards some positive value. We now show that

the solution can be continued forward to η →∞.
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Lemma 3.23. For given a, γ, the unique local solution in Lemma 3.21 can

be continued forward to η →∞.

Proof. We have from (3.40) that

−f ′(η) ≤ 2ε

a
[φ′(−f)f ′]′. (3.48)

Integrating (3.48) from 2a to η yields

−εφ′(−f(2a))f ′(2a)− a

2
f(2a) ≥ −εφ′(−f(η))f ′(η)− a

2
f(η),

then we know that −εφ′(−f(η))f ′(η)− a
2
f(η) is bounded above by some pos-

itive constant C, so f is bounded. The boundedness of −f ′(η) for η > a+ δ
2

follows similarly to (3.18) for δ > 0, so it follows from [6, Theorem 1.186]

that the solution of (3.40) can be continuous forward to η →∞. �

Now recall d(a, γ) = lim
η→∞

f(η; a, γ). Next we discuss the properties of

d(a, γ).

3.2.4 Properties of d(a, γ)

The following discussions on d(a, γ) are used in proving existence of self-

similar solution by shooting from η = a with γ, the derivatives of φ(f), to

lim
η→∞

f(η; a, γ).

Lemma 3.24. d(a, γ) has the following properties with fixed a:

(i) d(a, γ) is strictly monotonically decreasing in γ;

(ii) lim
γ→∞

d(a, γ) = −∞;

(iii) lim
γ→0

d(a, γ) = 0.
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Proof. (i) Denote fγi = f(η; a, γi). Let fγ1 and fγ2 be positive solutions

satisfy (3.40) and (3.42) corresponding to γ = γ1, γ = γ2. Suppose now

d(a, γ) is not strictly monotonically decreasing in γ. Then it is possible to

find γ1 ≥ γ2 such that d(a, γ1) > d(a, γ2) and η0 ∈ (a,∞) such that fγ1(η0) =

fγ2(η0) and fγ1 < fγ2 on (a, η0), we denote by f̄ := fγ1(η0) = fγ2(η0).

Integrating (3.40) for fγ1 and fγ2 from a to η0 yields,

−1

2
η0f̄ +

1

2

∫ η0

a

fγ1(η)dη = φ′(−f̄)f ′γ1(η0) + γ1, (3.49)

−1

2
η0f̄ +

1

2

∫ η0

a

fγ2(η)dη = φ′(−f̄)f ′γ2(η0) + γ2. (3.50)

If we subtract (3.50) from (3.49), then

1

2

∫ η0

a

[fγ1(η)− fγ2(η)]dη = φ′(−f̄)[f ′γ1(η0)− f
′
γ2

(η0)] + (γ1 − γ2).

Since fγ1 < fγ2 on (a, η0), the left-hand side is negative. The right-hand

side is positive because f ′γ1(η0) ≥ f ′γ2(η0) and γ1 > γ2. We therefore have a

contradiction. The function d(a, γ) must therefore be strictly monotonically

decreasing in γ.

(ii) Suppose d(a, γ) does not satisfy lim
γ→∞

d(a, γ) = −∞. Then there exists

M > 0 such that d(a, γ) ≥ −M for all γ, which implies |f(η0)| ≤M for each

fixed η0 > a.

Integrating (3.40) from a to η0 gives

γ = −1

2
η0f(η0) +

1

2

∫ η0

a

f(s)ds− εφ′(−f(η0))f
′(η0).

Since

∫ η0

a

f(s)ds is negative, using the upper bound of |f |, we get

−εφ′(M)f ′(η0) > γ − Mη0
2
− 1

2

∫ η0

a

f(s)ds > γ − Mη0
2

.

By (3.18) we know that for all η0 > a+ 1

4γφ′(M)

2η0 − 1
> −φ′(M)f ′(η0) > γ − Mη0

2
.
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If we rewrite as
Mη0

2
> γ

(
1− 4φ′(M)

2η0 − 1

)
and choosing and fixing η0 sufficient

large such that 1 − 4φ′(M)

2η0 − 1
>

1

2
, we then have Mη0 > γ for all γ. But this

is a contradiction, so if γ →∞, we have d(a, γ)→ −∞.

(iii) Integrating (3.40) from a to η yields

−1

2

∫ η

a

sf ′(s)ds = εφ′(−f(η))f ′(η) + γ,

letting η →∞, together with lim
η→∞

f ′(η) = 0 by (3.17), we get

−a
2

∫ ∞
a

f ′(s)ds ≤ γ,

which implies

−a
2
d(a, γ) ≤ γ.

Then the result follows from

−a
2
d(a, γ)→ 0 as γ → 0.

�

Next, we discuss the properties of d(a, γ) for fixed γ.

Lemma 3.25. d(a, γ) has the following properties with fixed γ:

(i) d(a, γ) is strictly monotonically increasing in a;

(ii) d(a, γ) is a continuous function of a;

(iii) lim
a→∞

d(a, γ) = 0.
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Proof. (i) Denote fai = f(η; ai, γ). Let fa1 and fa2 be positive solutions

of (3.40) and (3.42) corresponding a = a1, a = a2. Suppose d(a, γ) is not

strictly monotonically increasing of a. Then it is possible to find 0 < a1 < a2

such that d(a1, γ) ≥ d(a2, γ) and η0 ∈ (a2,∞) such that fa1(η0) = fa2(η0)

and fa1 < fa2 on (a, η0), we denote f̄ := fa1(η0) = fa2(η0).

We integrating the equation (3.40) for fa1 from a1 to η0 and fa2 from a2

to η0, then we obtain

−1

2
η0f̄ +

1

2

∫ η0

a1

fa1(s)ds = γ + εφ′(−f̄)f ′a1(η0), (3.51)

−1

2
η0f̄ +

1

2

∫ η0

a2

fa2(s)ds = γ + εφ′(−f̄)f ′a2(η0). (3.52)

Subtracting (3.52) from (3.51) gives

1

2

∫ η0

a2

(fa1(s)− fa2(s))ds+
1

2

∫ a2

a1

fa1(s)ds = εφ′(−f̄)[f ′a1(η0)− f
′
a2

(η0)].

Since fa1 < fa2 on (η0, a) and fa1 < 0 on (a1, a2), the left-hand side is

negative. The right-hand side is non-negative because f ′a2(η0) ≤ f ′a1(η0) at

η0. We therefore have a contradiction. The function d(a, γ) must therefore

be strictly monotonically increasing of a.

(iii) Integrating (3.40) from a to η we get

εφ′(−f(η))f ′(η) ≥ −γ − a

2

∫ η

a

f ′(s)ds =
a

2

(
−2γ

a
− f(η)

)
,

then the result follows from the fact that f ′ < 0, gives −2γ
a
− f < 0. �

Next, we prove f is a continuous function of a and γ respectively. This

result will be used to prove b(a, γ) is a continuous function of both a and γ.

Lemma 3.26. For each fixed η∗ > a, if f satisfies (3.40) and (3.42), then

(i) f(η∗; a, γ) is a continuous function of γ for fixed a;
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(ii) f(η∗; a, γ) is a continuous function of a for fixed γ.

Proof. First we prove f(η∗; a, γ) is a continuous function γ.

Let 0 < γ0 ≤ γ1 < γ2 ≤ γ3. Recall the function τ(f) from the proof of

Lemma 3.21 and set τ(f) = τ(f ; γi) = τi, where i = 1, 2. Let η ∈ (a, η0]

satisfies 1
2
≤ τ(f) < 1 and

η0f(η0; a, γ3)− 2γ0 < 0, (3.53)

for f(η) ∈ [−µ, 0]. Then

|τ(f ; γ1)− τ(f ; γ2)|

=

∣∣∣∣∣∣∣∣
2a−2

∫ 0

f

(
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ1
a

− εφ′(−θ)∫ 0
θ

1
τ(s)

ds− 2γ2
a

)
dθ(

1− 2a−2
∫ 0

f
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ1
a

dθ

)(
1− 2a−2

∫ 0

f
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ2
a

dθ

)
∣∣∣∣∣∣∣∣

≤2a−2

∣∣∣∣∣∣
∫ 0

f

εφ′(−θ)
(∫ 0

θ
1

τ2(s)
− 1

τ1(s)
ds+ 2

a
(γ1 − γ2)

)
(∫ 0

θ
1

τ1(s)
ds− 2γ1

a

)(∫ 0

θ
1

τ2(s)
ds− 2γ2

a

) dθ

∣∣∣∣∣∣ ,
since τ(f) < 1 implies 1− 2a−2

∫ 0

f
εφ′(−θ)∫ 0

θ
1
τ(s)

ds− 2γ
a

dθ > 1.

Then we have

|τ(f ; γ1)− τ(f ; γ2)|

≤2a−2

∣∣∣∣∣∣
∫ 0

f

εφ′(−θ)
(∫ 0

θ
τ1(s)−τ2(s)
τ1(s)τ2(s)

ds+ 2
a
(γ1 − γ2)

)
(∫ 0

θ
1

τ1(s)
ds− 2γ1

a

)(∫ 0

θ
1

τ2(s)
ds− 2γ2

a

) dθ

∣∣∣∣∣∣
≤2a−2

∣∣∣∣∣∣
∫ 0

f

εφ′(−θ)
(

4
∫ 0

θ
τ1(s)− τ2(s)ds+ 2

a
(γ1 − γ2)

)
(∫ 0

θ
1

τ1(s)
ds− 2γ1

a

)(∫ 0

θ
1

τ2(s)
ds− 2γ2

a

) dθ

∣∣∣∣∣∣ ,
since τ(f) > 1

2
.

Consider the function

L(θ; γ) =

(
θ − 2γ

a

)−1(∫ 0

θ

1

τ(s)
ds− 2γ

a

)
> 0, −µ ≤ θ ≤ 0.
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L is a monotonically increasing function of θ since

∂L

∂θ
=

∫ 0

θ
1

τ(θ)
− 1

τ(s)
ds+ 2γ

a
(1 + τ(θ))(

θ − 2γ
a

)2 > 0,

and L → 1 as θ → 0. Therefore L(f(η0; a, γ); γ) ≤ L(θ; γ) < 1 when

−µ ≤ θ ≤ 0.

We can now write

|τ(f ; γ1)− τ(f ; γ2)| ≤ A(γ2 − γ1) +B

∫ 0

f

εφ′(−θ)
2γ1
a
− θ

max
f≤s≤0

|τ(s; γ1)− τ(s; γ2)|dθ,

where

A = 16a−1γ20εφ
′(−f(η0; a, γ1))[L(f(η0; a, γ1))]

−1[L(f(η0; a, γ2))]
−1,

B = 8a−2[L(f(η0; a, γ1))]
−1[L(f(η0; a, γ2))]

−1,

and if we set ω(f) = max
f≤θ≤0

|τ(θ; γ1)− τ(θ; γ2)|, then

ω(f) ≤ A(γ2 − γ1) +B

∫ 0

f

εφ′(−θ)
2γ1
a
− θ

ω(θ)dθ.

Define the function

M(γ) =L(f(η0; a, γ); γ)

=(a f(η0; a, γ); γ)− 2γ)−1
(∫ η0

a

f(s; a, γ)ds− η0f(η0; a, γ)− 2γ

)
.

It was shown in Lemma 3.24 (i) that, since γi ≤ γ3, f(η; γi) ≥ f(η; γ3) on

(a, η0]. Since f(η; γi) < 0, it follows that

M(γi) ≥ (af(η0; a, γ3); γ3)− 2γ3)
−1
(∫ η0

a

f(s; a, γ)ds− η0f(η0; a, γ3)− 2γ0

)
> 0.

Thus it can be seen that the constants A and B are uniformly bounded for

γ ∈ [γ0, γ3].
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It now follows from Gronwall’s Lemma ([20, p24]) and the fact that

f(η; a, γ) ≥ f(η0; a, γ3), τ(f ; γ) satisfies a Lipshichtz condition in γ which

is uniform with respect to f ∈ [f(η0; a, γ3), 0] and γ ∈ [γ0, γ3].

The observation that τ is continuously differentiable on
[
1
2
, 1
)

with

∂τ

∂f
=

1

2
a−2

εφ′(−f)
2γ
a
− f

[L(f ; γ)]−1 ≥ 1

2
a−2

εφ′(−f)
2γ
a
− f

,

gives

|τ(f(η0; a, γ1); γ1)− τ(f(η0; a, γ2); γ1)| =
∫ f(η0;a,γ2)

f(η0;a,γ1)

∂τ

∂f
(f ; γ1)df

≥1

2
a−2

εφ′(−f ∗)
2γ
a
− f ∗

[f(η0; a, γ2)− f(η0; a, γ1)],

by the Mean Value Theorem, for some f ∗ ∈ (f(η0; a, γ1), f(η0; a, γ2)). Now

we consider

|τ(f(η0; a, γ1); γ1)− τ(f(η0; a, γ2); γ1)| − |τ(f(η0; a, γ1); γ2)− τ(f(η0; a, γ2); γ2)|

≤|τ(f(η0; a, γ1); γ1)− τ(f(η0; a, γ2); γ2)| = 0.

We may conclude by a similar argument to that in proof of Lemma 3.17

(ii) that when the function f(η; a, γ) for η ∈ (a, η0] is Lipschitz continuous

in γ and the Lipschitz constant is uniform in γ ∈ [γ0, γ3], since η = η0 is not

special.

Now we prove f(η1; a, γ) is a continuous function when η1 > η0. We

consider in two cases.

Case A. Consider γ0 > γ. First, since f ′ is bounded for η > a + ζ
2
, we can

choose a fixed η1 such that |f(η0; a, γ0) − f(η1; a, γ0)| < δ
2
. We know there

exists µ such that |f(η0; a, γ)− f(η0; a, γ0)| < δ
2

for |γ − γ0| < µ. Then

|f(η0; a, γ)− f(η1; a, γ0)|

≤|f(η0; a, γ)− f(η0; a, γ0)|+ |f(η0; a, γ0)− f(η1; a, γ0)| <
δ

2
+
δ

2
= δ.
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Since γ0 > γ, then by Lemma 3.24 (i) we have

f(η1; a, γ0) + δ > f(η0; a, γ) > f(η1; a, γ) > f(η1; a, γ0),

so that f(η1; a, γ)− f(η1; a, γ0) < δ if γ0 − γ < µ.

Case B. Now consider γ0 < γ and denote f(η; a, γ) = f and f(η; a, γ0) = f0.

We know that

−a
2
f ′(η) ≤ ε[φ′(−f(η))f ′(η)]′, η > a,

letting k > 1 and ka < η0, integrating (3.40) from ka to η yield

−εφ′(−f(η))f ′(η)− a

2
f(η) ≤ −εφ′(−f(ka))f ′(ka)− a

2
f(ka).

Letting η → η1 gives

−f(η1) < −
2ε

a
φ′(−f(ka))f ′(ka)− f(ka). (3.54)

Now consider the equation for f0. Integrating from a to ka, we get

−ka
2
f0(ka) +

1

2

∫ ka

a

f0(s)ds = εφ′(−f0(ka))f0(ka) + γ0,

we know that f0(η1) < f0(η) for η ∈ (η0, η1], then

f0(η1) <
k

k − 1
f0(ka) +

2ε

(k − 1)a
φ′(−f0(ka))f ′0(ka) +

2γ0
(k − 1)a

. (3.55)

Combining (3.54) and (3.55) we have

f0(η1)− f(η1) < f0(ka)− f(ka) +
1

k − 1
f0(ka) +

2γ0
(k − 1)a

− 2ε

a
φ′(−f(ka))f ′(ka).

Choosing k such that a < ka < η1 to satisfy
2γ0

(k − 1)a
+
f0(ka)

k − 1
<
δ

3
. For

ka > a + ζ
2

we have −f ′(ka) <
16γ

4ζ + ζ2
by (3.16). Now choose and fix k so

that −2ε

a
φ′(−f(ka))f ′(ka) <

δ

3
. With this k, we know there exists µ > 0

such that for γ − γ0 < µ

f0(ka)− f(ka) <
δ

3
.
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Therefore f(η1; a, γ0)− f(η1; a, γ) < δ if γ − γ0 ≤ µ.

We can now conclude f(η1; a, γ) is a continuous function of γ for fixed

a. It can be prove iteratively that f(η; a, γ) is a continuous function of γ at

fixed η ∈ (a,∞) with fixed a. Moreover, for fixed γ, f(η; a, γ) is a continuous

function of a can be proved by using the similar argument. �

The following corollary is obtained directly from Lemma 3.26

Corollary 3.27. If f satisfies (3.40) and (3.42), then

(i) d(a, γ) is a continuous function of γ for fixed a;

(ii) d(a, γ) is a continuous function of a for fixed γ.

Now we prove that d(a, γ) is a continuous function of both a and γ by using

Lemma 3.24 (ii) and Lemma 3.25 (ii). The proof is different and longer than

the proof of Lemma 3.19, since we consider η →∞ here.

Lemma 3.28. d(a, γ) is a continuous function of a and γ.

Proof. If d(a, γ) is continuous with a and γ, then for all δ > 0 there exists

µ > 0 such that if |(a, γ)− (a0, γ0)| < µ then |d(a, γ)− d(a0, γ0)| < δ.

Case 1. For a > a0 and γ < γ0, we choose a fixed η0 such that |f(η0; a0, γ0)−

d(a0, γ0)| < δ
2
. We know from Lemma 3.26 that there exists µ such that

|f(η0; a, γ)− f(η0; a, γ0)| < δ
2

for |(a, γ)− (a, γ0)| < µ
2
. Then

|f(η0; a, γ)− d(a0, γ0)|

≤|f(η0; a, γ)− f(η0; a, γ0)|+ |f(η0; a, γ0)− d(a0, γ0)| <
δ

2
+
δ

2
= δ.

Since the sequence a > a0 and γ < γ0, then we have

d(a0, γ0) + δ > f(η0; a, γ) > d(a, γ) > d(a0, γ0),
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then d(a, γ)− d(a0, γ0) < δ as |(a, γ)− (a0, γ0)| < µ.

Case 2. For a < a0, consider

|d(a, γ)− d(a0, γ0)| ≤ |d(a, γ)− d(a0, γ)|+ |d(a0, γ)− d(a0, γ0)|.

Given δ > 0, there exist µ > 0 such that |d(a0, γ)−d(a0, γ0)| < δ
2

if |γ−γ0| <

µ, by Lemma 3.27 that d(a, γ) is continuous in γ for fixed a.

Now considering |d(a, γ) − d(a0, γ)|, we want to prove that d(a, γ) is a

continuous function of a uniformly in γ ∈ [γ0 − µ, γ0 + µ] for µ > 0. We

denote f(η; a, γ) = f and f(η; a0, γ) = f0. We know that

−a
2
f ′(η) ≤ ε[φ′(f(η))f ′(η)]′,

integrating (3.40) from ka to η where k > 1, we get

−εφ′(−f(η))f ′(η)− a

2
f(η) ≤ −εφ′(−f(ka))f ′(ka)− a

2
f(ka).

Letting η →∞, by Lemma 3.7 we have

−d(a, γ) < −2ε

a
φ′(−f(ka))f ′(ka)− f(ka). (3.56)

Now considering the equation of f0 and integrating from a0 to ka0, we get

−ka0
2
f0(ka0) +

1

2

∫ ka0

a0

f0(ξ)dξ = εφ′(−f0(ka0))f ′0(ka0) + γ,

and the lower bound d(a0, γ) < f0 and γ ≤ γ0 + µ then yields

d(a0, γ) <
k

k − 1
f0(ka0) +

2ε

(k − 1)a0
φ′(−f0(ka0))f ′0(ka0) +

2(γ0 + µ)

(k − 1)a0
.

(3.57)

Combining (3.56) and (3.57), we have

d(a0, γ0)− d(a, γ)

<f0(ka0)− f(ka) +
1

k − 1
f0(ka) +

2(γ0 + µ)

(k − 1)a0
− 2ε

a
φ′(−f(ka))f ′(ka).
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Choose k > 1 such that
2(γ0 + µ)

(k − 1)a0
+

1

k − 1
f0(ka0) <

δ̂

3
and for ka > a+ 1 we

have −f ′(ka) <
4(γ0 + µ)

2ka− 1
by (3.16), so we can have −2ε

a
φ′(−(ka))f ′(ka) <

δ̂

3
. With the choosing k we know that for a < a0

f0(ka0)− f(ka) < f0(ka0)− f0(ka) <
δ̂

3
as |a0 − a| < µ.

Therefore, we have d(a0, γ) − d(a, γ) < δ̂ with γ ∈ [γ0 − µ, γ0 + µ]. Then

for given δ = 2δ̂, there exists µ > 0 such that |d(a0, γ) − d(a, γ)| < δ
2

if

|a− a0| < µ with γ ∈ [γ0 − µ, γ0 + µ].

Case 3. For γ0 < γ, we consider

|d(a, γ)− d(a0, γ0)| ≤ |d(a, γ)− d(a, γ0)|+ |d(a, γ0)− d(a0, γ0)|.

Given δ > 0, there exist µ > 0 such that |d(a, γ0)−d(a0, γ0)| < δ
2

if |a−a0| < µ

by Lemma 3.27 that d(a, γ) is a continuous function of a for fixed γ.

Now considering |d(a, γ) − d(a, γ0)|, we want to prove that d(a, γ) is a

continuous function of γ uniformly with a ∈ [a0 − µ, a0 + µ] for µ > 0. We

denote f(η; a, γ) = f and f(η; a, γ0) = f0. We know that

−a
2
f ′(η) ≤ ε[φ′(f(η))f ′(η)]′,

integrating (3.40) from ka to η where k > 1, we get

−εφ′(−f(η))f ′(η)− a

2
f(η) ≤ −εφ′(−f(ka))f ′(ka)− a

2
f(ka).

Letting η →∞, we have

−d(a, γ) < −2ε

a
φ′(−f(ka))f ′(ka)− f(ka). (3.58)

Now considering the equation of f0 and integrating from a to ka, we get

−ka
2
f0(ka) +

1

2

∫ ka

a

f0(ξ)dξ = εφ′(−f0(ka))f0(ka) + γ0,
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the lower bound d(a, γ0) < f0 yields

d(a, γ0) <
k

k − 1
f0(ka) +

2ε

(k − 1)a
φ′(−f0(ka))f ′0(ka) +

2γ0
(k − 1)a

. (3.59)

Combining (3.58) and (3.59) we have

d(a, γ0)− d(a, γ) < f0(ka)− f(ka) +
1

k − 1
f0(ka) +

2γ0
(k − 1)a

− 2ε

a
φ′(−f(ka))f ′(ka).

Since a0 − µ < a < a0 + µ, we can choose k > 1 such that
2(γ0)

(k − 1)a0
+

1

k − 1
f0(ka) <

2(γ0)

(k − 1)(a0 − µ)
+

1

k − 1
f0(ka0 − kµ) <

δ̂

3
and for ka > a+ 1

we have −f ′(ka) <
4γ

2k(a0 − µ)− 1
by (3.16), so −2ε

a
φ′(−(ka))f ′(ka) <

δ̂

3
independently of a. With the choosing k we have

f(ka)− f0(ka) <
δ̂

3
if |γ0 − γ| < µ,

with a ∈ [a0 − µ, a0 + µ], since f is a continuous function of γ for every η0.

Then with given δ = 2δ̂, we have |d(a, γ0)− d(a, γ)| < δ
2
. �

3.3 Two-parameter shooting method

In this section we will use two-parameter shooting to show that for each

U0, V0 > 0, there exist a, γ > 0 such that the solution f(η; a, γ) of (3.13)

satisfies b(a, γ) = U0 and d(a, γ) = −V0.

We will use the following lemma which can be found in [15, Lemma 2.8]

and [23, p.112].

Lemma 3.29. Suppose that Λ1 and Λ2 are two connected open sets of R2,

with components (maximal connected subset) Λ̃1 ⊂ Λ1 and Λ̃2 ⊂ Λ2 such that

Λ̃1 ∩ Λ̃2 is disconnected. Then Λ1 ∪ Λ2 6= R2.
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This result also applies to every subset of R2 which is homeomorphic to

the entire plane [15, p.31]. We can apply it to the set (0,∞) × (0,∞), for

example, if we define a homomorphism g : (0,∞) × (0,∞) → R2 such that

g(x, y) = (log x, log y).

Theorem 3.30. Suppose ε > 0, then there exists a unique solution f of

problem (3.13).

Proof. First we identify four “bad” sets

Γ1 =
{

(a, γ)
∣∣ b(a, γ) > U0

}
,

Γ2 =
{

(a, γ)
∣∣ b(a, γ) < U0

}
,

Γ3 =
{

(a, γ)
∣∣ d(a, γ) > −V0

}
,

Γ4 =
{

(a, γ)
∣∣ d(a, γ) < −V0

}
.

However, we do not have an appropriate topological lemma involving four

sets. Therefore we combine the Γi to form two new sets, as follows:

Λ1 = Γ1 ∪ Γ4,

Λ2 = Γ2 ∪ Γ3.

It is easy to see that if (a, γ) is in (0,∞) × (0,∞) but not in Λ1 ∪ Λ2, then

we have a solution f(η; a, γ) such that b(a, γ) = U0 and d(a, γ) = −V0. Now

we want to show that Λ1 and Λ2 satisfy the hypothesis of Lemma 3.29.

These sets are clearly open in (0,∞) × (0,∞) since b(a, γ) and d(a, γ)

are continuous functions of a and γ by Lemma 3.19 and 3.28. Γ1 and Γ2

are non-empty since lim
a→0

b(a, γ) = 0 and lim
a→∞

b(a, γ) = ∞ by Lemma 3.18.

Moreover, lim
a→∞

d(a, γ) = 0 and lim
γ→∞

d(a, γ) = −∞ by Lemma 3.24, yielding

Γ3 and Γ4 are non-empty. Therefore, Λ1 and Λ2 are open and non-empty.

Lemma 3.31. The sets Λ1 and Λ2 are connected.
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Proof. In the following, we will exploit the monotonicity of b(a, γ) and

d(a, γ) in a and γ. First we prove that Γ1, Γ2, Γ3 and Γ4 are each con-

nected. As an example, we prove that Γ1 is connected. Given two points

(ã, γ̃), (â, γ̂) ∈ Λ1, there are two cases:

(i). ã > â and γ̃ ≥ γ̂;

(ii). ã ≥ â and γ̃ < γ̂.

The following figures describe an admissible step path, contained in Γ1, that

connects (ã, γ̃) and (â, γ̂) in each of two cases

γ

a

( ෤𝑎, ෤γ)

( ො𝑎, ොγ) ( ෤𝑎, ොγ)

Figure 3.1: step-path of Γ1(i)

γ

a

( ෤𝑎, ෤γ)

( ො𝑎, ොγ)
( ෤𝑎, ොγ)

Figure 3.2: step-path of Γ1(ii)

In Figure 3.1, if ã > â, then we have (ã, γ̂) ∈ Γ1, since b(ã, γ̂) > b(â, γ̂) > U0

by Lemma 3.18 (i). It follows that the path connecting (ã, γ̂) and (ã, γ̃)

belongs to Γ1, since (ã, γ̂), (ã, γ̃) ∈ Γ1 and b(a, γ) is monotonically increasing

in γ by Lemma 3.17 (i). Similarly, in Figure 3.2, (ã, γ̂) ∈ Γ1 as ã ≥ ã, since

b(a, γ) is increasing in a by Lemma 3.18 (i), then the path connecting (ã, γ̂)

and (ã, γ̃) belongs to Γ1 by Lemma 3.18 (i). We can prove by using a similar

argument that Γ2, Γ3 and Γ4 are each connected.

We now prove Γ1 ∩ Γ4 and Γ2 ∩ Γ3 are non-empty.

104



For fixed a > 0, since lim
γ→∞

b(a, γ) =∞ by Lemma 3.17 (iii) and lim
γ→∞

d(a, γ) =

−∞ by Lemma 3.24 (ii) , we can find γ̌ large enough such that b(a, γ̌) > U0

and d(a, γ̌) < −V0. It follows that for γ̌ sufficiently large, (a, γ̌) ∈ Γ1 ∩ Γ4,

so Γ1 ∩ Γ4 6= ∅. Similarly, given γ̃ > 0, there exists â small enough that

b(â, γ̃) < U0 since lim
a→0

b(a, γ) = 0 by Lemma 3.18 (ii). Then choose γ̂ small-

er than γ̃ if necessary to ensure that d(â, γ̂) > −V0 and b(â, γ̂) < U0 since

lim
γ→0

d(a, γ) = 0 by Lemma 3.24 (iii) and b(a, γ) is monotonically increasing

in γ by Lemma 3.17 (i). It then follows that (â, γ̂) ∈ Γ2 ∩Γ3, so Γ2 ∩Γ3 6= ∅.

Then, since Γ1 ∩ Γ4 6= ∅, we can always find a point belonging to Γ1 ∩ Γ4

that is path connected to both (â, γ̂) ∈ Γ1 and (a∗, γ∗) ∈ Γ4, since Γ1 and Γ4

are each connected.

γ

a

( ෤𝑎, ෤γ)

( ො𝑎, ොγ) ( ෤𝑎, ොγ)

(𝑎∗, ෤γ)

(𝑎∗, γ∗)

Figure 3.3: path-connectedness of Λ1

For example, in Figure 3.3, the solid lines indicate that the path belongs to
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Γ1 and the dashed lines indicate that the path belongs to Γ4. We can find

(ã, γ̃) ∈ Γ1∩Γ4 since Γ1∩Γ4 6= ∅. If (â, γ̂) ∈ Γ4 and (a∗, γ∗) ∈ Γ1, then there

are step paths each connecting (â, γ̂) and (ã, γ̃), (ã, γ̃) and (a∗, γ∗), since Γ1

and Γ4 are each connected.

Therefore, Λ1 is connected, and similarly, Λ2 is connected since Γ2∩Γ3 6= ∅

and Γ2,Γ3 are each connected. �

Now we take Λ̃1 = Λ1, Λ̃2 = Λ2.

Next we will show that Λ1 ∩ Λ2 is disconnected. We have

Λ1 ∩ Λ2 = (Γ1 ∩ Γ2) ∪ (Γ1 ∩ Γ3) ∪ (Γ2 ∩ Γ4) ∪ (Γ3 ∩ Γ4).

Clearly Γ1 ∩ Γ2, Γ3 ∩ Γ4 are empty.

Lemma 3.32. Λ1 ∩ Λ2 is disconnected.

Proof. For fixed γ, we can find ã large enough such that b(ã, γ) > U0 and

d(ã, γ) > −V0, since lim
a→∞

b(a, γ) =∞ by Lemma 3.18 (iv) and lim
a→∞

d(a, γ) =

0 by Lemma 3.25 (iii). It follows that for ã sufficient large, (ã, γ) ∈ Γ1 ∩ Γ3,

so Γ1 ∩ Γ3 6= ∅. Similarly, given â > 0, there exits γ∗ large enough such that

d(â, γ∗) < −V0, since lim
γ→∞

d(a, γ) = −∞ by Lemma 3.24 (ii). Then choose

a∗ smaller than â if necessary to ensure that d(a∗, γ∗) < −V0 and b(a∗, γ∗) <

U0, since lim
a→0

b(a, γ) = 0 by Lemma 3.18 (ii) and d(a, γ) is monotonically

decreasing in a by Lemma 3.25 (i). It then follows that (a∗, γ∗) ∈ Γ2 ∩Γ4, so

Γ2 ∩ Γ4 6= ∅.

Therefore Γ1 ∩ Γ3 and Γ2 ∩ Γ4 are non-empty and disjoint. Therefore,

Λ1 ∩Λ2 is disconnected since it is the union of non-empty, disjoint and open

sets. �
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Now Lemma 3.29 yields that there is a point (ā, γ̄) ∈ (0,∞) × (0,∞)

which is not in Λ1 ∪ Λ2. Hence b(ā, γ̄) = U0 since (ā, γ̄) /∈ Γ1 ∪ Γ2 and

d(ā, γ̄) = −V0 since (ā, γ̄) /∈ Γ3 ∪ Γ4. The result then follows from Theorem

2.34 and Theorem 3.3. �

3.4 Self-similar solutions with ε = 0

Now we consider

−1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, η < a, (3.60)

with boundary conditions

f(0) = U0, (3.61)

lim
η↗a

f(η) = 0, lim
η↗a

φ′(f(η))f ′(η) = −aV0
2
. (3.62)

In Lemma 3.14, we showed that for each a > 0, γ > 0, there exists solution

f for η ∈ (a− δ, a) for some δ > 0. For ε = 0, we know that f(η) = −V0 for

η > a. Then with the special choice γ = aV0
2

, we obtain directly from Lemma

3.14 and Lemma 3.16 the following proposition.

Proposition 3.1. For given a and γ, there exists δ > 0 such that for η ∈

(a−δ, a), equation (3.60) has a unique solution which is positive and satisfies

the boundary condition (3.62). This solution can be continuous back to η = 0.

The following discussion on the behaviour of f(η) as η → 0 is analogous

to that in Lemma 3.18. Note that γ = aV0
2

when ε = 0.

Lemma 3.33. b(a) := lim
η→0

f

(
η; a,

aV0
2

)
has the following properties:
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(i) b(a) is strictly monotonically increasing in a;

(ii) lim
a→0

b(a) = 0;

(iii) b(a) is a continuous function of a;

(iv) lim
a→∞

b(a) =∞;

Proof. (i) Denote fai = f(η; ai, γ). Let fa1 and fa2 be positive solutions

satisfying (3.26), (3.28) and corresponding to a = a1, a = a2. Suppose b(a)

is not strictly monotonically increasing in a. Then it is possible to find 0 <

a1 < a2 such that b(a2) ≤ b(a1) and η0 ∈ (0, a1) such that fa1(η0) = fa2(η0)

and fa1 < fa2 on (η0, a1), we denote f̄ := fa1(η0) = fa2(η0).

Integrating the equation for fa1 from η0 to a1 and the equation for fa2

from η0 to a2, then subtracting these two equations, we obtain

(a1 − a2)V0
2

=
1

2

∫ a1

η0

(fa2(s)− fa1(s))ds+
1

2

∫ a2

a1

fa2(s)ds

+ φ′(f̄)[f ′a2(η0)− f
′
a1

(η0)].

Since fa1 < fa2 on (η0, a1) and fa2 > 0 on (a1, a2), the first and second

term on the right-hand side are positive. The third term is non-negative

because f ′a2(η0) ≥ f ′a1(η0) at η0. The left-hand side is negative since a1 < a2.

We therefore have a contradiction. The function b(a, γ) must therefore be

monotonically increasing in a.

(ii) Let a < 1, denote N = φ′(b(1)), we have φ′(f) ≤ N by (i). Then we

get from (3.60) that {
e
η2

4N [φ(f(η))]′
}′
≥ 0,

and integrating from 0 to η then yields

[φ(f(η))]′ ≥ Ae
−η2
4N ,
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where A = φ′(b(a))f ′(0) < 0. Integrating from η to a we get

φ(f(η)) ≤ −A
∫ a

η

e
−s2
4N ds.

Now we integrate the equation (3.26) from 0 to a and obtain

1

2

∫ a

0

f(s)ds =
aV0
2
− φ′(b(a))f ′(0).

Then −A = aV0
2

+
1

2

∫ a

0

f(s)ds and the results follows from −A → 0 as

a→ 0.

The proof of (iii) is similar to the proof of Lemma 3.18 (iii), note that if

a ∈ (a0, a3), then γ ∈ (a0V0
2
, a3V0

2
).

We can obtain (iv) directly from Lemma 3.18 (iv) since γ = aV0
2
> 0 by

Lemma 3.12. �

Now, since γ can be express as a function of a, we will use one-parameter

shooting to show the existence of self-similar solution.

Theorem 3.34. Suppose ε = 0. Then there exists a unique solution f of

problem (3.24).

Proof. Identify two“bad” sets

S− =
{
a
∣∣ b(a) < U0

}
,

S+ =
{
a
∣∣ b(a) > U0

}
.

We use a shooting method. Clearly S− and S+ are disjoint. By Lemma

3.33 we know that b(a) is monotonically increasing, then we can find a large

enough such that b(a) > U0 since lim
a→∞

b(a) = ∞ and a small enough such

that b(a) < U0 since lim
a→0

b(a) = 0, yielding that S− and S+ are non-empty.
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Moreover, S− and S+ are open since f is a continuous function of a. In-

deed, let a0 ∈ S− and let β := U0 − b(a0), then there exists µ such that

|b(a) − b(a0)| < β for |a − a0| < µ since b(a) is continuous by Lemma 3.33,

which implies b(a) < b(a0) + β < U0. A similar proof shows that S+ is open.

Since S− and S+ are non-empty disjoint open sets, S− ∪ S+ 6= (0,∞). Then

we can conclude that there exists a /∈ S− ∪ S+, such that b(a) = U0. The

result follows from Theorem 2.34 and Theorem 3.11. �
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Chapter 4

The whole-line case: Problem

(1.6) and self-similar solutions

for the limit problems

In this chapter, we consider the problem (1.6) on the whole real-line. By

using similar arguments to those used in Chapter 2 in the half-line case, we

first prove the existence and uniqueness of the weak solution of (1.6) when

ε > 0. We then prove some a priori bounds that will be used to study the

ε→ 0 and k →∞ limits. Since the problems are now considered on R, some

alternative arguments and cut-off functions are used.

We will then prove the existence and uniqueness of the weak solution of

the k → ∞ limit problem and show that there exists a unique self-similar

solution that is this weak solution of the limit problem. The existence of the

self-similar solution when ε > 0 is proved by using a two-parameter shooting

methods, similar to that used in Chapter 3 in the half-line case. Note that

on the whole-line case, a, the position of the free boundary is not necessary

positive. Therefore, in the study of the self-similar solutions, we consider

111



three cases: a < 0, a = 0 and a > 0. We will also prove the existence of

the self-similar solution when ε = 0 by a one-parameter shooting method.

In this case, γ can be expressed as a function of a and V0, therefore a > 0

since γ is positive. Our strategy takes advantage of ideas from Crooks and

Hilhorst [10].

4.1 Existence and uniqueness of weak solu-

tions for ε > 0

Let ε > 0. Similarly to the half-line case, we use an approximate problem to

establish existence of solutions of (1.6). For each R > 1, let (4.1) denote the

problem

ut = φ(u)xx − kuv, (x, t) ∈ (−R,R)× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ (−R,R)× (0, T ),

φ(u)x(−R, t) = φ(u)x(R, t) = 0, for t ∈ (0, T ),

φ(v)x(−R, t) = φ(v)x(R, t) = 0, for t ∈ (0, T ),

u(x, 0) = uk0,R(x), v(x, 0) = vk0,R(x), for x ∈ (−R,R),

(4.1)

where uk0,R, v
k
0,R ∈ C2(R+) are such that 0 ≤ uk0,R ≤ U0, 0 ≤ vk0,R ≤ V0 and

uk0,R =

U0 − (U0 − uk0)ψ̂R x < 0,

uk0ψ̂
R x ≥ 0,

vk0,R =

 vk0 ψ̂
R x < 0,

V0 − (V0 − uk0)ψ̂R x ≥ 0,

(4.2)

which define the functions uk0,R, v
k
0,R on the whole real line, where the family

of cut-off functions ψ̂R ∈ C∞(R+) with R > 1 are defined as

ψ̂R =

 1 |x| ≤ R,

ψ̂1(x+ 1−R) |x| ≥ R,
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and ψ̂1 ∈ C∞ (R) is a even, non-negative cut-off function such that 0 ≤

ψ̂1(x) ≤ 1 for all x ∈ R, ψ̂1(x) = 1 when |x| ≤ 1 and ψ̂1(x) = 0 when |x| ≥ 2.

Now we introduce a notion of weak solution.

Definition 4.1. A pair (ukR, v
k
R) ∈ L∞ ((−R,R)× (0, T ))×L∞ ((−R,R)× (0, T ))

is called a weak solution of (4.1) if

(i) φ(ukR), φ(vkR) ∈ L2(0, T ;W 1,2(−R,R));

(ii) (ukR, v
k
R) satisfies∫ R

−R
uk0,RΨ(x, 0)dx+

∫ T

0

∫ R

−R
ukRΨtdxdt

=

∫ T

0

∫ R

−R
φ(ukR)xΨxdxdt+ k

∫ T

0

∫ R

−R
ΨukRv

k
Rdxdt,∫ R

−R
vk0,RΨ(x, 0)dx+

∫ T

0

∫ R

−R
vkRΨtdxdt

=

∫ T

0

∫ R

−R
εφ(vkR)xΨxdxdt+ k

∫ T

0

∫ R

−R
ΨukRv

k
Rdxdt,

where Ψ ∈ C1 ([−R,R]× [0, T ]) with Ψ(·, T ) = 0.

To prove the uniqueness of the weak solution of (4.1), we use the following

comparison theorem. The proof is shown in a way similar to the proof of

Lemma 2.2, replacing the spatial domain (0, R) by (−R,R).

Lemma 4.2. Suppose ε > 0 and (ukR, v
k
R), (ukR, v

k
R) be such that

(a) ukR, u
k
R ∈ C((−R,R)× (0, T ));

(b) φ(ukR), φ(ukR) ∈ L2(0, T ;W 1,2(−R,R)),

ukRt, u
k
Rt, φ(ukR)xx, φ(ukR)xx ∈ L1((−R,R)× (0, T ));

(c) vkR, v
k
R ∈ C((−R,R)× (0, T ));
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(d) φ(vkR), φ(vkR) ∈ L2(0, T ;W 1,2(−R,R)),

vkRt, v
k
Rt, φ(vkR)xx, φ(vkR)xx ∈ L1((−R,R)× (0, T ));

(ukR, v
k
R), (ukR, v

k
R) satisfy

ukRt ≥ φ(ukR)xx − kukRvkR, ukRt ≤ φ(ukR)xx − kukRvkR, in (−R,R)× (0, T ),

vkRt ≤ εφ(vkR)xx − kukRvkR, vkRt ≥ εφ(vkR)xx − kukRvkR, in (−R,R)× (0, T ),

ukR(−R, ·) ≥ ukR(−R, ·), φ(vkR)x(−R, ·) ≤ φ(vkR)x(−R, ·), on (0, T ),

φ(ukR)x(R, ·) ≥ φ(ukR)x(R, ·), φ(vkR)x(R, ·) ≤ φ(vkR)x(R, ·), on (0, T ),

ukR(·, 0) ≥ ukR(·, 0), vkR(·, 0) ≤ vkR(·, 0), on (−R,R).

Then

ukR ≥ ukR, vkR ≤ vkR in (−R,R)× (0, T ).

We obtain the following immediately from Lemma 4.2.

Corollary 4.3. Suppose ε > 0. For given initial data uk0,R, v
k
0,R, there is at

most one solution (ukR, v
k
R) of (4.1).

Corollary 4.4. Let (ukR, v
k
R) be a weak solution of (4.1). Then we have

0 ≤ ukR(x, t) ≤ U0 and 0 ≤ vkR(x, t) ≤ V0 for (x, t) ∈ (−R,R)× (0, T ).

(4.3)

The existence of a weak solution of (4.1) is proved by an iterative method

which is similar to that in the proof in half-line case, with boundary condi-

tions φ(ukR)x(R, t) = φ(ukR)x(−R, t) = 0.

Theorem 4.5. There exists a unique weak solution (ukR, v
k
R) of Problem (4.1)

such that 0 ≤ ukR ≤ U0 and 0 ≤ vkR ≤ V0.
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The following results, analogous to those in Section 2.1 will yield existence

of solution of (1.6) by passing to the limit R→∞ in (4.1).

Lemma 4.6. Suppose ε > 0. Then for each L > 0 there exists a constant

C(L) such that if R > L+ 1, then

k

∫ T

0

∫ L+1

−L−1
ukRv

k
Rdxdt ≤ C(L). (4.4)

Proof. We recall a class of cut-off functions. First recall an even, non-

negative cut-off function ψ̂1 ∈ C∞(R) such that 0 ≤ ψ̂1(x) ≤ 1 for all x ∈ R

ψ̂1(x) =

 1 |x| ≤ 1,

0 |x| ≥ 2.

Then given L ≥ 1, the family of cut-off function ψ̂L ∈ C∞(R) is

ψ̂L(x) =

 1 |x| ≤ L,

ψ̂1(|x|+ 1− L) |x| ≥ L.

Clearly ψ̂L, ψ̂Lx , ψ̂
L
xx are bounded in L∞(R) independently of L.

Multiplying the equation for ukR by cut-off function ψ̂L and integrating

over (−R,R)× (0, T ) gives that

k

∫ T

0

∫ L+1

−L−1
ukRv

k
Rψ̂

Ldxdt =

∫ T

0

∫ L+1

−L−1
φ(ukR)ψ̂Lxxdxdt−

∫ L+1

−L−1
ψ̂LukR(x, T )dx.

The fact that 0 ≤ ukR ≤ U0, together with definition of ψ̂L and Lebesgue’s

Monotone Convergence Theorem yields (4.4). �

Lemma 4.7. Suppose ε > 0. Then for each L > 1, φ(ukR), φ(vkR) are bounded

in L2
(
0, T ;W 1,2

loc (R)
)

independently of k and R.
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Proof. This follows from the same form of argument used to show Lem-

ma 2.11, multiplying the equation for ukR by φ(ukR)ψ̂L and integrating over

(−R,R)× (0, T ). Denoting F =

∫ ukR

0

φ(s)ds which is bounded, then we have

∫ T

0

∫ L+1

−L−1
|φ(ukR)x|2ψ̂Ldxdt =−

∫ L+1

−L−1

[
F (x, T )− F (x, 0)

]
ψ̂Ldx

+
1

2

∫ T

0

∫ L+1

−L−1

[
φ(ukR)

]2
ψ̂Lxxdxdt

− k
∫ T

0

∫ L+1

−L−1
φ(ukR)ψ̂LukRv

k
Rdxdt.

The results are yielded by Lemma 4.6 and (4.3). �

Recall the notion for space and time translates introduced in (2.23). The

following is the result of the gradient estimates in Lemma 4.6 and the proof

is similar to the proof of Lemma 2.12, replacing integrals over (r, L+ 1) with

(−L− 1, L+ 1).

Lemma 4.8. For each L > 0, there exists a constant C(L) such that∫ T

0

∫ L+1

−L−1
|φ(Sδu

k
R)− φ(ukR)|2dxdt ≤ C(L)|δ|2,∫ T

0

∫ L+1

−L−1
|φ(Sδv

k
R)− φ(vkR)|2dxdt ≤ C(L)|δ|2.

The next result follows from arguments analogous to those used in the

proof of Lemma 2.13, replacing ψL by ψ̂L and integrals over (0, R) with

(−R,R).

Lemma 4.9. For each L > 0, there exists a constant C(L) such that∫ T−τ

0

∫ L+1

−L−1
|φ(Tτu

k
R)− φ(uR)|2dxdt ≤ τC(L),
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∫ T−τ

0

∫ L+1

−L−1
|φ(Tτv

k
R)− φ(vR)|2dxdt ≤ τC(L).

Define the family of test functions

F̂T :=
{
ξ ∈ C1(QT ) : ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [−J, J ]× [0, T ]

for some J > 0} .

Now we can establish the existence of a weak solution of the Problem (1.6)

of QT when ε > 0.

Theorem 4.10. Suppose ε > 0. Then for given k > 0, there exists a weak

solution (uk, vk) ∈ (L∞(QT ))2 of (1.6) such that for each J > 0

(i) φ(uk) ∈ L2(0, T ;W 1,2((−J, J))), φ(vk) ∈ L2(0, T ;W 1,2(−J, J));

(ii) (uk, vk) satisfies∫
R
uk0Ψ(x, 0)dx+

∫∫
QT

ukΨtdxdt =

∫∫
QT

φ(uk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,∫
R
vk0Ψ(x, 0)dx+

∫∫
QT

vkΨtdxdt =

∫∫
QT

εφ(vk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,

where Ψ ∈ F̂T .

Proof. Let u0,R, v0,R be as in the formulation of problem (4.2) and note such

that as R → ∞, u0,R → uk0, v0,R → vk0 in C1
loc(R). Then given Rn → ∞, it

follows from the Fréchet-Kolmogorov Theorem, (4.1), Lemma 4.8 and Lemma

4.9, that there exist a subsequence
{
Rnj

}∞
j=1

and functions uk ∈ L∞(QT ),

vk ∈ L∞(QT ) such that

uRnj → uk, vRnj → vk strongly in L2
loc(QT ) and a.e. in QT
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as j →∞. We know that {φ(uRn)} and {φ(vRn)} is bounded in L2(0, T ;W 1,2(−J, J))

by Lemma 4.7, so taking a further subsequence of necessary, we have that as

j →∞

φ(uRnj ) ⇀ φ(uk) in L2(0, T ;W 1,2(−J, J)),

φ(vRnj ) ⇀ φ(vk) in L2(0, T ;W 1,2(−J, J)).

By the Dominated Convergence Theorem we can then easily pass to the limit

in the weak form of (1.6). �

We will use the following comparison principle to prove the uniqueness of

the weak solution of Problem (1.6), this result covers both ε > 0 and ε = 0.

Lemma 4.11. Suppose ε ≥ 0 and let (uk, vk), (uk, vk) be such that

(a) uk, uk ∈ L∞(QT );

(b) φ(uk), φ(uk) ∈ L2(0, T ;W 1,2(R)), ukt , u
k
t , φ(uk)xx, φ(uk)xx ∈ L1(QT );

(c) vk, vk ∈ L∞(QT ), vkt , v
k
t ∈ L1(QT );

(d) If ε > 0, φ(vk), φ(vk) ∈ L2(0, T ;W 1,2(R)), φ(vk)xx, φ(vk)xx ∈ L1(QT );

(uk, vk), (uk, vk) satisfy

ukt ≥ φ(uk)xx − kukvk, ukt ≤ φ(uk)xx − kukvk, in QT ,

vkt ≤ εφ(vk)xx − kukvk, vkt ≥ εφ(vk)xx − kukvk, in QT ,

uk(·, 0) ≥ uk(·, 0), vk(·, 0) ≤ vk(·, 0), on R.

Then

uk ≥ uk, vk ≤ vk in QT .
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Proof. This follows from arguments analogous to those used in the proof of

Lemma 2.15, replacing ψL by ψ̂L and integrals over ST by integrals over QT .

�

We obtain the following two corollaries immediately from Lemma 4.11.

Corollary 4.12. Suppose ε ≥ 0 and k > 0. Then for given initial data

uk0, v
k
0 , there is at most one solution (uk, vk) of (1.6).

Corollary 4.13. Let (uk, vk) be a weak solution of (1.6). Then we have

0 ≤ uk(x, t) ≤ U0 and 0 ≤ vk(x, t) ≤ V0 for (x, t) ∈ QT . (4.5)

4.2 A priori bounds and existence of weak

solutions for ε = 0

Again we begin with some preliminary estimates that will be used to prove the

existence of the weak solution of (1.6) and to study the limit as k →∞, which

are counterparts of results in Section 2.2. Here, some different arguments are

needed because there is no longer a Dirichlet boundary condition at x = 0.

We adapt ideas and cut-off functions from [10, Lemma 2.12] to prove

the following bound of kukvk. Note that here, kukvk is controlled by the uk

equation on R+ and by the vk equation on R−.

Lemma 4.14. There exists a constant C > 0, independent of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.6), we have∫∫
QT

kukvkdxdt ≤ C.
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Proof. Define β1 ∈ C∞ (R) such that 0 ≤ β1(x) ≤ 1 for all x ∈ R,

β1(x) =

 1 x ∈ [0, 1],

0 x ∈ (−∞,−1] ∪ [2,∞).

Then given L ≥ 1, the family of cut-off functions βL ∈ C∞(R) are defined

by

βL(x) =


β1 x < 0,

1 x ∈ [0, L],

β1(x+ 1− L) x ≥ L.

Define β̃L ∈ C∞(R) by β̃L(x) = βL(−x) for all x ∈ R. Note that 0 ≤

βL(x), β̃L(x) ≤ 1 for all x ∈ R and βLx , β
L
xx, β̃

L
x , β̃

L
xx are bounded in both

L∞(R) and L1(R) independently of L.

Multiplying the equation for uk by βL and integrating over R × (0, t0)

where t0 ∈ (0, T ], give∫
R
βLuk(x, t0)dx+ k

∫ t0

0

∫
R
βLukvkdxdt =

∫ t0

0

∫
R
βLxxφ(uk)dxdt+

∫
R
βLuk0(x)dx,

which, by the definition of βL, (4.5) and uk0 is bounded independently of k in

L1(R+), imply that the right-hand side is bounded independently of L and

k, given the existence of C > 0 such that for all k > 0 and t0 ∈ (0, T ]∫ L+1

−1
βLuk(x, t0)dx+ k

∫ t0

0

∫ L+1

−1
βLukvkdxdt ≤ C, (4.6)

and then, letting L→∞ and using Lebesgue’s monotone convergence theo-

rem give

k

∫ T

0

∫ ∞
0

ukvkdxdt ≤ C. (4.7)

Similarly, since {vk0} is bounded independently of k in L1(R−), multiply-

ing the equation for vk by β̃L and integrating over R × (0, t0) yields that C
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can be chosen large enough that for all L and k > 0, we have∫ 1

−∞
β̃Lvk(x, t0)dx+ k

∫ t0

0

∫ 1

−∞
β̃Lukvkdxdt ≤ C, (4.8)

and hence, letting L→∞ yields that

k

∫ T

0

∫ 0

−∞
ukvkdxdt ≤ C. (4.9)

The result then follows from (4.7) and (4.9). �

The following L1-bounds of {uk(·, t)−u∞0 } and {vk(·, t)−v∞0 } are proved

similar to those in the proof of Lemma 2.19.

Lemma 4.15. There exists a constant C > 0 independently of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.6), we have

‖uk(·, t)− u∞0 ‖L1(R) ≤ C and ‖vk(·, t)− v∞0 ‖L1(R) ≤ C. (4.10)

Proof. It first follows immediately from (4.6), (4.8) and Lebesgue’s Mono-

tone Convergence Theorem that there exists C > 0 independently of ε ≥ 0

and k > 0, such that∫ ∞
0

uk(x, t0)dx ≤ C and

∫ 0

−∞
vk(x, t0)dx ≤ C for all t0 ∈ [0, T ].

(4.11)

Now choose a smooth convex function m : R→ R with

m ≥ 0, m(0) = 0, m′(0) = 0, m(r) = |r| − 1

2
for |r| > 1,

and for each α > 0, define the functions

mα(r) := αm
( r
α

)
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which approximate the modulus function as α→ 0, and define û = uk − U0,

ŵ = φ(uk)− φ(U0), then û(x, 0) = uk0 − U0.

Now with β̃L as in Lemma 4.14, multiplying the equation of û bym′α(ŵ)β̃L

and integrating over R× (0, t0), then letting α→ 0 yields∫
R
|û(x, t0)− û(x, 0)|β̃Ldx ≤

∫ t0

0

∫
R
|ŵ|β̃Lxxdxdt− k

∫ t0

0

∫
R

sgn(ŵ)β̃Lukvkdxdt,

then we have∫
R
|uk(x, t0)− U0|β̃Ldx ≤

∫
R
|uk(x, t0)− uk(x, 0)|β̃Ldx+

∫
R
|uk(x, 0)− U0|β̃Ldx

≤
∫
R
|uk(x, 0)− U0|β̃Ldx+

∫ t0

0

∫
R
|ŵ|β̃Lxxdxdt

− k
∫ t0

0

∫
R

sgn(ŵ)β̃Lukvkdxdt.

Now by Lemma 4.14, (4.5) and the fact that ‖uk0 − u∞0 ‖L1(R) is bounded

independently of k, the right-hand side is bounded independently of L and

k. So it follows that there exists C independent of k, such that∫ 0

−∞
|uk(x, t0)− U0|dx ≤ C, for all t0 ∈ (0, T ]. (4.12)

Then define v̂ = vk − V0, ẑ = φ(vk) − φ(V0), taking βL in Lemma 4.14,

multiplying the equation of v̂ by m′α(ẑ)βL and again integrating over R ×

(0, t0) gives, using a similar argument to above, that C can be chosen large

enough that we also have that∫ ∞
0

|vk(x, t0)− V0|dx ≤ C, for all t0 ∈ (0, T ]. (4.13)

The result follows from (4.12), (4.13) and (4.11). �

By using the Mean Value Theorem and (4.5), we obtain the following

corollary.
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Corollary 4.16. There exists a constant C > 0 independently of ε ≥ 0 and

k > 0, such that for any solution (uk, vk) of (1.6), we have

‖φ(uk)(·, t0)− φ(u∞0 )‖L1(R) ≤ C and ‖φ(vk)(·, t0)− φ(v∞0 )‖L1(R) ≤ C,

(4.14)

for all t0 ∈ [0, T ].

Next, we prove the whole-line analogue of Lemma 2.21.

Lemma 4.17. Suppose that ε 0. Then there exists C > 0, independent of

ε > 0 and k > 0, such that for any solution (uk, vk) of (1.6),∫∫
QT

|φ(uk)x|2dxdt ≤ C, and ε

∫∫
QT

|φ(vk)x|2dxdt ≤ C. (4.15)

Proof. Let ψ̂L be as in the proof of Lemma 4.6. Then multiplication of the

equation for uk by φ(uk)ψ̂L and integration over QT gives

∫∫
QT

φ(uk)ψ̂Lukt dxdt =−
∫∫

QT

|φ(uk)x|2ψ̂Ldxdt+
1

2

∫∫
QT

|φ(uk)|2ψ̂Lxxdxdt

− k
∫∫

QT

φ(uk)ψ̂Lukvkdxdt,

Now let F =

∫ uk

0

φ(s)ds, then we have∫∫
QT

|φ(uk)x|2ψ̂Ldxdt ≤
∫
R

∣∣F (x, T )− F (x, 0)
∣∣ψ̂Ldx+

1

2

∫∫
QT

|φ(uk)|2ψ̂Lxxdxdt

− k
∫∫

QT

φ(uk)ψ̂Lukvkdxdt.

By using (4.5), we know that∫
R
|F (x, T )− F (x, 0)|ψ̂Ldx ≤ φ(U0)(‖uk(·, T )− u∞0 ‖L1(R) + ‖u∞0 − uk0‖L1(R)),

(4.16)
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which is bounded by Lemma 4.15. Combining with Lemma 4.14, using

Lebesgue’s Monotone Convergence Theorem and letting L → ∞ implies

that there exists a constant C > 0 such that∫∫
QT

|φ(uk)x|2dxdt ≤ C,

independently of k. If ε > 0, the estimate for vkx can be proved likewise,

using the equation for vk. �

Recall the notion for space and time translates introduced in (2.23). We

now prove the estimates for the differences of space and time translates of

solutions which will yield sufficient compactness to obtain the existence of

solutions of (1.6) when ε = 0 and to study the k →∞ limit.

Lemma 4.18. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.6) satisfying

(4.5). Then there exists a function K ≥ 0 independent of ε ≥ 0 and k > 0

such that K(δ)→ 0 as |δ| → 0, and for t ∈ (0, T ],∫
R

∣∣φ(uk)− φ(Sδu
k)
∣∣+
∣∣φ(vk)− φ(Sδv

k)
∣∣ dx ≤ K(δ).

Proof. Let u, v, w, z be as defined in (2.36), u0 := uk0 − Sδu
k
0 and v0 :=

vk0 −Sδvk0 . Let L, α > 0, ψ̂L be the cut-off functions defined before in Lemma

4.6, and let mα be as defined in the proof of Lemma 4.15. Then multiplying

the equation for u by ψ̂Lm′α(w) and integrating over R × (0, t0), t0 ∈ (0, T ],

gives∫ t0

0

∫
R
m′α(w)ψ̂Lutdxdt ≤

∫ t0

0

∫
R
mα(w)

(
ψ̂L
)
xx

dxdt

− k
∫ t0

0

∫
R
m′α(w)ψ̂L

(
ukvk − SδukSδvk

)
dxdt,
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letting α→ 0 and by [14, Lemma 7.6] which says (2.7), we have∫
R
ψ̂L|u(x, t0)− u0|dx ≤

∫ t0

0

∫
R
|w|
(
ψ̂L
)
xx

dxdt

− k
∫ t0

0

∫
R
ψ̂Lsgn(w)

(
ukvk − SδukSδvk

)
dxdt,

then we have∫
R
ψ̂L|u(x, t0)|dx ≤

∫
R
ψ̂L|u(x, t0)− u0|dx+

∫
R
ψ̂L|u0|dx

≤
∫
R
ψ̂L|u0|dx+

∫ t0

0

∫
R
|w|
(
ψ̂L
)
xx

dxdt

− k
∫ t0

0

∫
R
ψ̂Lsgn(w)

(
ukvk − SδukSδvk

)
dxdt, (4.17)

and similarly∫
R
ψ̂L|v(x, t0)|dx ≤

∫
R
ψ̂L|v0|dx+

∫ t0

0

∫
R
|z|
(
ψ̂L
)
xx

dxdt

− k
∫ t0

0

∫
R
ψ̂Lsgn(z)

(
ukvk − SξukSξvk

)
dxdt. (4.18)

Adding (4.17) and (4.18) then gives∫
R
ψ̂L (|u(x, t0)|+ |v(x, t0)|) dx

≤
∫
R
ψ̂L (|u0|+ |v0|) dx+

∫ t0

0

∫
R
(|w|+ |z|)

(
ψ̂L
)
xx

dxdt

− k
∫ t0

0

∫
R
ψ̂L[sgn(w) + sgn(z)]

(
ukvk − SδukSδvk

)
dxdt.

Letting L→∞, the fact that

[sgn(w) + sgn(z)]
(
ukvk − SδukSδvk

)
> 0

together with (4.5) give that for each t0 ∈ (0, T ),
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∫
R
|uk(x, t0)− uk(x+ δ, t0)|+ |vk(x, t0)− vk(x+ δ, t0)|dx

≤
∫
R
|uk0(x)− uk0(x+ δ)|+ |vk0(x)− vk0(x+ δ)|dx.

The existence of K is then immediate from the assumption that

‖uk0(·+ δ)− uk0(·)‖L1(R) + ‖vk0(·+ δ)− vk0(·)‖L1(R) ≤ ω(δ)

where ω(δ)→ 0 as δ → 0. �

The follows from arguments analogous to those used in the proof of Lem-

ma 2.23, replacing ψL by ψ̂L and integrals over R+ by integrals over R.

Lemma 4.19. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.6) satisfying

(4.5). Then there exists C > 0, independent of ε and k, such that for any

τ ∈ (0, T ), ∫ T−τ

0

∫
R
|φ(Tτu

k)− φ(uk)|2dxdt ≤ τC,∫ T−τ

0

∫
R
|φ(Tτv

k)− φ(vk)|2dxdt ≤ τC.

We can now prove a convergence result for solution (uk, vk) of (1.6) as

ε→ 0.

Lemma 4.20. Let k > 0 be fixed and (ukε , v
k
ε ) be solution of (1.6) satisfying

(4.5) with ε > 0. Then there exist (uk?, v
k
?) ∈ (L∞(QT ))2 such that up to a

subsequence, for each J > 0

φ(ukε)→ φ(uk?) in L2((0, J)× (0, T )),

ukε → uk? a.e. in (0, J)× (0, T ),
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φ(vkε )→ φ(vk?) in L2((0, J)× (0, T )),

vkε → vk? a.e. in (0, J)× (0, T ),

φ(ukε)− φ(ũ) ⇀ φ(uk?)− φ(ũ) in L2
(
0, T ;W 1,2(R)

)
,

as ε → 0, where ũ ∈ C∞(R) is a smooth function such that ũ = u∞0 for all

|x| > 1.

Proof. It follows from Corollary 4.13 and 4.16 that {φ(ukε) − φ(u∞0 )} and

{φ(vkε )−φ(v∞0 )} are bounded independently of ε ≥ 0 in L2(QT ). By Lemma

4.18 and Lemma 4.19, using the Riesz-Fréchet-Kolmogorov Theorem [3, The-

orem 4.26], yields that the sets
{
φ(vkε )− φ(v∞0 )

}
ε>0

and
{
φ(ukε)− φ(u∞0 )

}
ε>0

are each relatively compact in L2 ((−J, J)× (0, T )) for each J > 0. The weak

convergence of φ(ukε) − φ(û) in L2 (0, T ;W 1,2(R)) follows from the fact that

φ(ukε)−φ(u∞0 ) is bounded independently of ε ≥ 0 in L2(QT ) together with the

proof of Lemma 4.17. Then we know that φ(ukε)→ φ(uk?) and φ(vkε )→ φ(vk?)

almost everywhere in (−J, J)×(0, T ), so since φ−1 is continuous, then we have

ukε → φ−1(φ(uk?)) and vkε → φ−1(φ(vk?)) almost everywhere in (−J, J)×(0, T ).

�

Lemma 4.20 and Corollary 4.3 enable the following result to be established

using arguments similar to those that yield Theorem 2.26. We omit details

of the proof. Recall

F̂T :=
{
ξ ∈ C1(QT ) : ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [−J, J ]× [0, T ]

for some J > 0} .

Theorem 4.21. Let ε = 0 and k > 0. Then Problem (1.6) has a unique

weak solution (uk, vk) ∈ (L∞(QT ))2 such that

(i) φ(uk) ∈ L2(0, T ;W 1,2((−J, J)));

127



(ii) (uk, vk) satisfies∫
R
uk0Ψ(x, 0)dx+

∫∫
QT

ukΨtdxdt =

∫∫
QT

φ(uk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,∫
R
vk0Ψ(x, 0)dx+

∫∫
QT

vkΨtdxdt = k

∫∫
QT

Ψukvkdxdt,

for all Ψ ∈ F̂T .

4.3 The limit problem for (1.6) as k →∞

The next result follows directly from arguments similar to those used in

Section 2.3, exploiting the whole-line estimates established in Section 4.2.

Lemma 4.22. Let ε ≥ 0 be fixed and (uk, vk) be solutions of (1.4) satisfying

(4.5) with k > 0. Then there exists (u, v) ∈ (L∞(QT ))2 such that up to a

subsequence, for each J > 0

φ(uk)→ φ(u) in L2((−J, J)× (0, T )),

uk → u a.e. in (−J, J)× (0, T ),

φ(vk)→ φ(v) in L2((−J, J)× (0, T )),

vk → v a.e. in (−J, J)× (0, T ),

φ(uk)− φ(ũ) ⇀ φ(u)− φ(ũ) in L2
(
0, T ;W 1,2(R)

)
,

and for ε > 0

φ(vk)− φ(ṽ) ⇀ φ(v)− φ(ṽ) in L2
(
0, T ;W 1,2(R)

)
,

as k →∞, where ũ, ṽ ∈ C∞(R) are smooth functions such that ũ = u∞0 , ṽ =

v∞0 for all |x| > 1. Moreover

uv = 0 a.e. in QT . (4.19)
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Taking wk and w as

wk := uk − vk, w := u− v, (4.20)

we clearly again have that as a sequence kn → ∞, wkn → w in L2(QT ) and

almost everywhere in QT , and that

u = w+, v = w−.

The following result focus on the function u − v, which is useful on the

derivation of the limit problem.

Lemma 4.23. Let ε ≥ 0 and (u, v) be as in Lemma 4.22. Then∫∫
QT

(u− v)Ψtdxdt+

∫
R
(u∞0 − v∞0 )Ψ(x, 0)dx =

∫∫
QT

[φ(u)x − εφ(v)x] Ψxdxdt,

for all Ψ ∈ F̂T .

Proof. Multiplying the difference between the equations for uk and vk by

Ψ ∈ F̂T and integrating over QT gives

−
∫∫

QT

(uk − vk)Ψtdxdt−
∫
R
(uk0 − vk0)Ψ(x, 0)dx =

∫∫
QT

[
φ(uk)x − εφ(vk)x

]
Ψxdxdt,

the result follows using Lemma 4.22 and the fact that uk0 → u∞0 and vk0 → v∞0

as k →∞. �

Now recall the definition of D from (2.51) and define the limit problem
wt = D(w)xx, in QT ,

w(x, 0) = w0(x) :=

 U0, if x < 0,

−V0, if x > 0.

(4.21)

Definition 4.24. A function w is a weak solution of problem (4.21) if
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(i) w ∈ L∞(QT ),

(ii) D(w) ∈ D(ŵ) + L2(0, T ;W 1,2(R)), where ŵ ∈ C∞(R) is a smooth

function with ŵ = U0 when x < −1 and ŵ = −V0 when x > 1,

(iii) w satisfies for all T > 0∫
R
w0Ψ(x, 0)dx+

∫∫
QT

wΨtdxdt =

∫∫
QT

D(w)xΨxdxdt, (4.22)

for all Ψ ∈ F̂T .

Theorem 4.25. The function w defined in (4.20) is a weak solution of

problem (4.21) and the whole sequence (uk, vk) in Lemma 4.22 converges

to (w+,−w−).

Proof. The existence of a weak solution is a straight forward consequence of

Definition 4.24 and Lemma 4.23. The fact that the whole sequence (uk, vk)

converges to (w+,−w−) follows from the uniqueness result proved in Theo-

rem 4.26 below. �

Next, we prove the uniqueness of the weak solution of problem (4.21) for

both ε > 0 and ε = 0.

The following theorem can be proved by using the similar arguments to

those in the proof of Theorem 2.32.

Theorem 4.26. Let ε > 0, then there exist a unique weak solution w of the

limit problem (4.21).

Note that the proof of Theorem 4.26 does not apply in the case ε = 0, since

D(w1)−D(w2) = 0 for w1, w2 < 0. We therefore need an alternative method

to prove the uniqueness of weak solution. The next follows from arguments

analogous to those used in Theorem 2.33, replacing spatial domain R+ by R.
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Theorem 4.27. Let ε ≥ 0 and consider two solutions w, w̃ of problem (4.21)

with initial data w0, w̃0 respectively, then∫∫
QT

|w − w̃|dxdt ≤ C(T )

∫
R
|w0 − w̃0|dx, (4.23)

and there exists at most one solution of problem (4.21) for given initial func-

tion w0.

By Theorem 4.25, Theorem 4.26 and Theorem 4.27, we obtain the fol-

lowing.

Theorem 4.28. Let ε ≥ 0, then there exists a unique solution w of the limit

problem (4.21).

Next, we will prove that (4.21) has a self-similar solution, which is the

unique solution, since we proved the uniqueness of the weak solution of (4.21)

in Theorem 4.28. As in the half-line case, we can identify the limit w as a

certain self-similar solution both when ε > 0 and when ε = 0. We first state

the analogue of Corollary 3.2.

Proposition 4.1. Let w be the unique weak solution of problem (4.21). Sup-

pose that there exists a function β : [0, T ]→ R such that for each t ∈ [0, T ]

w(x, t) > 0 if x < β(t) and w(x, t) < 0 if x > β(t).

Then if t 7→ β(t) is sufficiently smooth and the functions u := w+ and

v := w− are smooth up to β(t), the function u, v satisfy one of two limit
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problems, depending on whether ε > 0 or ε = 0. If ε > 0, then

ut = φ(u)xx, in {(x, t) ∈ QT : x < β(t)} ,

v = 0, in {(x, t) ∈ QT : x < β(t)} ,

vt = εφ(v)xx, in {(x, t) ∈ QT : x > β(t)} ,

u = 0, in {(x, t) ∈ QT : x > β(t)} ,

lim
x↗β(t)

u(x, t) = 0 = lim
x↘β(t)

v(x, t) for each t ∈ [0, T ],

lim
x↗β(t)

φ[u(x, t)]x = −ε lim
x↘β(t)

φ[v(x, t)]x for each t ∈ [0, T ],

u(·, 0) = u∞0 , in R

v(·, 0) = v∞0 , in R,

(4.24)

whereas if ε = 0 and we suppose additionally that β(0) = 0 and t 7→ β(t) is

a non-decreasing function, then

ut = φ(u)xx, in {(x, t) ∈ QT : x < β(t)} ,

v = 0, in {(x, t) ∈ QT : x < β(t)} ,

v = V0, in {(x, t) ∈ QT : x > β(t)} ,

u = 0, in {(x, t) ∈ QT : x > β(t)} ,

lim
x↗β(t)

u(x, t) = 0 for each t ∈ [0, T ],

V0β
′(t) = − lim

x↗β(t)
φ[u(x, t)]x for each t ∈ [0, T ],

u(·, 0) = u∞0 , in R

v(·, 0) = v∞0 , in R,

(4.25)

where β′(t) denotes the speed of propagation of the free boundary β(t) and we

suppose that β(0) = 0 and t 7→ β(t) is a non-decreasing function.
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4.4 Self-similar solutions for the limit prob-

lems

In this section, we will prove that if we have a self-similar solution of (4.29),

then it is a weak solution of (4.21).

The following results will be used to prove that if there is a self-similar

solution, then it is a weak solution of (4.21) and will be useful later in Chapter

5.

Lemma 4.29. If f satisfies (4.32) and boundary condition (4.33), (4.34),

then for η < min{a, 0} we have

φ(U0)− φ(f(η)) ≤ G

∫ η

−∞
e
−s2

4φ′(U0) ds, (4.26)

where

G =

−φ
′(f(0))f ′(0), if a > 0,

γ, if a ≤ 0.

Proof. Denote N = φ′(U0), we have φ′(f(η)) ≤ N . Then we get directly

from the equation of η for η < 0 that

− η

2N
[φ(f(η))]′ ≥ [φ(f(η))]′′,

then multiplying by e
η2

4N we get{
e
η2

4N [φ(f(η))]′
}′
≤ 0, (4.27)

for η < 0 < a, integrating from η to 0 yields

[φ(f(η))]′ ≥ Ce
−η2
4N ,
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where C = φ′(f(0))f ′(0) < 0. Integrating again from −∞ to η we get

φ(U0)− φ(f(η)) ≤ −C
∫ η

−∞
e
−s2
4N ds.

Similarly, for η < a ≤ 0, integrating (4.27) from η to a yields

[φ(f(η))]′ ≥ γe
−η2
4N .

Integrating again from −∞ to η we get

φ(U0)− φ(f(η)) ≤ γ

∫ η

−∞
e
−s2
4N ds.

�

We can get similar estimates to those in Lemma 4.29 for comparison

of φ(f) to φ(V0) as η → ∞ together with Lemma 3.8. Then we have the

following corollary.

Corollary 4.30. If f satisfies (5.2), then f converges to U0,−V0 exponen-

tially as η tends to −∞,∞.

Proof. We know from Lemma 4.29 that, for η < 0

φ′(s)
(
U0 − f(η)

)
≤ G

∫ η

−∞
e
−s2

4φ′(U0) ds, (4.28)

for some η such that f(η) < s < U0. Since f(η) → U0 as η → −∞, there

exists a η0 < −1 such that f(η) > U0

2
as η < η0. Then we have if η < η0,

φ′(s) > φ′(U0

2
), because U0

2
< η < U0. It follows from (4.28) that for η < η0

U0 − f(η) ≤ G

φ′(U0

2
)

∫ η

−∞
e
−s2

4φ′(U0) ds ≤ Ke
η

4φ′(U0) ,

where K = 4Gφ′(U0)

φ′(
U0
2
)

.

The proof for f converges to −V0 exponentially as η →∞ can be proved

similarly. �
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Theorem 4.31. The unique weak solution w of problem (4.21) with ε > 0

has a self-similar form. There exists a function f : R 7→ R and a constant

a ∈ R such that

w(x, t) = f(
x√
t
), (x, t) ∈ QT and β(t) = a

√
t, t ∈ [0, T ].

Denote η =
x√
t
, f satisfies the system



− 1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, if η < a,

− 1

2
ηf ′(η) = [εφ′(−f(η))f ′(η)]′, if η > a,

lim
η→−∞

f(η) = U0, lim
η→∞

f(η) = −V0,

lim
η↗a

f(η) = 0 = − lim
η↘a

f(η),

lim
η↗a

φ′(f(η))f ′(η) = ε lim
η↘a

φ′(−f(η))f ′(η).

(4.29)

where a prime denotes differentiation with respect to η.

Proof. The proof is similar to the half-line case, Theorem 3.3, together

with Corollary 4.30. The existence of solution of Problem (4.29) is proved in

Theorem 4.50. �

Theorem 4.32. The unique weak solution w of problem (4.21) with ε = 0

has a self-similar form. There exists a function f : R 7→ R and a constant

a ∈ R+ such that

w(x, t) = f(
x√
t
), (x, t) ∈ QT and β(t) = a

√
t, t ∈ [0, T ].
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Denote η =
x√
t
, f satisfies the system



− 1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, if η < a,

f(η) = −V0, if η > a,

lim
η→−∞

f(η) = U0,

lim
η↗a

f(η) = 0,

lim
η↗a

φ′(f(η))f ′(η) = −aV0
2
,

(4.30)

where a prime denotes differentiation with respect to η.

We now study the existence of a solution f that satisfies (4.29). Similar

to the half-line problem, we split the proof into two parts: η < a where

f(η) > 0, and η > a where f(η) < 0. We will also discuss the existence and

properties of lim
η→−∞

f(η) and lim
η→∞

f(η). The main difference with the half-line

case is that now we need to consider η ∈ R and investigate the case when

a ≤ 0 in addition to a > 0.

We start with some preliminary results that will be used later. The

monotonicity of f follows from arguments analogous to those in the proof of

Lemma 3.4.

Lemma 4.33. Suppose ε > 0. If f satisfies (4.29), then f ′(η) < 0 for all

η 6= a.

Now we prove γ is strictly positive when ε > 0. Recall that when ε > 0

γ = − lim
η↘a

φ′(f(η))f ′(η) = − lim
η↗a

φ′(−f(η))f ′(η).

Lemma 4.34. Suppose ε > 0. Let f be a solution of (4.29), then γ > 0.

Proof. Suppose γ ≤ 0, we consider in two cases, a ≥ 0 and a ≤ 0. When

a ≥ 0, the proof is the same to the proof of Lemma 3.5.
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Now we let a ≤ 0. Integrating the equation for η < a in (4.29) from η to

a yields

−1

2

∫ a

η

sf ′(s)ds = −φ′(f(η))f ′(η)− γ. (4.31)

The left-hand side of (4.31) is negative since η < 0 and f ′(η) < 0 by Lemma

4.33 whereas the right-hand side of (4.31) is positive if γ ≤ 0 since f ′(η) < 0.

Therefore, it follows by contradiction that γ > 0. �

The following lemma proves the analogous result for γ when ε = 0. Recall

that in this case, γ = lim
η↘a

φ′(f(η))f ′(η) =
aV0
2

.

Lemma 4.35. Suppose ε = 0 and let f be a solution of (4.30). Then a, γ > 0.

Proof. We know from the proof of Lemma 4.34 that γ > 0 when a ≤ 0, since

the proof when a ≤ 0 only involved the equation (4.31) for η < a. However,

when ε = 0, the fact that γ = aV0
2
> 0 contracts a ≤ 0. In conclusion, if f

satisfies (4.30) when ε = 0, both a and γ are positive. �

4.5 Self-similar solutions with ε > 0

4.5.1 f > 0 case for η < a

First we consider f that satisfies the equation

−1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, η < a. (4.32)

At the boundaries we require

lim
η→−∞

f(η) = U0, (4.33)
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lim
η↗a

f(η) = 0, lim
η↗a

φ′(f(η))f ′(η) = −γ, (4.34)

where a and γ > 0 are constant.

In fact, we can get some results when a < 0 from the half-line problem

by a change of variables. We define

−g(−η) := f(η), (4.35)

denote â = −a and η̂ = −η, we get

−1

2
η̂g′(η̂) = [φ′(−g(η̂))g′(η̂)]′.

From the previous results in half-line case, we know immediately that:

the solution f exists is unique locally in a left-neighbourhood (a− δ, a) of a

when a > 0, and it is monotonically decreasing. By the change of variables

(4.35), we know from Lemma 3.21 and 3.22 that solution f exists is unique

locally in a left-neighbourhood (a− δ, a) of a when a < 0.

We therefore have the following lemma, for which it remains to prove the

local existence and uniqueness of the solution f when a = 0.

Lemma 4.36. For given a ∈ R and γ > 0, there exists δ > 0 such that in

(a− δ, a) equation (3.40) has a unique solution which is positive and satisfies

the boundary condition (4.34).

Proof. The proof for a = 0 is similar to the proof of Lemma 3.14 and 3.16.

If a = 0, integrating (4.32) from η to a yields

1

f ′(η)
=

2φ′(f(η))∫ f
0
sf ′(s)ds+ 2γ

. (4.36)

We now treat η as a function of f , writing η = σ(f), then (4.36) takes the

form

dσ

df
=

2φ′(f(η))∫ f
0
σ(s)ds+ 2γ

.
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Integrating from 0 to fgives

σ(f) = −2

∫ f

0

φ′(θ)∫ θ
0
σ(s)ds+ 2γ

dθ, (4.37)

and if we set

τ(f) = −σ(f) = −η,

then (4.37) becomes

τ(f) = 2

∫ f

0

φ′(θ)

−
∫ θ
0
τ(s)ds+ 2γ

dθ. (4.38)

Now we denote by X the set of continuous functions τ(f) on [0, µ], satisfying

0 ≤ τ(f) ≤ 1
2
, and ‖ · ‖ the supremum norm on X. Then X is a complete

metric space. Choose µ small enough that µ < 2γ, on X we introduce the

map

M(τ)(f) = 2

∫ f

0

φ′(θ)

−
∫ θ
0
τ(s)ds+ 2γ

dθ ≤ 2

∫ µ

0

φ′(θ)

γ
dθ.

It is clear that M(τ)(f) is well-defined, non-negative and continuous. More-

over, M(τ)(f) ≤ 1
2

if ∫ µ

0

φ′(θ)

γ
dθ ≤ 1

4
. (4.39)

Therefore, if µ is chosen small enough that (4.39) is satisfied, M maps X

into itself.

We wish to ensure that M is a contraction map, so let τ1, τ2 ∈ X, we

have for chosen µ < 2γ
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‖M(τ1)−M(τ2)‖ ≤2

∫ f

0

φ′(θ)
∫ θ
0
|τ1(s)− τ2(s)|ds

[−
∫ θ
0
τ1(s)ds+ 2γ][−

∫ θ
0
τ2(s)ds+ 2γ]

dθ

≤2

∫ µ

0

φ′(θ)θ

γ2
dθ‖τ1 − τ2‖

≤4

∫ µ

0

φ′(θ)

γ
dθ‖τ1 − τ2‖,

and it follows that M is a contraction map if

4

∫ µ

0

φ′(θ)

γ
dθ < 1.

This constitutes our third restriction on µ, which implies the first one (4.39).

The result follows from a contraction mapping principle [12]. �

We know that if a > 0, the local solution in Lemma 4.36 can be continued

back to η = 0 from Lemma 3.16 in the half-line case. The following bound for

f ′(0) ensures f can be continued back a little bit from 0 by Picard’s theorem

and the fact that f(0) > 0.

Lemma 4.37. If a > 0, f satisfies (4.32) and the boundary conditions (4.33)

(4.34), then

−f ′(0) ≤ af(0) + 2γ

2φ′(f(0))
. (4.40)

Proof. Integrating (4.32) from η to a we get

a

2
f(η) ≥ −γ − φ′(f(η))f ′(η), (4.41)

Now let η = 0 we have

−f ′(0) ≤ af(0) + 2γ

2φ′(f(0))
.
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In order to show that the unique local solution in Lemma 4.36 can be

continued back to η = −∞ by the Global Picard Theorem, we will prove

some estimates for −f ′ and f .

The following lemma proves the boundedness for f in three cases: a > 0,

a = 0 and a < 0.

Lemma 4.38. If f satisfies (4.32) and the boundary conditions (4.33) and

(4.34), then we have for fixed a, γ, there exists K > 0 such that 0 < f(η) < K

for all η < a.

Proof. Case 1. For a > 0, first we consider η ∈ [0, a), from (4.41) we

know that

−φ′(f(η))f ′(η)
2γ
a

+ f(η)
≤ a

2
, (4.42)

integrating (4.42) from 0 to η gives∫ f(0)

0

φ′(s)
2γ
a

+ f(s)
ds ≤ a2

2
,

then f(η) ≤ f(0) is bounded for 0 ≤ η < a, since f is monotonic decreasing

in η.

Next we consider η ∈ [−2ρ, 0) for some positive ρ. Integrating (4.32) from

η to 0 we have

φ′(f(0))f ′(0)− φ′(f(η))f ′(η) ≤ 0, (4.43)

then integrating (4.43) yields

φ(f(η)) ≤ φ(f(0)) + 2ρφ′(f(0))f ′(0).
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Then for η < −ρ, integrating (4.32) from η to −ρ we get

ρ

2

∫ −ρ
η

f ′(s)ds ≥ φ′(f(−ρ))f ′(−ρ)− φ′(f(η))f ′(η),

so since f ′ < 0, we have

ρ

2
f(η)− φ′(f(η))f ′(η) ≤ ρ

2
f(−ρ)− φ′(f(−ρ))f ′(−ρ),

therefore f(η) ≤ K for fixed a, γ and all η < a.

Case 2. For a = 0, the same proof can be used as in a > 0 case, with

φ(f(η)) ≤ 2ργ for η ∈ [−2ρ, a).

Case 3. For a < 0, if η ∈ [−2ρ, a), integrating (4.32) from η to a we have

−(φ(f(η)))′ < γ, (4.44)

then integrating (4.44) from η to a gives

φ(f(η)) ≤ (a+ 2ρ)γ.

For η < −ρ the proof is the same as a > 0. �

Next, we prove the boundedness for −f ′ in three cases: a > 0, a = 0 and

a < 0.

Lemma 4.39. If f satisfies (4.32) and the boundary conditions (4.33) (4.34),

then for fixed a, γ, there exists K̂ such that 0 < −φ′(f(η))f ′(η) < K̂ for all

η < a.

Proof. For all a ∈ R, first consider η ∈ [−2ρ, a) for some ρ > 0. Integrating

(4.32) from η to a we have that −φ′(f(η))f ′(η) ≤ γ + K(a + ρ), where K

is positive constant that f(η) ≤ K, by Lemma 4.38. Then for η ≤ −2ρ, we

know that −φ′(f(η))f ′(η) ≤ −φ′(f(−2ρ))f ′(−2ρ) ≤ K̂ for fixed a, γ. �
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The following lemma follows from by Lemma 4.38, Lemma 4.39 together

with [6, Theorem 1.186].

Lemma 4.40. For given a, γ, the unique local solution in Lemma 4.36 can

be continued back to η = −∞.

Now define

b(a, γ) := lim
η→−∞

f(η; a, γ),

where γ := − lim
η↗a

φ′(f(η))f ′(η) with γ > 0. Note that we use the same

notation b(a, γ) as in the half-line case, but here b(a, γ) define as the function

of f(η; a, γ) as η → −∞ rather than η → 0.

We can obtain from Corollary 3.20, Lemma 3.26 and the change of vari-

ables (4.35) that f is a continuous function of a and γ.

Lemma 4.41. For each fixed η∗ < a, if f satisfies (4.32) and (4.34), then

(i) f(η∗; a, γ) is a continuous function of γ for fixed a;

(ii) f(η∗; a, γ) is a continuous function of a for fixed γ.

The following corollary follows from directly from Lemma 4.41 as η → −∞.

Corollary 4.42. If f satisfies (4.32) and (4.34), then

(i) b(a, γ) is a continuous function of γ for fixed a;

(ii) b(a, γ) is a continuous function of a for fixed γ.

Next we discuss the properties of b(a, γ). When we study the proper-

ties of b(a, γ) = lim
η→−∞

f(η; a, γ), we can see the properties of dR+(a, γ) =

lim
η→∞

fR+(η; a, γ) in half-line case.
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We obtain the following from Lemma 3.7 by the change of variable (4.35).

Lemma 4.43. If f satisfies (4.32) and the boundary conditions (4.33) and

(4.34), then we have the derivative of f vanishes as η → −∞

lim
η→−∞

f ′(η) = 0.

Lemma 4.44. b(a, γ) has the following properties with fixed γ:

(i) b(a, γ) is strictly monotonically increasing of a;

(ii) lim
a→−∞

b(a, γ) = 0;

(iii) lim
a→∞

b(a, γ) =∞.

Proof. The proof for (i),(iv) is the same with Lemma 3.18.

(ii) Consider a < 0, integrating (4.32) from η to a we get

−φ′(f(η))f ′(η) ≤ γ − a

2

∫ a

η

f ′(s)ds =
a

2

(
2γ

a
+ f(η)

)
,

then the result follows from the fact that f ′ < 0, gives 2γ
a

+ f < 0. �

The following lemma follows from the same argument as in the proof of

Lemma 3.17 (ii).

Lemma 4.45. b(a, γ) has the following properties with fixed a:

(i) b(a, γ) is strictly monotonically increasing in γ;

(ii) lim
γ→∞

b(a, γ) =∞;

(iii) lim
γ→0

b(a, γ) = 0.
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Lemma 4.46. b(a, γ) is a continuous function of γ and a.

Proof. The continuity result for a < 0 follows from Lemma 3.28 by the

change of variable (4.35). Now consider a ≥ 0, if b(a, γ) is continuous with a

and γ, then for all δ > 0 there exists µ > 0 such that if |(a, γ)− (a0, γ0)| < µ

then |b(a, γ)− b(a0, γ0)| < δ.

Case 1. For a < a0 and γ < γ0, we choose a fixed η0 such that |f(η0; a, γ0)−

b(a, γ0)| < δ
2
. We know there exists µ such that |f(η0; a, γ)−f(η0; a, γ0)| < δ

2

for |(a, γ)− (a, γ0)| < µ
2

by Lemma 4.41. Then

|f(η0; a, γ)− b(a0, γ0)|

≤|f(η0; a, γ)− f(η0; a, γ0)|+ |f(η0; a, γ0)− b(a0, γ0)| <
δ

2
+
δ

2
= δ.

Since the sequence a < a0 and γ < γ0, then we have

b(a0, γ0) > b(a, γ) > f(η0; a, γ) > b(a0, γ0)− δ,

then b(a0, γ0)− b(a, γ) < δ as |(a0, γ0)− (a, γ)| < µ.

Case 2. For a > a0, consider

|b(a, γ)− b(a0, γ0)| ≤ |b(a, γ)− b(a0, γ)|+ |b(a0, γ)− b(a0, γ0)|.

Given δ > 0, there exist µ > 0 such that |b(a0, γ)−b(a0, γ0)| < δ
2

if |γ−γ0| < µ

by Lemma 4.45 (ii) b(a, γ) is continuous of γ for fixed a.

Now consider |b(a, γ)−b(a0, γ)|, we want to prove that b(a, γ) is a contin-

uous function of a uniformly with γ ∈ [γ0 − µ, γ0 + µ] for µ > 0. We denote

f(η; a, γ) = f and f(η; a0, γ) = f0. We know from above that

b(a, γ)− b(a0, γ) < f(−ρ)− f0(−ρ)− 2

ρ
φ′(f(−ρ))f ′(−ρ)− 2

a0
φ′(f0(−ρ))f ′0(−ρ).
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We know that f ′(−ρ) is bounded, choosing ρ such that −2
ρ
φ′(f(−ρ))f ′(−ρ)−

2
a0
φ′(f0(−ρ))f ′0(−ρ) < δ̂

2
. With this ρ there exists µ > 0 that |a− a0| < µ

f(−ρ)− f0(−ρ) <
δ̂

2
,

then |b(a, γ) − b(a0, γ)| < δ̂ with γ ∈ [γ0 − µ, γ0 + µ]. For given δ = 2δ̂, we

get the result.

Case 3. For γ0 < γ, consider

|b(a, γ)− b(a0, γ0)| ≤ |b(a, γ)− b(a, γ0)|+ |b(a, γ0)− b(a0, γ0)|.

Given δ > 0, there exist µ > 0 such that |b(a, γ0)−b(a0, γ0)| < δ
2

if |a−a0| < µ

by Lemma 4.44 (iii) b(a, γ) is continuous of a for fixed γ.

Now consider |b(a, γ)− b(a, γ0)|, we want to prove that b(a, γ) is a contin-

uous function of γ uniformly with a ∈ [a0 − µ, a0 + µ] for µ > 0. We denote

f(η; a, γ) = f and f(η; a, γ0) = f0. We know that

b(a, γ)− b(a0, γ) <f(−ρ)− f0(−ρ)− 2

ρ
φ′(f(−ρ))f ′(−ρ)

− 2

a0
φ′(f0(−ρ))f ′0(−ρ).

We know that f ′(−ρ) is bounded, choosing ρ such that −2
ρ
φ′(f(−ρ))f ′(−ρ)−

2
a0
φ′(f0(−ρ))f ′0(−ρ) < δ̂

2
. With this ρ there exists µ > 0 that |γ − γ0| < µ

f(−ρ)− f0(−ρ) <
δ̂

2
,

then |b(a, γ) − b(a, γ0)| < δ̂ with γ ∈ [a0 − µ, a0 + µ]. For given δ = 2δ̂, we

get the result. �
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4.5.2 f < 0 case for η > a

Now we consider f satisfying the equation

−1

2
ηf ′(η) = [εφ′(−f(η))f ′(η)]′, η > a. (4.45)

At the boundaries we require

lim
η→∞

f(η) = V0, (4.46)

lim
η↘a

f(η) = 0, lim
η↘a

εφ′(−f(η))f ′(η) = −γ, (4.47)

where a and γ > 0 are constants.

Following from what we studied on the positive solution, we can directly

obtain the local existence, uniqueness results and continuity forward to η =

∞ of the solution f by the change of variables (4.35). As for η < a, we

know that f is a monotonically decreasing function. Moreover, we know

from Lemma 3.7 directly that lim
η→∞

f ′(η) = 0. Similarly, if we define

d(a, γ) := lim
η→∞

f(η; a, γ),

the following properties of d(a, γ) are obtained immediately using the change

of variables (4.35).

Lemma 4.47. d(a, γ) has the following properties with fixed γ:

(i) d(a, γ) is strictly monotonically increasing in a;

(ii) lim
a→∞

d(a, γ) = 0;

(iii) d(a, γ) is a continuous function in a ;

(iv) lim
a→−∞

d(a, γ) = −∞.
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Lemma 4.48. d(a, γ) has the following properties with fixed a:

(i) d(a, γ) is strictly monotonically decreasing in γ;

(ii) d(a, γ) is a continuous function in γ.

(iii) lim
γ→∞

d(a, γ) = −∞.

(iv) lim
γ→0

d(a, γ) = 0.

Lemma 4.49. d(a, γ) is a continuous function of γ and a.

4.5.3 Two-parameter shooting method

Similarly to the half-line case, we will use a two-parameter shooting method

to prove the existence of a self-similar solution of problem (4.29).

Theorem 4.50. Suppose ε > 0, then there exists a unique solution f of

problem (4.29).

Proof. First we identify four “bad” sets

Γ1 =
{

(a, γ)
∣∣ b(a, γ) > U0

}
,

Γ2 =
{

(a, γ)
∣∣ b(a, γ) < U0

}
,

Γ3 =
{

(a, γ)
∣∣ d(a, γ) > −V0

}
,

Γ4 =
{

(a, γ)
∣∣ d(a, γ) < −V0

}
.

Now we combine the Γi to form two new sets: Λ1 = Γ1∪Γ4, Λ2 = Γ2∪Γ3.

We show that Λ1 and Λ2 satisfy the hypothesis of Lemma 3.29 in the same

way as half-line case, replacing lim
η→0

f(η; a, γ) with lim
η→−∞

f(η; a, γ). We will

apply Lemma 3.29 to the set R×(0,∞), which is homeomorphic to the entire

plane, for example, if we define a homeomorphism g : R× (0,∞) 7→ R2 such

that g(x, y) = (x, log y).
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These sets are clearly open in (0,∞)× (0,∞) since b(a, γ) and d(a, γ) are

continuous function of a and γ by Lemma 4.46 and 4.49. Moreover, Lemma

4.44 and Lemma 4.47 yield that Γ1,Γ2,Γ3,Γ4 are non-empty. Therefore, Λ1

and Λ2 are open and non-empty.

By using a similar argument to that in the proof of Lemma 3.31 in the

half-line case, together with the monotonicity of b(a, γ) and d(a, γ), we can

prove that Γ1,Γ2,Γ3,Γ4 are each connected and Γ1 ∩ Γ4 6= ∅, Γ2 ∩ Γ3 6= ∅.

Then, we can find (a∗, γ∗) ∈ Γ1∩Γ4 that connects (â, γ̂) ∈ Γ1 and (ã, γ̃) ∈ Γ4

since Γ1,Γ4 are each connected. Therefore, Λ1 is connected, and similarly,

Λ2 is connected.

Next we will show that Λ1 ∩ Λ2 is disconnected. We have

Λ1 ∩ Λ2 = (Γ1 ∩ Γ2) ∪ (Γ1 ∩ Γ3) ∪ (Γ2 ∩ Γ4) ∪ (Γ3 ∩ Γ4).

Clearly Γ1 ∩ Γ2, Γ3 ∩ Γ4 are empty.

By using the similar argument as in the proof of Lemma 3.32, together

with Lemma 4.44, 4.45, 4.47 and 4.48, we can prove that Γ1∩Γ3 and Γ2∩Γ4

are non-empty and disjoint. Therefore, Λ1 ∩ Λ2 is disconnected since it is

union of non-empty, disjoint and open sets.

Then Lemma 3.29 yields that there is a point (ā, γ̄) ∈ R × (0,∞) which

is not in Λ1 and Λ2. In conclusion, b(ā, γ̄) = U0 since (ā, γ̄) /∈ Γ1 ∪ Γ2,

d(ā, γ̄) = −V0 since (ā, γ̄) /∈ Γ3 ∪ Γ4. The result then follows from Theorems

4.28 and 4.31. �

4.6 Self-similar solutions for ε = 0

Now we consider

−1

2
ηf ′(η) = [φ′(f(η))f ′(η)]′, η < a, (4.48)
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with boundaries required

lim
η→−∞

f(η) = U0,

lim
η↗a

f(η) = 0, (4.49)

lim
η↗a

φ′(f(η))f ′(η) = −aV0
2
.

For ε = 0 case, we know that f(η) = −V0 for η > a and γ = aV0
2

which are

the same as in the half-line case. Note that when ε = 0, a, γ are positive

by Lemma 4.35. Since we showed that for each a ∈ R, γ > 0, there exists

solution f for η ∈ (a − δ, a) for some δ > 0, then there exists a solution of

(4.48) on interval (a− δ, α). By Lemma 4.40 we know that with γ = aV0
2

the

solution f can be continued back to −∞. Same as for the ε > 0 case, we

know that f is a monotonically decreasing function.

Now define

b(a) : = lim
η→−∞

f

(
η; a,

aV0
2

)
.

Note that we use the same notation b(a) as in the half-line case, but here

b(a) define as the function of f(η; a) as η → −∞ rather than η → 0.

In order to prove the existence of similarity solution by using the param-

eter shooting, we first deduce the following properties of b(a).

Lemma 4.51. b(a) has the following properties:

(i) b(a) is strictly monotonically increasing in a;

(ii) lim
a→0

b(a) = 0;

(iii) b(a) is a continuous function of a;

(iv) lim
a→∞

b(a) =∞;
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Proof. We obtain (i), (iii) and (iv) directly from Lemma 3.33 and 4.44

replacing γ with aV0
2

, note that we can do that since γ is positive and is

increasing in a. Now we want to prove lim
a→0

b(a) = 0 as a > 0.

Let a < 1, denote N = φ′(b(1)), we have φ′(f) ≤ N by (i). Then we get

directly from the equation of η for η < 0 that

− η

2N
[φ(f(η))]′ ≥ [φ(f(η))]′′,

then we multiplying the inequality by e
−η2
4N and integrating from η to 0 yields

[φ(f(η))]′ ≥ Ae
−η2
4N ,

where A = φ′(f(0))f ′(0) < 0. Integrating again from −∞ to 0 we get

φ(b(a)) ≤ φ(f(0))− A
∫ 0

−∞
e
−s2
4N ds.

Integrating the equation (4.48) from 0 to a yields

1

2

∫ a

0

f(s)ds =
aV0
2
− φ′(f(0))f ′(0).

Then we have

−A =
aV0
2

+
1

2

∫ a

0

f(s)ds→ 0 as a→ 0.

Therefore φ(b(a)) ≤ φ(f(0))−A
∫ 0

−∞
e
−s2
4N ds→ 0 as a→ 0, since

∫ 0

−∞
e
−s2
4N <

∞ and φ(f(0))→ 0 as a→ 0 by Lemma 3.18 (ii) and φ(0) = 0. �

Similarly to Theorem 3.34, we now prove that for some a > 0, there exists

a solution satisfying (4.48) by using a one-parameter shooting method.

Theorem 4.52. Suppose ε = 0, then there exists a unique solution f of

problem (4.30).
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Proof. Identify two “bad” sets

S− =
{
a
∣∣ b(a) < U0

}
,

S+ =
{
a
∣∣ b(a) > U0

}
.

Clearly S− and S+ are disjoint. By Lemma 4.51 (ii) and (iv), we know

that S− and S+ are non-empty. Moreover, S− and S+ are open. Indeed, let

a0 ∈ S− and let β := U0−b(a0), then there exists µ such that |b(a)−b(a0)| < β

for |a − a0| < µ, since b(a) is continuous by Lemma 3.33, which implies

b(a) < b(a0) + β < U0. A similar proof show that S+ is open. Since S− and

S+ are non-empty disjoint open sets, S− ∪ S+ 6= R. Then we can conclude

that there exists ā /∈ S− ∪ S+, which yields b(ā) = U0. �
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Chapter 5

Self-similar solutions with

special φ′(f ) = fm−1 with m > 1

The choice of φ satisfying (1.2) and (1.3) plays an important role in the

characterisation of rates at which one substance invades another of the system

(1.6). For concreteness, we consider the specific family that is motivated by

porous medium equation

φ′(w) = wm−1 (5.1)

with m > 1, which satisfies the conditions (1.2) and (1.3).

The form of self-similar solution of the limit problems with nonlinear

diffusion w(x, t) = f(η) is exactly same as in the linear diffusion case where

η = x√
t

is independent of the choice of φ. We are interested in how the free

boundary is affected by m, in the other words, the relationship between m

and a, where a gives the position of free-boundary because f(a) = 0. In the

following section, we will explore the self-similar solution fm(η) = f(η;m),

in particular, how the value a depends on m.
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5.1 The whole-line case with ε ≥ 0

First we consider the whole line case with the specific choice of φ′. For ε > 0,

the problem satisfied by f is

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, if −∞ < η < a,

− 1

2
ηf ′(η) = ε[(−f)m−1(η)f ′(η)]′, if a < η <∞,

lim
η→−∞

f(η) = U0, lim
η→∞

f(η) = −V0,

lim
η↗a

f(η) = 0 = − lim
η↘a

f(η),

lim
η↗a

fm−1(η)f ′(η) = ε lim
η↘a

(−f)m−1(η)f ′(η),

(5.2)

whereas for ε = 0, the problem satisfied by f is

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, if −∞ < η < a,

f(η) = −V0, if a < η <∞,

lim
η→−∞

f(η) = U0,

lim
η↗a

f(η) = 0,

lim
η↗a

fm−1(η)f ′(η) = −aV0
2
,

(5.3)

where a is positive.

Recall fmi(η) = f(η;mi), denote ami be the position of free boundary

where fmi(ami) = 0, and γmi = − lim
η↗ami

fmi−1mi
(η)f ′mi(η).

Consider fm1 and fm2 satisfy (5.2) with m1 6= m2, we will deduce some

results about intersection of fm1 and fm2 .

Lemma 5.1. Suppose am1 < am2, if fm1 and fm2 satisfy (5.2), then we have

(i) for ε > 0, there exists some η0 ∈ R such that fm1(η0) = fm2(η0);

(ii) for ε = 0, there exists some η0 < am1 such that fm1(η0) = fm2(η0).
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Proof. (i) For ε > 0, suppose there exists no η0 such that fm1(η0) = fm2(η0).

Then we must have fm1 < fm2 for all η ∈ R since am1 < am2 .

We need to consider both equations that are satisfied by f for a given m,

depending on whether f > 0 or f < 0

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, if η < a, (5.4)

− 1

2
ηf ′(η) = ε[(−f)m−1(η)f ′(η)]′, if η > a, (5.5)

If fm1 and fm2 are solutions of (5.4) corresponding to m1 and m2, then we

integrate (5.4) from η to am1 , am2 and obtain

−1

2
ηfm1(η) +

1

2

∫ am1

η

fm1(s)ds = −γm1 − fm1−1
m1

(η)f ′m1
(η), (5.6)

−1

2
ηfm2(η) +

1

2

∫ am2

η

fm2(s)ds = −γm2 − fm2−1
m2

(η)f ′m2
(η). (5.7)

Subtracting (5.6) from (5.7) and letting η →∞ we have

lim
η→−∞

η (fm1(η)− fm2(η)) +
1

2

∫ am1

−∞
[fm2(s)− fm1(s)] ds+

∫ am2

am1

fm2(s)ds

= γm1 − γm2 ,

since lim
η→−∞

f ′(η) = 0 by Lemma 4.43. We know that lim
η→−∞

η (U0 − f(η)) = 0

by Corollary 4.30, since f converges to U0 exponentially, which yields

lim
η→−∞

η (fm1(η)− fm2(η)) = − lim
η→−∞

η(U0 − fm2(η)) + lim
η→−∞

η(U0 − fm1(η))→ 0.

Then we have

1

2

∫ am1

−∞
[fm2(s)− fm1(s)] ds+

∫ am2

am1

fm2(s)ds = γm1 − γm2 . (5.8)

We know that the left-hand side of (5.8) is positive since fm1 < fm2 for

η < am1 .
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Similarly, integrating (5.5) from am1 , am2 to η, subtracting the two equa-

tions and letting η → −∞ yield

1

2

∫ ∞
am2

[fm1(s)− fm2(s)] ds+

∫ am2

am1

fm1(s)ds = γm1 − γm2 . (5.9)

The left-hand side of (5.9) is negative since fm1 < fm2 for η > am2 .

Note that for given m, am and γm are uniquely determined by U0 and

V0. If am1 < am2 , we need to consider all possible ordering of γm1 , γm2 , since

when ε > 0, it is not clear whether γm1 > γm2 , γm1 < γm2 or γm1 = γm2 .

In conclusion, for am1 < am2 we have

(a) if γm1 < γm2 , the right-hand side of (5.8) is negative, then we obtain a

contradiction and therefore there must exist some η0 < am1 such that

fm1(η0) = fm2(η0);

(b) if γm1 > γm2 , the right-hand side of (5.9) is positive, then we obtain a

contradiction and therefore there must exist some η0 > am2 such that

fm1(η0) = fm2(η0).

(c) if γm1 = γm2 , the right-hand sides of (5.8) and (5.9) are both 0, then

we obtain a contradiction with both (5.8) and (5.9) and therefore there

must exist some η1 < am1 and η2 > am2 such that fm1(ηi) = fm2(ηi)

where i = 1, 2.

(ii) We use a similar proof as in (i). For ε = 0, suppose there exists no

η0 < am1 such that fm1(η0) = fm2(η0). Then we must have fm1 < fm2 for all

η ∈ R since am1 < am2 .

We consider

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, η < a, (5.10)
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with γ = aV0
2

. If fm1 and fm2 are solution of (5.10) with corresponding

m1,m2, then, integrating the equation of f from η to am1 , am2 , subtracting

the equations and letting η → −∞ yields

1

2

∫ am1

−∞
[fm2(s)− fm1(s)] ds+

∫ am2

am1

fm2(s)ds =
am1V0

2
− am2V0

2
.

We know that the left-hand side is positive since fm2 > fm1 for η < am1 . For

am1 < am2 , the left-hand side is negative, then there is a contradiction, then

there must exists η0 < am1 such that fm1(η0) = fm2(η0). �

5.1.1 Results in the special case U0, V0 < 1 and m ≥ 2

The following results will proved by using contradiction arguments that rely

on |f(η)| < 1, which is ensured by imposing the additional conditions that

U0, V0 < 1 and m ≥ 2.

First, we consider all possible orderings of γm1 , γm2 when am1 < am2 ,

namely γm1 > γm2 , γm1 < γm2 , or γm1 = γm2 , and then prove the relationship

between a and m in each case.

Lemma 5.2. Let fm1 , fm2 satisfy (5.2) with corresponding m1,m2 ≥ 2 and

U0, V0 < 1. Suppose am1 < am2. Then we have

(i) γm1 6= γm2;

(ii) if γm1 < γm2, then m1 > m2;

(iii) if γm1 > γm2, then m1 < m2.

Proof. We know from the proof of Lemma 5.1 that in the whole line case,

for am1 < am2 , then
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(A) if γm1 < γm2 , then there must exist some η0 < am1 such that fm1(η0) =

fm2(η0);

(B) if γm1 > γm2 , then there must exist some η0 > am2 such that fm1(η0) =

fm2(η0);

(C) if γm1 = γm2 , then there must exist some η1 < am1 and η2 > am2 such

that fm1(ηi) = fm2(ηi), where i = 1, 2.

The results are proved by considering different cases as above. We begin by

proving (ii) and (iii) by looking at (A) and (B).

(A) Suppose am1 < am2 and γm1 < γm1 , then there exists η1 < am1 closest

to am1 such that fm1(η1) = fm2(η1). Integrating (5.4) from η1 to am1 and am2

we get

−1

2
η1fm1(η1) +

1

2

∫ am1

η1

fm1(s)ds = −γm1 − fm1−1
m1

(η1)f
′
m1

(η1), (5.11)

−1

2
η1fm2(η1) +

1

2

∫ am2

η1

fm2(s)ds = −γm2 − fm2−1
m2

(η1)f
′
m2

(η1). (5.12)

Subtracting (5.11) from (5.12) we have

1

2

∫ am1

η1

[fm2(s)− fm1(s)] ds+

∫ am2

am1

fm2(s)ds+ γm2 − γm1

=fm1−1
m1

(η1)f
′
m1

(η1)− fm2−1
m2

(η1)f
′
m2

(η1). (5.13)

The left-hand side of (5.13) is positive since fm2 > fm1 for η ∈ (η1, am1), then

we get

fm1−1
m1

(η1)f
′
m1

(η1)− fm2−1
m2

(η1)f
′
m2

(η1) > 0.

The fact that −f ′m1
(η1) > −f ′m2

(η1) > 0 gives

fm1−1
m1

(η1) < fm2−1
m2

(η1).
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Therefore, if 2 ≤ m1 ≤ m2, we have fm1(η1) = fm2(η1) ≥ 1 which is impossi-

ble since U0 < 1 and f is decreasing, this proves (ii). Note that if m1 > m2,

we have fm1(η1) = fm2(η1) < 1, which does not contradict U0 < 1.

(B) Suppose am1 < am2 and γm1 > γm1 , then there exists η2 > am2 closest

to am2 such that fm1(η0) = fm2(η2).

Integrating (5.5) from am1 and am2 to η2 we get

−1

2
η2fm1(η2) +

1

2

∫ η2

am1

fm1(s)ds = γm1 + ε
(
− fm1

)m1−1(η2)f
′
m1

(η2), (5.14)

−1

2
η2fm2(η2) +

1

2

∫ η2

am2

fm2(s)ds = γm2 + ε
(
− fm2

)m2−1(η2)f
′
m2

(η2). (5.15)

Subtracting (5.15) from (5.14) we have

1

2

∫ η2

am2

[fm1(s)− fm2(s)] ds+

∫ am2

am1

fm1(s)ds+ γm2 − γm1

=ε
(
− fm1

)m1−1(η2)f
′
m1

(η2)− ε
(
− fm2

)m2−1(η2)f
′
m2

(η2). (5.16)

The left-hand side of (5.16) is negative since fm2 > fm1 for η ∈ (am2 , η2),

then we get(
− fm1

)m1−1(η2)f
′
m1

(η2)−
(
− fm2

)m2−1(η2)f
′
m2

(η2) < 0.

The fact that 0 < −f ′m1
(η2) < −f ′m2

(η2) gives(
− fm1

)m1−1(η2) >
(
− fm2

)m2−1(η2).

Therefore, if 2 ≤ m2 ≤ m1, we have fm1(η2) = fm2(η2) ≤ −1 which is

impossible since −V0 > −1 and f is decreasing, this proves (iii). Note that

if m2 > m1, we have fm1(η2) = fm2(η2) > −1, which does not contradict

V0 < 1.

(C) Suppose am1 < am2 and γm1 = γm2 , then there exist η1 < am1 closest to
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am1 and η2 > am2 closest to am2 such that fm1(ηi) = fm2(ηi) where i = 1, 2.

Similar as in (A), if we integrate (5.4) from η1 to am1 , am2 and subtract two

equations we get

1

2

∫ am1

η1

[fm2(s)− fm1(s)] ds+

∫ am2

am1

fm2(s)ds (5.17)

=fm1−1
m1

(η1)f
′
m1

(η1)− fm2−1
m2

(η1)f
′
m2

(η1). (5.18)

Since the left-hand side of (5.18) is positive, we have fm1−1
m1

(η1) < fm2−1
m2

(η1),

yields m2 < m1. The estimate for η2 is the same as in (B), we have

1

2

∫ η2

am2

[fm1(s)− fm2(s)] ds+

∫ am2

am1

fm1(s)ds

=ε
(
− fm1

)m1−1(η2)f
′
m1

(η2)− ε
(
− fm2

)m2−1(η2)f
′
m2

(η2). (5.19)

We have m2 > m1 since the left-hand side of (5.19) is negative. There is a

contradiction, so it is impossible that γ1 = γ2 as am1 < am1 . �

Next we will study how the behaviour of f close to −∞ and ∞ de-

pends on m by looking at the point η0 closest to −∞ and ∞ such that

fm1(η0) = fm2(η0).

Lemma 5.3. Let fm1 , fm2 satisfy (5.2) with corresponding m1,m2 ≥ 2 and

U0, V0 < 1. Assuming there do not exist sequences of intersection points of

fm1 , fm2 tending to −∞,∞ and suppose am1 < am2, then we have

(i) if γm1 < γm2, then m1 > m2 and there exist η̂ < 0 such that fm1(η) >

fm2(η) for η < η̂;

(ii) if γm1 > γm2, then m1 < m2 and there exist η̃ > 0 such that fm1(η) >

fm2(η) for η > η̃.
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Proof. (i) First note that by Lemma 5.2, m1 > m2 and the proof of Lemma

5.1, there exists η̂ < am1 such that fm1(η̂) = fm2(η̂). Let η̂ < am1 be the

intersection point of fm1 , fm2 closest to −∞, that is fm1(η̂) = fm2(η̂) and

fm1(η) 6= fm2(η) for η < η̂.

Integrating (5.4) from η to η̂ we get

− 1

2
η̂fm1(η̂) +

1

2
ηfm1(η) +

1

2

∫ η̂

η

fm1(s)ds

=
(
fm1

)m1−1(η̂)f ′m1
(η̂)−

(
fm1

)m1−1(η)f ′m1
(η), (5.20)

− 1

2
η̂fm2(η̂) +

1

2
ηfm2(η) +

1

2

∫ η̂

η

fm2(s)ds

=
(
fm2

)m2−1(η̂)f ′m2
(η̂)−

(
fm2

)m2−1(η)f ′m2
(η). (5.21)

Subtracting (5.21) from (5.20) and letting η → −∞ we have

1

2

∫ η3

−∞
[fm1(s)− fm2(s)] ds =

(
fm1

)m1−1(η3)f
′
m1

(η3)−
(
fm2

)m2−1(η3)f
′
m2

(η3),

(5.22)

by Lemma 4.43 and Corollary 4.30, f converges to U0 exponentially, which

yields

lim
η3→−∞

η3
(
fm1(η3)− fm2(η3)

)
=− lim

η3→−∞
η3
(
U0 − fm2(η3)

)
+ lim

η3→−∞
η3
(
U0 − fm1(η3)

)
→ 0.

We have
(
fm1

)m1−1(η̂) <
(
fm2

)m2−1(η̂), since U0 < 1 and f is decreasing,

so fm1(η̂) = fm2(η̂) < 1 and m1 > m2. Suppose that fm1(η) ≤ fm2(η)

for η < η̂, then the right-hand side of (5.22) is positive since −f ′m1
(η3) ≤

−f ′m2
(η3), which contradicts

1

2

∫ η̃

−∞
[fm1(s)− fm2(s)] ds ≤ 0. Therefore,

fm1(η) > fm2(η) for η < η̂.
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(ii) First note that by Lemma 5.2, m2 > m1, and by the proof of Lemma

5.1, there exists η̃ > am2 such that fm1(η̃) = fm2(η̃). Let η̃ > am2 be the

intersection point of fm1 , fm2 closest to ∞, that is fm1(η̃) = fm2(η̃) and

fm1(η) 6= fm2(η) for η > η̃.

Integrating (5.5) from η̃ to η we get

− 1

2
ηfm1(η) +

1

2
η̃fm1(η̃) +

1

2

∫ η

η̃

fm1(s)ds

=ε
(
− fm1

)m1−1(η)f ′m1
(η)− ε

(
− fm1

)m1−1(η̃)f ′m1
(η̃), (5.23)

− 1

2
ηfm2(η) +

1

2
η̃fm2(η̃) +

1

2

∫ η

η̃

fm2(s)ds

=ε
(
− fm2

)m2−1(η)f ′m2
(η)− ε

(
− fm2

)m2−1(η̃)f ′m2
(η̃). (5.24)

Subtracting (5.23) from (5.24) and letting η →∞ we have

1

2

∫ ∞
η4

[fm2(s)− fm1(s)] ds

=ε
(
− fm1

)m1−1(η4)f
′
m1

(η4)− ε
(
− fm2

)m2−1(η4)f
′
m2

(η4), (5.25)

by Lemma 4.43 and Corollary 4.30, f converges to −V0 exponentially, which

yields

lim
η4→∞

η4 (fm1(η4)− fm2(η4))

= lim
η4→∞

η4(fm1(η4) + V0)− lim
η4→∞

η4(fm2(η4) + V0)→ 0.

We have (−fm1)
m1−1(η̃) > (−fm2)

m2−1(η̃), since V0 < 1 and f is decreasing,

so (−fm1)(η̃) = (−fm2)(η̃) < 1 and m2 > m1. Suppose that fm1(η) ≤ fm2(η)

for η > η̃, then the right-hand side of (5.25) is negative since −f ′m1
(η̃) ≥

−f ′m2
(η̃), which contradicts

1

2

∫ ∞
η̃

[fm2(s)− fm1(s)] ds ≥ 0. Therefore, fm1(η) >

fm2(η) for η > η̃. �
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We can obtain the following results when ε = 0 by using the fact that

γ = aV0
2

. In the following result, we only study the positive solutions f(η)

for η < a, so we consider 0 < U0 < 1 and V0 > 0. Note that the relationship

between a and m tells us how the speed of one substance penetrating into

the other is affected by m.

Theorem 5.4. Let ε = 0 and U0 < 1, suppose fm1 , fm2 satisfy (5.3) with

corresponding m1,m2 ≥ 2 and am1 , am2. Then if m1 > m2, we have

0 < am1 < am2 ,

and assuming there does not exist a sequence of intersection points of fm1 , fm2

tending to −∞, then there exists η̂ < 0 such that

fm1(η) < fm2(η) for η < η̂.

Proof. For ε = 0 case, we have γ = aV0
2
> 0 which satisfies (A), then by

Lemma 5.1, there exists η0 < min{am1 , am2} such that fm1(η0) = fm2(η0).

By a similar argument to Lemma 5.2 (i), we know that am1 6= am2 , and

am1 , am2 > 0 since γm1 , γm2 > 0.

Now let η0 be the closet intersection point to min{am1 , am2}, integrating

(5.3) from η0 to am1 , am2 we get

−1

2
η0fm1(η0) +

1

2

∫ am1

η0

fm1(s)ds = −am1V0
2
− fm1−1

m1
(η0)f

′
m1

(η0), (5.26)

−1

2
η0fm2(η0) +

1

2

∫ am2

η0

fm2(s)ds = −am2V0
2
− fm2−1

m2
(η0)f

′
m2

(η0). (5.27)

Subtracting (5.26) from (5.27) we have

1

2

∫ am1

η0

fm1(s)ds−
1

2

∫ am2

η0

fm2(s)ds+
am1V0

2
− am2V0

2
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=fm1−1
m1

(η0)f
′
m1

(η0)− fm2−1
m2

(η0)f
′
m2

(η0). (5.28)

For m1 > m2 we know fm1−1
m1

(η0) < fm2−1
m2

(η0), since U0 < 1 and f is de-

creasing. Then if am1 > am2 , the left-hand side of (5.28) is positive and

−f ′m1
(η0) < −f ′m2

(η0), which gives

fm1−1
m1

(η0)f
′
m1

(η0)− fm2−1
m2

(η0)f
′
m2

(η0) < 0,

which contradicts the left-hand side is positive. Therefore if m1 > m2, we

have am1 < am2 .

The result for the behaviour of f close to infinity follows from Lemma 5.3

(i). �

5.2 The half-line case with ε ≥ 0

Now we consider the half-line case with specific choice of φ′. For ε > 0, the

problem satisfied by f is

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, if 0 < η < a,

− 1

2
ηf ′(η) = ε[(−f)m−1(η)f ′(η)]′, if a < η <∞,

lim
η→0

f(η) = U0, lim
η→∞

f(η) = −V0,

lim
η↗a

f(η) = 0 = − lim
η↘a

f(η),

lim
η↗a

fm−1(η)f ′(η) = ε lim
η↘a

(−f)m−1(η)f ′(η),

(5.29)
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whereas for ε = 0, the problem satisfied by f is

− 1

2
ηf ′(η) = [fm−1(η)f ′(η)]′, if 0 < η < a,

f(η) = −V0, if a < η <∞,

lim
η→0

f(η) = U0,

lim
η↗a

f(η) = 0,

lim
η↗a

fm−1(η)f ′(η) =
aV0
2
.

(5.30)

Suppose fm1 , fm2 satisfy (5.29) and am1 < am2 , we know that fm1(0) =

fm2(0) = U0 and obtain directly from the proof of Lemma 5.1 that if γm1 >

γm2 , there exists η0 > am2 such that fm1(η0) = fm2(η0).

Now consider U0, V0 < 1, we can get the following Lemma by using a

similar argument in the proof of Lemma 5.2. Note that it is not clear if there

exists η1 ∈ (0, am1) such that fm1(η1) = fm2(η1) but the key point is that

we know that fm1(0) = fm2(0), and this allows us to apply arguments as

in the proof of Lemma 5.2, whether or not an additional intersection point

η1 ∈ (0, am1) exists.

Lemma 5.5. Let fm1 , fm2 satisfy (5.29) with corresponding m1,m2 ≥ 2 and

U0, V0 < 1. Suppose am1 < am2, we have

(i) γm1 6= γm2;

(ii) if γm1 < γm2, then m1 > m2;

(iii) if γm1 > γm2, then m1 < m2.

Suppose fm1 , fm2 satisfy (5.30) where ε = 0. Then fm1(η) = fm2(η) =

−V0 for η > max{am1 , am2} and we know that fm1(0) = fm2(0), thus the

similar results to those in Theorem 5.4 can be obtained by using the same

method as in the proof in whole-line case .
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Theorem 5.6. Let ε = 0 and U0 < 1, and suppose fm1 , fm2 satisfy (5.30)

with corresponding m1,m2 ≥ 2 and am1 , am2. Then

if m1 > m2, then am1 < am2 .
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