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� Different non-embedded smart sensors used for road monitoring were summarized.

� Applications of advanced industrial informatics contribute to building a smart, safe, and sustainable road system.
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The road is one of the most important civil infrastructures for serving society, where its

service quality and life have direct impacts on the safety and comfort of users. Therefore,

road construction, condition detection and monitoring, and timely maintenance are

particularly important for engineers. Many engineering applications of industrial infor-

matics approaches, like image processing technology, widely used computer-based algo-

rithms, and advanced sensors, have been initially and gradually applied to roads. This

state-of-the-art review first summarized the research on industrial applications of

advanced information technologies in recent years, while analyzing and comparing the

advantages and disadvantages of each technology. Especially, five topics were focused on

road construction, road maintenance with decision strategy, road structure evaluation,

smart sensing in the road, and cooperative vehicle infrastructure system. It is expected

that advanced industrial informatics can help engineers promote the development of

smart, safe, and sustainable roads.
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Smart sensing
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1. Introduction

The road is one of the most important civil infrastructures for

the development of society. The quality and life of road ser-

vice can directly impact people's daily life. Therefore, these

aspects are important for engineers to solve road problems

from road construction, condition detection, monitoring, and

timely maintenance.

With the rapid growth of technologies, industrial infor-

matics plays a more and more important role in modern so-

ciety. Industrial informatics is the combination of information

and industry, which is a discipline that introduces informa-

tion technology (IT) into the process of industrial production,

operation, and management. Recently, scholars around the

world have carried out extensive research and applied

advanced industrial informatics in the construction, mainte-

nance, and management of road infrastructures, which

greatly helps extend the service life and improve the service

quality of roads. For computer technology, researchers usually

combine image processing technology with machine learning

or deep learning algorithms (Arya et al., 2021; Chu et al., 2022;

Shim et al., 2021; Sun et al., 2022). It was helpful to realize

intelligent recognition and detection of road distresses, as

well as prediction of basic strain. In addition, some

optimization algorithms and models have achieved

satisfactory results in road maintenance decision-making

(Hafez et al., 2018; Li et al., 2020). In terms of smart sensing,

embedded and non-embedded devices have been

continuously improved for intelligent monitoring of road

traffic, safety, and evaluation (Barriera et al., 2021;

Basavaraju et al., 2020). The advantages of these advanced

information technologies are as follows. 1) Making industrial

applications such as road construction, detection, and

monitoring more intelligent and electronic. 2) Replacing part

of the artificial processing process, while improving

efficiency and reducing costs. 3) It is helpful to assist

engineers in completing relevant decisions quickly and

accurately. 4) It can promote the construction of energy-

efficient, safe, and sustainable road systems to a certain

extent. However, there are still some deficiencies in the use

and development of these technologies. 1) The use of IT

requires road workers to have a professional foundation and

experience, such as programming capability and

mathematics thinking ability. 2) Research-based on artificial

intelligence (AI) requires a large amount of data for model

training. It has huge parameters and slow speed, while the

accuracy is closely related to the quality of the data set. 3)

Although computer algorithms and sensors are relatively

mature, they still need innovation and improvement for

specific engineering purposes. The above problems need to

be solved by engineers.
Advanced industrial informatics has been widely applied

in almost every aspect of road engineering, including cost

estimation and performance prediction in the early stage and

distress detection and maintenance in the later stage. There-

fore, relevant algorithms, research, and industrial applica-

tions were reviewed and summarized from five aspects: road

construction, road maintenance, and decision strategy, road

structure evaluation, smart sensing in the road, and cooper-

ative vehicle infrastructure system, which may provide a

reference for road engineers. The details are shown in Fig. 1. It

is expected that advanced industrial informatics can

significantly help engineers to promote the development of

smart, safe, and sustainable roads. As these advanced

approaches can extend the service life of roads and improve

service quality, it is believed that they can help mitigate the

carbon footprint to a certain extent.
2. Advanced industrial informatics in road
construction

In the early stage of road construction, artificial intelligence

(AI) is often used for construction cost estimation, long-term

performance prediction, and other tasks. Among them,

intelligent algorithms, big data, and deep learning (DL) are

mostly concerned by engineers.
2.1. Artificial intelligence-based algorithms

AI is a comprehensive discipline that refers to the ability of

machines or artificial products to perform the same functions

as human thinking, dealing with noise, incomplete data, and

nonlinear problems (Kalogirou, 2003). In this section, the

applications of genetic algorithms (GA), swarm intelligence

(SI), and artificial neural networks (ANNs) are reviewed.

2.1.1. Genetic algorithm
Compared with traditional optimization algorithms, GA has

many advantages. The two most significant characteristics

are the ability to deal with complex problems and parallelism.

GA can deal with various types of optimizations, and the

population (or any subgroup) can explore the search space in

multiple directions at the same time. However, GA also has

some disadvantages. The formulation of the fitness function,

the use of population size, the selection of important param-

eters such as mutation rate and crossover rate, and the se-

lection criteria of the new population should be carried out

carefully. Despite these shortcomings, GA is still one of the

most widely used optimization algorithms in modern

nonlinear optimization.
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Fig. 1 e Advanced industrial informatics in modern road engineering.
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In order to schedule linear construction projects, a genetic

algorithm-based multi-objective optimization model was pre-

sented by Senouci and Al-Derham (2008) to schedule linear

construction projects. A two-level model of a traffic network

composed of some road connection categories was later

developed by Kr�ol (2016). Another application of GA is Al-

Hadad and Mawdesley (2010). This research presented the

possibility of developing a GA-based technique model to

optimize highway alignment. It put forward a new technology

to optimize highway routes in three-dimensional space.

2.1.2. Swarm intelligence
Swarm intelligence (SI) belongs to the general field of AI,

which is based on the collective behavior of elements in

decentralized and self-organizing systems (Rath et al., 2020).

Today, SI has great involvement in the field of the Internet

of Things (IoT) and IoT-based systems to logically control

their operation. SI algorithms such as ant colony

optimization, artificial bee colony optimization, and social

spider optimization play an important role in standardizing

the process of the IoT (Rath et al., 2020).

Determining the shear strength of soil is an important work

in the design stage of road construction., a hybrid AI model

integrating the least squares support vector machine (LSSVM)

and cuckoo search optimization (CSO) was proposed by Bui

et al. (2019) to estimate this parameter of soil. The prediction

accuracy of this hybrid method was better than the

benchmark method including standard LSSVM, ANN, and

regression tree. A reduction of the network into a much

smaller complete graph and metaheuristic based on an ant

colony optimization was proposed by Vod�ak et al. (2018). In

the reference (Calis and Yuksel, 2015), ant colony

optimization with parameter analysis (ACO-PA) was

developed that can determine the appropriate parameter

value within the predefined parameter variation range. The

results showed that it can reduce transportation costs

compared with the station layout generated by GA and basic

ACO.
2.1.3. Artificial neural networks
ANN is composed of various nodes, and the function of these

nodes is similar to that of genetic neurons in the human brain.

It has a self-learning function and the ability to quickly find

optimal solutions which can effectively deal with nonlinear

problems. ANNs have recently attracted much attention

because of their ability to solve the qualitative and quantita-

tive problems and prediction tasks that appeared in the con-

struction industry. In order to provide more accurate results

with less estimation error on the estimation of expected road

construction costs, with the help of the available databases,

three different types of ANNs based on four indicators,

namely road length, road width, planned construction dura-

tion, and planned construction cost, were formed by Tijani�c

et al. (2020). The proposed algorithm was proved to be used

during the initial design phase when there is usually a

limited or incomplete data set for the cost analysis. In

another study, different ANN models were developed to

estimate the cost and duration of the construction (Naik and

Radhika, 2015). The application of neural networks in the

formation of preliminary estimation would reduce the time

and cost of data processing. It can help contractors make

decisions more easily.
2.2. Big data

The decision-making in the early design stage of road con-

struction has a significant impact on the road life cycle per-

formance. In the early decision-making stage, big data

technology is usually used to predict or evaluate the perfor-

mance of building environments with different designs.

Progress in this field can bring multiple benefits such as en-

ergy saving, waste reduction, and cost saving.

For example, the big-data-based geographic information

system (GIS) technology can accurately locate the natural

environment and geographic information around the con-

struction project, so as to make the building information

https://doi.org/10.1016/j.jtte.2023.02.001
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model (BIM) model more complete (JTTE Editorial Office et al.,

2021; Liu et al., 2022; Shi and Lyu, 2021).

2.3. Deep learning

Various deep learning algorithms have been successfully

applied in the field of road construction to help diagnose and

standardize the causes and preventive measures, such as

site planning and management, health and safety, con-

struction cost prediction, and so on. In the reference (Shinde

et al., 2020), a platform based on AI, deep learning methods,

and blockchain technology was proposed. With the help of

this platform, many parameters can be determined, such

as how long the road construction in a specific area will be

completed, how many raw materials are expected to be

required, and how much labor force should be allocated. A

CNN-based deep learning architecture, FrictionNet, was

developed in reference (Yang et al., 2018), which can

directly predict the level of pavement friction by using the

texture profiles. The deep learning method needs to use a

large amount of data, which means that it can

continuously improve itself through more data (Lin et al.,

2017). Therefore, they have become the key method of the

concept of “big data”, i.e., more valuable information and

knowledge can be extracted from big data through deep

learning technology.

However, deep learning algorithms have high re-

quirements for data and computing power. In future work,

research on model lightweight should be paid attention to for

reducing the memory and speeding up the operation as much

as possible. It can pave the way for the realization of the

mobile terminal. In addition, it is hard to improve existing

algorithms and develop new algorithms, which requires pro-

fessionals and a large number of experiments. It should be

noted that the “industrial” informatics discussed in this study

refers to the research and applications that have been tried to

be applied or at least preliminary investigated for possibility in

practical engineering projects in road engineering, but not the

pure “industrial” - level applications.
3. Advanced industrial informatics in road
maintenance and decision strategy

3.1. Levels of pavement maintenance strategy analysis
(PMSA)

Many studies have been conducted and pavement manage-

ment systems have been developed for PMSA to maintain our

pavement performance at a specific level with limited bud-

gets, considering traffic, environment, and policy factors.

There are three levels of PMSA including strategic, network,

and project levels (Wu et al., 2012), and most studies and

applications focus on the network and project levels.

The network-level PMSA includes the top-down and the

bottom-up approaches. The former aimed to determine

network-level maintenance strategy but cannot specify
treatments for each pavement segment. The latter started by

determining the optimal treatments for each pavement

segment and then obtained the network-level strategy

(Medury and Madanat, 2014). Lee and Madanat (2015)

developed a bottom-up joint pavement maintenance

optimization and used genetic algorithms (GA) to obtain the

network-level maintenance strategy by minimizing the life

cycle cost and maximizing the reliability of systems.

Denysiuk et al. (2017) developed a bottom-up optimization

that also includes two stages and employed GA to handle

multiple nonlinear objectives at the network level.

The project-level PMSA is to determine the time and type of

maintenance treatments. The optimal strategy can be ob-

tained by selecting the one with the highest ratio of mainte-

nance effectiveness over life cycle cost from all possible

maintenance scenarios (Yao et al., 2019). Rashid and

Tsunokawa (2012) developed a trend curve optimal control

model to determine project-level PMSA considering multiple

maintenance treatments. The optimal application time

maximizing maintenance effectiveness (Dong et al., 2020)

can be calculated based on the pavement performance

models before and after treatments. However, the accuracy

of the predicted parameters of post-treatment performance

models is relatively low due to the high variance of the

model parameters.
3.2. Objectives of PMSA

In a typical PMSA problem, multiple objectives or constraints

including pavement performance, cost, environmental im-

pacts, traffic delay time, annual or regional budget limits,

maintenance activity types, policies, etc., need to be defined

first. The life cycle cost analysis (LCCA) is usually adopted in

the cost analysis, which aims to evaluate the cost-efficiency of

maintenance strategy alternatives based on the net present

value of pavement maintenance cost, agency cost, vehicle

operation cost, salvage value, etc (Santos and Ferreira, 2013).

The life cycle assessment (LCA) including various models of

energy consumption, global warming potential, acidification

potential, and respiratory effects potential, is usually

adopted to evaluate the environmental impacts. After

obtaining the models for calculating those objectives, the

optimization algorithms which aim to find a maximum or a

minimum, given a specific set of possibilities are utilized to

find the optimal maintenance strategy.

With the increasing concern for sustainability, an

increasing trend is to incorporate LCA in the PMSA. Usually,

the marginal damage cost and environmental damage cost of

pollutants and emissions are calculated as part of the cost for

optimization (Huang et al., 2020; Santos et al., 2018; Yu et al.,

2013; Zhang et al., 2010). However, the high uncertainties of

the damage cost models cripple the effectiveness of the

optimization. To overcome this limitation, genetic

algorithms have been adopted to determine the optimal

solutions for optimizations with more than two objectives

(Yu et al., 2015).
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3.3. Optimization algorithms for pavement maintenance
strategy analysis

Many optimization methods in the field of operation research

have been adopted for PMSA. Linear programming (LP),

capable of minimizing the linear objective functions under

linear inequality constraints was first adopted by Grivas et al.

(1993). Integer programming (IP), which mostly refers to

integer linear programming (ILP), is a type of LP whose

variables are integers, and was also utilized (Wang et al.,

2003). Pavement maintenance decisions span several points

in time and can break apart recursively, and therefore can

be solved by dynamic programming (DP), which simplifies a

complicated problem by breaking it down into simpler sub-

problems in a recursive manner (Ma et al., 2018).

Some researchers claimed that those traditional optimiza-

tion algorithms can obtain one single optimal solution and

have computing efficiency (Hankach et al., 2019; Schwefel,

2000). Updated traditional optimization algorithms are still

preferred by some researchers. Medury and Madanat (2013)

adopted approximate dynamic programming (ADP), which is

a type of discrete-state Markov decision process-based

optimization for network-level pavement maintenance

strategy optimization. The ADP steps forward through time,

obviating the need to loop through the entire state space in

future time periods, and can overcome the dimensionality

exploration associated with traditional dynamic programming

methods.

3.4. Algorithms for multi-objective optimization (MOO)

Traditional optimizations are mostly single objective optimi-

zation (SOO) inwhich a single objective function expresses the

overall performance. However, a number of factors including

performance, policy, cost, environment, etc. need to be

considered to decide on a pavement maintenance strategy. It

is not always possible to put all objectives into one single

objective function. More advanced optimization methods and

algorithms are needed to solve those MOO problems. The

following summarizes studies that incorporated different

objectives in a single objective function to solve the MOO

problems in PMSA.

3.4.1. Weighting sum method
The weighting sum method is to convert a MOO problem into

a single objective optimization (SOO) problem by assigning

weighting factors to the multiple objectives as shown in Eq.

(1). The weighting sum method is simple, and the selection of

weights depends on decision makers' preference. It has been

used to assign the weights for highway safety factors based

on surveys (Dissanayake et al., 1999), and to determine the

maintenance needs for different components of the entire

transportation infrastructure system (Sadek et al., 2003). The

uncertainties of the expert's opinions can be incorporated

using a fuzzy set into the weighting sum method (Tonon

and Bernardini, 1999).

min
Xn

i¼1
lifiðxÞ (1)

where li is the weighting factor for the objective fiðxÞ.
3.4.2. Goal programming
The goal programming is to use expected goals of objectives as

constraints and to minimize the weighted sum of deviations

of all objectives from their respective goals as shown in Eq. (2).

Similar to the weighting summethod, goal programming uses

penalty weights to reflect the relative importance and also

depends on decision makers’ opinions. It has been used to

make maintenance decisions for bridge infrastructures

(Ravirala et al., 1996), pavement networks (Wu et al., 2008),

and the infrastructure including both pavements and

bridges (Ravirala, 1995) to effectively incorporate multiple

conflicting and prioritized objectives.

min
Xn

i¼1

��fiðxÞ�Di

�� (2)

where Di is the penalty weighting factor for the objective fiðxÞ.

3.4.3. Multi-attribute utility theory
Multi-attribute utility theory (MAUT) utilizes weighting fac-

tors to convert the goal value into a utility value to build a new

comprehensive single objective function. TheMOO problem is

then solved by maximizing the expected utility. The weights

are determined by a decision-maker based on his past expe-

riences or his own expertise. It has been used for pavement

networks (Gao et al., 2012), and transportation infrastructure

management including different types of highway assets

such as bridges, pavements, culverts, intersections, and

signs (Gharaibeh et al., 2006; Li and Sinha, 2004). The

parameterized utility functions were developed to convert

MOO problems into a series of SOO problems. Each

parameter in the utility function serves as a weight for its

corresponding objective.

3.4.4. Analytic hierarchy process (AHP)
The AHP decomposes the problem into several levels. The

weight of each factor at the lowest level is obtained by pair

comparison. The weight of the overall objective is obtained by

analyzing and calculating from low levels to high levels.

Compared with the weighting sum and goal programming

methods, the AHP method helps decision-makers analyze

multiple objectives more rationally by dividing the original

problem into smaller problems which are easier to make de-

cisions. The AHP (Wu et al., 2008) was adopted to build a hybrid

MOOmodel for pavement preservation strategy analysis. Jelena

et al. (2020) developed a decision support tool for maintaining

damaged asphalt pavement by employing the multi-criteria

preference ranking organization method for enrichment

evaluation (PROMETHEE) method and the AHP method.

However, it is still influenced by the intuition and preferences

of the decision-makers.

3.4.5. Compromise programming
Compromise programming is to minimize the distance or the

normalized deviation between solutions and the ideal solution

which simultaneously optimizes each objective. In the space of

the objective function, the coordinates of the ideal solution are

shown in Eq. (3).

fðx*Þ¼ �
f1ðx*Þ;/; fnðx*Þ� (3)

where x* optimizes every objective fiðxÞ.
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The compromise programming can be used for discrete

variables. Fwa et al. (2000) developed a PMSA program

incorporating compromise programming and GA, which can

solve two- and three-objective optimizations. Xiong et al.

(2012) developed a two-objective model to analyze the

resource allocation problem in pavement and bridge deck

maintenance. Lounis and Daigle (2013) used compromise

programming for highway bridge deck maintenance by

minimizing owner's costs, user costs, and environmental

impacts and obtained the best trade-off between all

competing objectives.

3.4.6. e-constraint method
The e-constraint method is to optimize one objective while

converting other objectives into constraints to convert the

MOO problem to the SOO problem. The selection of e and

setting the constraints are of great importance for this

method. Chowdhury et al. (2000) presented a MOO based on

the e-constraint method to allocate highway safety

resources. Chowdhury and Tan (2005) presented a constraint

of multiple objective programming methods for analyzing

investment decisions. Miyamoto et al. (2000) developed a

new bridge management system (BMS) capable of

maintenance strategy analysis by minimizing cost and

maximizing quality based on a genetic algorithm and the e-

constraint method.
3.5. Evolutionary optimization for multi-objective
optimization

3.5.1. Pareto front
The output of traditional SOO methods such as linear,

nonlinear, and dynamic programming and some of the MOO

algorithms which convert SOO to MOO through weighting

factors obtain a single optimal solution since they are point-

by-point approaches. In a MOO, there might be no single

optimal solution since objective functions are often conflict-

ing. Instead, there is a family of optimal solutions called the

Pareto optimal solution set or Pareto front (PF) in the space of

objective functions.

In a pool of solutions, as shown in Fig. 2, the PF is the

solution in which one of the objectives cannot be improved

without worsening another objective. It is a set of solutions

that are non-dominated by each other but are superior to

the rest of the solutions in the search space. PF rank can be

used to measure solution fitness. Solutions in the PF are in

Rank 1. After removing the PF, the solutions in the new front

would be in Rank 2. This process will continue until the

whole population is ranked.

A PF curve can be obtained by optimization algorithms

such as evolutionary optimizations (EO) which are nature-

inspired algorithms simulating the biological processes of

natural selection, evolution, and mutation. The EO is initial-

ized with a population of random solutions to find the optimal

solution by updating generations. In the EO, PF is approxi-

mated with a set of solutions with good convergence and di-

versity. The following discusses the recent applications of EO

algorithms in PMSA.
3.5.2. Genetic algorithm (GA)
As summarized in Table 1, GA is the most widely used EO in

PMSA. Many studies (Sindi and Agbelie, 2020) claimed that

GA was more accurate and consistent than traditional SOO.

However, some researchers (Schwefel, 2000) claimed that GA

should not be used if the problem can be simplified and

solved by a traditional mathematical optimization, which

usually needs less time and provides better solutions. The

GA algorithm cannot guarantee optimal solution for

complicated constraints and usually need a large number of

iterations.

3.5.3. Non-dominated sorting genetic algorithm II (NSGA-II)
NSGA-II is capable of finding a better spread of solutions and

better convergence near the true Pareto-optimal front

compared to the Pareto-archived evolution strategy. The

NSGA II has been used to optimize the roadway lighting

project by maximizing the average lighting level and lighting

uniformity, minimizing the glare to road users, and the cost of

operating the lighting system (Hyari et al., 2016). Bai et al.

(2012) adopted an extreme points NSGA II for transportation

asset management, considering five objectives: minimizing

average pavement roughness, maximizing the percentage of

bridge condition, maximizing average remaining service life,

minimizing average crash rate, and maximizing average

travel speed. It was found that the improved NSGA-II

demonstrates a faster convergence speed and yields a better

distribution than the NSGA-II. Cao et al. (2020) adopted the

NSGA-II to build a three-objective pavement maintenance

optimization by maximizing the average close proximity

(CPX) level reduction, minimizing the maintenance costs,

and minimizing the greenhouse gas emissions generated

from the maintenance activities.

3.5.4. Ant colony optimization (ACO)
The ACO is a type of swarm intelligence (SI) which is a

computational intelligence technique involving the collective

study of the individual behavior of the population interacting

with one another locally. In the ACO algorithm, the artificial

https://doi.org/10.1016/j.jtte.2023.02.001
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Table 1 e Typical applications of GA in PMSA.

Literature Algorithm Objective

Fwa et al. (2000) GA Minimize total maintenance cost, maximize maintenance work

production, and maximize network pavement condition

Cheu et al. (2004) GA Minimize the increases in travel times in the road network for

maintenance scheduling

Deshpande et al. (2010) GA Minimize cost and maximize pavement reliability

Jorge and Ferreira (2012) GA/GENEPAV-HDM4 Minimize the total cost including construction, maintenance, user costs

and residual values with the constraints of minimum quality, maximum

budget and maintenance times

Mathew and Isaac (2014) GA Minimize the cost and maximize the performance

Santos et al. (2019) Adaptive hybrid genetic

algorithm (AHGA)

Minimize maintenance costs, while satisfying several technical quality

standards and budgetary requirements

Elhadidy et al. (2000) GA Minimize maintenance cost and maximize pavement condition

Ansarilari and Golroo (2020) GA Minimize maintenance cost and maximize pavement performance for

airport pavement maintenance strategy
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ants or simulation agents locate optimal solutions by moving

through a parameter space representing all possible solutions

and recording their positions and the quality of their solu-

tions. In later iterations, the artificial ants select the solution

based on the heuristic value such as the objective function

value. Terzi and Serin (2014) adopted the ACO to network-level

PMSA considering the availability of budget, manpower,

equipment, and materials.

3.5.5. Particle swarm optimization (PSO)
The PSO is also a SI optimization algorithm, in every iteration,

each particle is updated by the two “best” values, namely

“pbest” and “gbest”. Ahmed et al. (2019) utilized the PSO for

PMSA which can find the optimal solution quickly and more

efficiently than other optimization algorithms. Tayebi et al.

(2014) compared the GA and PSO with the same case study

and concluded that the PSO is easier to use and operates

faster and more accurately than GA.

3.5.6. Coyote optimization algorithm (COA)
The COA is a newly developed metaheuristic algorithm or SI

algorithm proposed by Pierezan and Coelho (2018) and

Pierezan et al. (2019). In the COA, solution vectors or the

artificial coyotes are randomly classified into different herds

or groups and the fitness value of all coyotes is calculated.

The most valuable solution in each group is the alpha. All

coyotes are influenced by their groupmates and their group's
alpha. The transfer culture operator produces new coyotes

and resembles the mutation in GA (Qais et al., 2019). The

death and birth operator removes the weakest coyotes and

generates new solution vectors. Naseri et al. (2021) adopted

the COA to determine long-term pavement maintenance

selection strategies considering pavement roughness,

budgets, CO2 emission, etc.
4. Advanced industrial informatics in
evaluations of road structure and material

During the regular services of roads, distresses will inevitably

appear. Timely detection and maintenance can ensure peo-

ple's travel safety while prolonging the road service life.

Advanced industrial informatics has been used in the
automatic identification of distresses (especially cracks), as

well as the prediction of service conditions on the road

surface.
4.1. Road condition detection and evaluation

Most of the current research on road condition detections was

based on image processing technologies and machine

learning algorithms, which were mainly composed of three

stages: data acquisition and pre-processing, target recognition

and detection, and pavement condition evaluation. The gen-

eral process is shown in Fig. 3. At present, image data used in

road research is usually obtained by manual photography,

vehicle camera, ground penetrating radar, and other

equipment (Jung et al., 2019; Li et al., 2021; Miao et al., 2014;

Zhu et al., 2021).

4.1.1. Image pre-processing technologies
In the process of data collection and transmission, road im-

ages will be affected by different factors including noise.

Meanwhile, weather, environment, and other external factors

would affect the quality of the image (Ai et al., 2018).

Therefore, image pre-processing is usually of great

significance before the regular processing of road images.

Considering the differences in the pixel values between

distresses and the unbroken matrix, image processing tech-

niques including binarization, threshold segmentation, his-

togram equalization, filtering, and edge detection were used

(Omanovic et al., 2013; Song et al., 2014; Zhang et al., 2020).

Oliveira and Correia (2009) pre-processed images with

morphological filters and dynamic thresholds to identify

dark pixels corresponding to cracks. The difficulty of the

thresholding technique lies in finding the appropriate

feature threshold to separate the target object from the

background pixel. Gao et al. (2018) performed gamma

correction on the input image and expanded the details of

the dark light to enhance the crack features. Then, Gaussian

filtering was used to suppress and prevent the interference

of Gaussian noise. Improper setting of filter window size

may distort the image, resulting in the loss of valid

information. Acharjee et al. (2020) used contour detection

and a Canny edge filter to identify pavement potholes from

video input streams. However, its correctness was easily
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Fig. 3 e General process of intelligent detection and monitoring in road infrastructures.
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affected by the intensity of pixel value, and the shadow may

be incorrectly judged as a pit. The edge detection algorithm

sometimes has poor performance under the condition of

noisy and weak light. These methods generally required a

large number of repeated experiments. In addition, the

results were directly dependent on the method and size of

the data. The same methods may have different results for

different test datasets. In the future, the generality of the

method should be studied to decrease the complexity of

feature extraction and improve efficiency.

4.1.2. Traditional machine learning methods
With the development of artificial intelligence technology,

machine learning algorithms have been widely used in the

research and industry of pavement surface condition detec-

tion. Traditionalmachine learning algorithms include support

vector machines, random forests, artificial neural networks,

and so on, which all need to be labeled or artificially marked.

Hoang et al. (2018) constructed a machine-learning model

based on crack feature analysis, which integrated with a

support vector machine and artificial bee colony

optimization algorithm to perform pavement crack

classification. However, this method only focused on

longitudinal, transverse, and alligator cracks, while having

poor performance in thin cracks. In reference (Shi et al.,

2016), scholars proposed CrackForest, a road crack detection

model based on random forest, which can effectively

identify arbitrary complex cracks from noise according to

structured information with higher speed and accuracy.

Christodoulou et al. (2018) used an artificial neural network

for data mining. Then the texture segmentation was carried

out through entropy texture filters according to the local

changes of pixel values in images. Finally, a support vector

machine was used to classify and quantify pavement
anomalies. Although traditional machine learning methods

can achieve ideal results, the process of feature analysis and

extraction still needs manual participation. This step was

complicated and time-consuming, which directly affected

the recognition accuracy of the model to a large extent and

has low generalization ability.

4.1.3. Deep learning approaches
With the increase of network depth and parameters, deep

learning has been developed based on machine learning.

Compared with traditional machine learning methods, it is

based on a convolutional neural network (CNN) and directly

takes images and other data as input. So, deep learning can

realize end-to-end intelligent recognition while avoiding the

complicated process of manual feature extraction. Deep

learning algorithms were often used for intelligent classifica-

tion of road distresses, target detection, and semantic seg-

mentation. Fig. 4 shows the results of intelligent identification

on crack images by different algorithms. Song et al. (2020)

proposed CrackSeg, a pavement crack detection model based

on a deep convolutional neural network, which can fully

mine crack characteristics and boundary information to

realize pixel-level prediction. In addition, the method

introduced a multi-scale extended convolution module that

can obtain better recognition ability even in complex

backgrounds. Feng et al. (2020) introduced a deep

convolutional neural network model that integrated a

single-shot multibox detector (SSD) and U-Net to process

image data of different sources and sizes. The advantage

was that it overcome the problems of inaccurate location

and imperfect information of the single model. Moreover, it

can segment cracks while detecting them to obtain

geometric parameters. Based on computer vision, a CNN

model was proposed to extract the characteristics of slope
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Fig. 4 e Results of intelligent identification on crack images by different algorithms.
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cracks (Tian and Wang, 2021). The segmentation effect of the

FSNetmodel designedwas close to the fracture shape, and the

overall identification accuracy was good. However, the

recognition ability in the case of too strong or too weak

image light was deficient. In addition to surface distresses,

the combination of deep learning and ground penetrating

radar (GPR) made it possible to conduct intelligent subgrade

non-destructive detection. Li et al. (2021) first proposed to

employ the deep-learning model YOLO to detect concealed

cracks located below the pavement surface from GPR

images. The deep feature selection network was adopted to

optimize the Faster R-CNN model by adding a one-to-one

layer between the input layer of the deep neural network and

the first hidden layer (Gao et al., 2021). It strengthened the

influence of sensitive features and improved the detection

accuracy of underground pipelines and uneven settlement

distresses. Due to the complexity of GPR images with a lot of

noise, the detection accuracy was generally not high, which

still needed to be further studied.

Models based on deep learning always require a huge

number of data while having many parameters to be trained.

Therefore, manual labeling was costly, and training was time-

consuming. In addition, it may face the problems of insuffi-

cient video memory during the training, which needs to be

equipped with a high-performance computer. Unsupervised,
few-shot learning and model lightweight research should be

paid more attention to in the future.

4.2. Long-term performance monitoring

The service performance of road infrastructure and materials

mainly includes mechanical properties, physical and chemi-

cal changes, physical properties, and so on. Road researchers

used artificial intelligence algorithms and other advanced

analysis methods to predict the mechanical properties of

pavement materials. Heidaripanah et al. (2016) used a support

vector machine to predict the elastic modulus of lime

subgrade soil and compared the influence of support vector

regression (SVR) kernels on the results, including the

polynomial kernel, radial basis function, and linear check.

Chen et al. (2020) established unilateral and bilateral

mechanical property prediction models based on

backpropagation (BP) neural networks to predict the

compressive strength, splitting tensile strength, porosity,

and permeability coefficient of recycled aggregate permeable

concrete.

The artificial intelligence algorithm also has a good per-

formance in the prediction of pavement service conditions.

Mahmood et al. (2020) established three prediction models of

flexible pavement deterioration based on the long-term
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pavement performance (LTPP), a historical condition

database. The results showed that the model based on

artificial intelligence has a higher correlation. Therefore, it

was considered to have good potential in predicting

pavement deterioration. In reference (Gong et al., 2018), the

authors developed two deep neural networks to realize rut

prediction instead of traditional methods. The results

showed that the prediction performance of the two models

was better than that of the multiple linear regressionmethod.
5. Advanced industrial informatics in smart
sensing for roads

With the application of smart sensing technologies, full-scale

road monitoring with structural health assessment, traffic

monitoring, and road safety monitoring covered can be

implemented. This section focuses on the non-embedded

sensors.
5.1. Image monitoring

In recent years, cameras, and image analysis technologies

that are sensitive to the visible band have been successfully

applied to monitor and detect road surface conditions. Road

images contain distress information, for example, cracks,

potholes, etc. can be collected by mounting cameras on ve-

hicles and drones. Moreover, through the application of deep

learning technologies in these images, the road condition in-

formation, such as the dryness, humidity, snow or icing con-

ditions of the road surface, and distress information, such as

the length and width of the cracks, can be automatically

identified by the neural network (Jonsson, 2011; Omer and Fu,

2010).
5.2. Vehicle-mounted monitoring

Vehicle-mounted sensors, namely sensors installed on vehi-

cles, are used to detect and evaluate the service status of the

road surface, with the characteristics of fast movement and

high detection efficiency. The specialized vehicle-mounted

rapid detection systems including HARRIS2 in the UK,

PathRunner in the US, and CiCs in China were usually

equipped with a video imaging system, a surface imaging

system, a laser rutting measurement system, and a light

detection and ranging system (Pan et al., 2017). After capturing

the image or vibration data through the systems mentioned

above, the road smoothness international roughness index

(IRI) value, pothole identification, obstacle identification, etc.

can be analyzed and measured.

To further reduce the costs, researchers have developed a

lightweight vehicle-mounted monitoring system, including

RGB-D cameras, GPS, accelerometers, and data acquisition

equipment (Chen et al., 2016). The current vehicle-mounted

monitoring system is developing towards low cost and

lightweight, but it is still necessary to consider the influence

of vehicle speed, vehicle weight, vehicle suspension system,

and other factors on the measurement accuracy of vehicle-

mounted sensors.
5.3. Environmental monitoring

Road environment monitoring usually refers to using road

weather information systems to collect local weather data

that affect road safety such as temperature, wind speed, wind

direction, precipitation, and humidity. The monitoring of

temperature and humidity, mainly relies on the forecasts of

the provincial meteorological bureaus and partly relies on the

data based on real-time perception along the road. At regular

intervals, the road weather information system automatically

transmitted the data to the road management information

system. Then the data were analyzed to evaluate the possible

impact of future weather conditions on road operation, and

correspondingly to formulate countermeasures to ensure the

normality of the road (Liu et al., 2021; Zhao et al., 2015). For

road noise monitoring, road noise automatic monitoring

systems were established by combining road noise

automatic monitoring technology, Internet of Things

technology, wireless sensor network, etc. (Dobrilovi�c et al.,

2022; Marouf et al., 2020).

In the future, the non-embedded sensors technologies will

continue to be integrated into smart road systems to help

improve the efficiency, safety, and sustainability of trans-

portation. Image monitoring may realize intelligent image

recognition, such as detecting pavement distress and traffic

accidents, and adapt to different levels of light intensity, such

as night-time and heavy fog weather monitoring and identi-

fication. Vehicle-mounted monitoring systems will continue

to develop in the direction of small size, low cost, and high

precision. These monitoring technologies will be combined

with autonomous public transportation vehicles to detect

road smoothness, identify pavement distress, and obtain a

vehicle and traffic information to provide data support for

road maintenance decisions and intelligent traffic control.
6. Advanced industrial informatics in
cooperative vehicle infrastructure system (CVIS)

With the rapid development of intelligent sensors and wire-

less communication technologies, human users, vehicles, and

roads in traditional transportation systems can be connected

and cooperate via ubiquitous communication networks in

terms of various sensors,mobile networks, wireless networks,

and the Internet to achieve a safe, efficient, and sustainable

transportation system, which was so called CVIS. It supports

space-temporal information exchange among on-board units

(OBU) of vehicles, road-side units (RSU), and intelligent ter-

minals of human users in real-time to avoid collisions and

improve traffic congestion by cooperatively perception, deci-

sion, and control, is recognized as a revolution and a new

generation of Intelligent transportation systems (ITS) and will

promote the traditional roads to automated infrastructure

systems with new infrastructures for communications and

computations. CVIS emerged in the 1990s with the famous

projects of vehicle information and communication system

(VICS) in Japan and vehicle infrastructure integration (VII) in

the USA and developed fast in European countries and other

countries worldwide (European Commission Information
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Society and Media, 2022; ITS Joint Program Office US

Department of Transportation, 2008; Transportation

Research Board, 1998; VICS Center, 2022). In China, the first

national project of CVIS was launched in 2011, and their

intelligent vehicle-infrastructure cooperation systems (i-

VICS) (Zhang and Yao, 2015) are developed and tested based

on this project. Nowadays, CVIS has been widely deployed

and tested in closed testbeds or public roadways worldwide

such as MCity in the USA (Scholl et al., 2006), ETPC in the

Netherlands (Voronov et al., 2021), AstaZero in Sweden

(Eriksson et al., 2015) and National Intelligent Connected

Vehicle (Shanghai) Pilot Zone in China (Li et al., 2018).

CVIS is an integrated system of various latest technologies

and devices (Zhang et al., 2021). For the implementation of

CVIS, several technologies are essential and fundamental to

support V2X (vehicle-to-everything communications

referring to V2V for vehicle-to-vehicle, V2I for vehicle-to-

infrastructure, V2P for vehicle-to-pedestrian, and V2N for

vehicle-to-network communications) including multi-modal

wireless communications and automatic switch, networking

technology, information security, and system integration

technologies. For the application of CVIS, some related

technologies such as collaborative perception, high precision

positioning, swarm intelligence, parallel simulation, and

edge and cloud computation are required. The typical

applications of CVIS include cooperatively driving assistant

and collision avoidance based on V2V or V2I (Chen and

Englund, 2015; Malik et al., 2021; Naja, 2013), active signal

control and speed guidance via V2I, eco-driving via V2V and

V2I (Chen et al., 2018; Guo et al., 2019; Sharon and Stone,

2017). Connected and automated driving is also a typical

application and an important extension of CVIS

(Mahmassani, 2016). With the information sharing from

surrounding vehicles and roads, vehicles can travel safely,

efficiently, smoothly, and energy-efficiently with few

sensors and computation powers, which is considered a

promising approach to realizing full self-driving.
7. Conclusions

Road engineers have carried out a lot of research to apply

advanced industrial informatics for real engineering projects

in order to develop smart, safe, and sustainable roads. This

paper provides a state-of-the-art review of the applications in

road construction, detection, monitoring and maintenance,

and the following are the conclusions.

� Big data and deep learning algorithms are current research

hotspots, which provide technical support for safe and

smart roads. In the future, big data should be deeply

mined, and algorithms need to be improved, where the

combination of them should be focused on the improve-

ments of low computation cost and high computation

efficiency.

� For road structure evaluation,most of the existing research

was focused on surface cracks. Although satisfactory re-

sults have been preliminarily achieved, it was time-

consuming and depended on high-performance

computing equipment. In future studies, more attention
should be paid to other types as well as subgrade dis-

tresses. For example, engineers should pay attention to the

intelligent recognition of distress based on ground pene-

tration radar images. In addition, the algorithms of distress

recognition and detection still need to be improved for

higher computation accuracy and generalization ability.

Moreover, lightweight networks that can be deployed at

mobile terminals and unsupervised intelligent detection

methods should also be taken into consideration.

� The existing road image data acquisition and processing

technologies have become mature. The application of

various smart sensors in roads has preliminarily realized

the industry-level monitoring of road structure and mate-

rial, but there are still some problems such as high cost and

vulnerable consumption. It is necessary to further develop

high-performance and low-cost equipment.

� The connection and cooperation of sensors, the Internet,

and other advanced industrial informatics have promoted

the development of road infrastructure systems in recent

years. In the future, human-vehicle and vehicle-vehicle

interaction may be gradually realized. It can provide tech-

nical support for fully automatic driving, and push forward

to a smart, safe, and sustainable road system.

� It should be noted that the traditional understanding of

sustainability refers to meeting current needs without

compromising the ability of future generations to meet

their own needs. In this review, we consider sustainability

as amuch broader concept, in which advanced informatics

approaches in road engineering contribute to extending

the service life of road infrastructures while mitigating the

carbon footprint through efficient design, construction,

maintenance, and construction.
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