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Abstract
The design of magnets for magnetic resonance imaging (MRI) scanners requires the numerical simulation of a coupled
magneto-mechanical system where the effects that different material parameters and in-service loading conditions have on
both imaging and MRI performance are key to aid with the design and the manufacturing process. To correctly capture the
complex physics, and to obtain accurate solutions, finite element simulations with dense meshes and high order elements are
needed. Reduced order model approaches, based on the established proper orthogonal decomposition (POD) approach, are
attractive as they can rapidly predict the numerical simulations needed under changing parameters or conditions. However,
the projected (PODP) approach has an invasive computational implementation, whilst the interpolated (PODI) approach
presents challenges when the dimension of the space of parameters to be investigated becomes large. As an alternative, we
investigate a POD technique based on using a neural network regression, which is not as invasive as PODP, but has superior
approximation properties compared to PODI. We apply this to the coupled magneto-mechanical system to understand three
pressing industrial problems: firstly, the accurate and rapid computation of the resonant frequencies associated with this
coupled magneto-mechanical system, secondly, the effects of magnet motion on the Ohmic power and kinetic energy curves,
and, thirdly, the prediction of the uncertainty in Ohmic power and kinetic energy curves as a function of exciting frequency
for uncertain material parameters.
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1 Introduction

The use of magnetic resonance imaging (MRI) [1] has been
an essential tool inmodernmedical diagnosis due to the scan-
ners’ high in-built resolution when imaging fractures [2],
joints [3], and soft tissues, such as damaged cartilage [2] or
tumors [4].

Time varying magnetic fields generated as part of the
imaging process by an MRI scanner interact with the con-
ducting shields and generate unwanted eddy currents. The
purpose of these shields is to isolate or block the strong static
magnetic field generated by the main MRI magnet from the
region outside the scanner. However, gradient coils, which
generate weaker time varying magnetic fields, generate eddy
currents and give rise to electromagnetic stresses causing
deformations and vibrations within the MRI scanner [5–7].
This, in turn, can lead to patient discomfort and ghosting. Still
further, eddy currents and vibrations release energy, which

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01870-3&domain=pdf
http://orcid.org/0000-0002-2587-7023


Engineering with Computers

can cause helium boil-off, an expensive coolant used to keep
the magnets superconducting, and this may, ultimately, lead
to a magnet quench. Vibrations are also caused by external
machinery (e.g. lifts, cleaning equipment and building main-
tenance), which can lead to eddy currents being generated in
conducting components of the scanner and may cause distur-
bance to the uniformity of the strong magnet field generated
by the main magnet and also lead to ghosting effects. Man-
ufacturers of MRI scanners want to predict and understand
these vibrations to formulate a better understanding of the
coupling phenomena and design new and better scanners,
which exploit alternative materials. To do this, they need to
carefully optimise the configuration of the model parameters
in order to ensure that the new magnets meet their design
specification.

To help design scanners, in collaboration with our indus-
trial partner Siemens Healthineers, this paper addresses three
pressing industrial problems: firstly, the accurate and rapid
computation of the resonant frequencies associated with this
coupled magneto-mechanical system, secondly, the effects
of magnet motion on the Ohmic power and kinetic energy
curves, and, thirdly, the prediction of the uncertainty in
Ohmic power and kinetic energy curves as a function of excit-
ing frequency for uncertain material parameters. Accurate
full order model simulations require fine finite element dis-
cretisations using dense meshes and/or high order elements,
and can take significant time to compute [8–12]. To reduce
the cost of solutions for new parameters, proper orthogonal
decomposition (POD) reduced order model (ROM) schemes
[13–16] have been explored that use either Galerkin projec-
tion or interpolation [17, 18]. However, the projected POD
(PODP) approach has an invasive computational implemen-
tation, while the interpolated POD approach (PODI) presents
challenges when the dimension of the space of parameters to
be investigated becomes large. As an alternative, we inves-
tigate a POD technique based on using a neural network
regression [19, 20], which is not invasive but has superior
approximation properties compared to PODI. Using multi-
layer perceptrons (MLP) neural networks in combination
with POD has been employed by Hesthaven and Ubbiali
[21] and this technique is called PODNN (or POD-NN) in
the literature. The use of neural networks in the context
of POD range from the prediction of wind pressure and
wind induced responses for high-rise buildings [22] with
a emphasis on back-propagating networks, to the use of
recurrent neural networks (RNN) closure of parametric POD-
Galerkin ROMs [23]. In the latter, it is shown that a long
short-term memory (LSTM) type of RNN can significantly
improve accuracy and efficiency for non-linear problems,
even beyond the time interval of training data. More recently,
the use of other deep learning based reduced order models
(DL-ROMs) in POD has been considered in [24, 25] with
a more extensive literature review given in [26] covering

artificial neural networks (ANN), physics informed neural
networks (PINNs) and feed forward neural networks and the
differences between them. The application of this technology
to the three aforementioned problems will demonstrate the
advantages of using the neural network based POD over our
previous POD approaches.

The structure of the paper is as follows: Sect. 2 briefly out-
lines the mathematical model of the problem of the coupled
magneto-mechanical problem, in the form of a transmission
problem, that we wish to tackle in this project. In this sec-
tion, we also describe the finite element discretisation and
the structure of the algebraic system to be solved. Then, in
Sect. 3, we describe the reduced order modelling approach
based on POD and describe the offline and online stages. For
the online stage, we focus on PODNN and show compar-
isons with other POD approaches. We also emphasize the
importance of how the neural networks should be applied to
POD to ensure accurate results efficiently. Sect. 4 presents
a series of numerical examples where the PODNN tech-
nique is applied to the problems of interest in this work.
This includes the prediction of resonant modes in the Ohmic
power and kinetic energy curves using different parameter
spaces, predicting the response in the same outputs of inter-
est for different external vibrational loading conditions and
predicting the response in outputs of interest when model
parameters are uncertain. Finally, in Sect. 5 we conclude our
findings and recall the work carried out in this paper.

2 Magneto-mechanical model

To computationally simulate the coupled electro-mechanical
interactions in a MRI scanner we choose to follow [12] and
formulate the equations in a Lagrangian setting. We recall
that this mathematical model assumes that both the displace-
ments and the velocities of the conducting components are
small. The problem of interest is described by Fig. 1, where
�C denotes a conducting region, �c

C := R
3\�C denotes

the (unbounded) non conducting region and ∂�C represents
the boundary of the conducting region. The unknown fields
for this problem are the magnetic vector potential A and the
mechanical displacement u, while J is a known external cur-
rent source.

Continuing to follow [12], by linearising about the static
(DC) solution, the transient (AC) problem becomes linear in
time (t) dependent fields and the latter can be represented in
a time-harmonic fashion so that

A(t) = ADC + Re
(
AAAACeiωt

)
, (1a)

u(t) = uDC + Re
(
UUUACeiωt

)
, (1b)
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Fig. 1 General representation of the magneto-mechanical problem,
illustrating a conducting region�c with magnetic permeabilityμ = μ∗
and electrical conductivity γ = γ∗ that is within an unbounded non-
conducting region�c

C withμ = μ0 and γ = 0. An excitation is applied
by a current source J s that is prescribed in the coils

with a similar decomposition for J , where ω = 2π f is
the angular frequency of the driving excitation, f is the
frequency in Hz and i := √−1. A linearised transmission
problem has already been derived in [12, 27] for this prob-
lem leading to the strong form

curl(μ−1 curlAAAAC) + iωγAAAAC = JJJAC in R3, (2a)

divAAAAC = 0 in �c
C, (2b)

div
(
σm(UUUAC) + μ−1T (ADC,AAAAC)

)
= −ρω2UUUAC in �C,

(2c)

AAAAC = O(|x|−1) as |x| → ∞, (2d)

UUUAC = UUUAC
D on ∂�D

C , (2e)

n ×
[
AAAAC

]
∂�C

= 0 on ∂�C, (2f)

n ×
[
μ−1 curlAAAAC

]
∂�C

= 0 on ∂�C, (2g)

(
σm(AAAAC) + μ−1T (ADC,AAAAC)

) ∣∣∣
−
∂�C

n

=
(
μ−1T (ADC,AAAAC)

) ∣∣∣
+
∂�C

n on ∂�C \ ∂�D
C ,

(2h)

where γ , ρ and μ are the electric conductivity, mass density
and magnetic permeability, respectively; n is a unit outward
normal (pointing from the conducting to the non-conducting

side); σ e(UUUAC) is defined as the mechanical contribution
to the Cauchy stress tensor;

(
μ−1T (ADC,AAAAC)

)
is the lin-

earisedMaxwell stress tensor; ∂�D
C denotes the (mechanical)

Dirichlet part of ∂�C and [·]∂�C := (·)|+∂�C
−(·)|−∂�C

denotes

the jump, with (·)|+∂�C
and (·)|−∂�C

representing the non-
conducting and conducting side of ∂�C, respectively. Once
(2) has been solved, the complex amplitudes of the electric
and magnetic AC fields in the Eulerian setting can be recov-
ered as

EEEAC = −iωAAAAC + iωBDC
0 ×UUUAC in �C, (3a)

HHH AC = μ−1BBBAC
0 in R3, (3b)

where BBBAC
0 = curlAAAAC and BDC

0 = curl ADC and the com-
plete physical fields for both stages are

E = Re(EEEACeiωt ) = Re((−iωAAAAC

+ iωBDC
0 ×UUUAC)eiωt ) in �C, (4a)

H = μ−1B0 = μ−1(BDC
0 + Re(eiωtBBBAC

0 ))

= μ−1(curl ADC + Re(eiωt curlAAAAC)) in R3. (4b)

In this paper, we assume that the DC fields are known.
Our goal is to provide a new reduced order model procedure
to allow the rapid prediction of approximations to AAAAC and
UUUAC for new material parameters and loading conditions. In
turn, this allows us to obtain associated outputs of interest as
well as to understand the uncertainty in outputs of interest for
uncertain material parameters. To this end, we truncate �c

C a
finite distance from �C, and create the truncated domain �.
On ∂�, we impose n×AAAAC = 0 as an approximation to the
decay condition (2d). To circumvent theCoulomb type gauge
in (2b), we add a small perturbation εAAAAC to the left hand
side of (2a) in � \ �C and replace AAAAC with the regularised
solution AAAAC

ε . We then use the finite element method (FEM)
to approximate full order model solutions to AAAAC

ε and UUUAC

over the �. For further details we refer to [12]. In the next
section,we briefly recall the finite element (FE) discretisation
employed.

2.1 FEM discretisation

FEM discretisation involves partitioning the domain into
non-overlapping regions called elements and then approx-
imating the solution over each of these elements by appro-
priate piecewise polynomials. We will use an unstructured
grid of tetrahedral elements due to the automatic procedures
that are available for generating these meshes around com-
plex configurations and adopt a higher order (hp-version) FE
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framework allowing the combination of refining the mesh
spacing (h) and increasing the order (p) of these polyno-
mials in order to improve the accuracy of the solution [8,
10, 11], as was applied in the case in our previous work
[12]. The use of such technology allows accurate solutions
to be obtained and, in the case of p-refinement for smooth
solutions, and combinations ofh- and p-refinements, for non-
smooth solutions due to sharp edges and corners, is known
to lead to exponential convergence of the solution [8]. The
mathematics and continuity requirements of the fields dic-
tate that the mechanical displacement and magnetic vector
potential should be approximated differently, for details of
the weak form of (2) and its derivation we refer to [12].
This then means that H(curl) conforming basis functions be
used for AAAAC

ε while H1 conforming basis functions should
be used for each component ofUUUAC. The particular choice of
basis functions employed correspond to those proposed by
Schöberl and Zaglmayr [28, 29]. This means that fields AAAAC

ε

andUUUAC are approximated by

AAAAC
ε,hq =

PAC
global∑
g=1

NgAAC,g
ε , (5a)

UUUAC
hp =

Qglobal∑
s=1

LsU AC,s, (5b)

where the subscripts hq and hp are used to indicate that
these are discrete approximations on a mesh of spacing h
with different orders q and p, additionally, PAC

global and Qglobal

refers to the number of degrees of freedom (DOF) in the AC
system in the same respective manner. Still further, Ng and
Ls are typical H(curl) and H1 basis functions respectively
[17].

2.2 Full order model

Using the FEM recalled above, the application of the lin-
earised strategy in [12] leads to the need to solve parametrised
linear systems of the form: Find AAC

ε and UAC such that

[
KAC
AA + CAC

AA 0
KAC
UA KAC

UU − ω2MAC
UU

] (AAC
ε

UAC

)
=

(
RAC
A
0

)
, (6)

where KAC
AA, CAC

AA, KAC
UA, KAC

UU , K
AC
UU and MAC

UU refer to
the system matrices that are obtained by discretisation of
the weak forms. The explicit definitions for these matrix
blocks can be seen in [18] with K, M and C referring to
stiffness, mass and damping type matrices, respectively. The
RAC
A term drives the solution to the problem. The structure

of (6) means that a computational efficient solution strategy

is first employed to solve

[
A(w)

] (
q(w)

) = (
r(w)

)
, (7)

for q(w) := AAC
ε (w), where A(w) := KAC

AA(w) + CAC
AA (w)

and r(w) := RAC
A (w), we have emphasised how the solution

may depend on parameters of interestw, and have introduced
the simplified notation to help with later sections. Once (7)
has been solved, UAC can be obtained from solving

[
KAC
UU − ω2MAC

UU
] (UAC) = − [

KAC
UA

] (AAC
ε (w)

)
, (8)

and, in the case of a non-zero Dirichlet boundary condition
in (2c), to the right hand side in (8), an additional contri-
bution corresponding to columns of

[
KAC
UU − ω2MAC

UU
]
that

have been moved to the right hand side multiplied by the
corresponding solution coefficients found from the Dirichlet
condition [9], should be subtracted. Of the systems (7) and
(8), in practice, the former is larger andmore computationally
expensive to solve since, typically, PAC

global � QAC
global as �C

is just a small part of� and the latter only needs to be solved
for those mechanical degrees of freedom in �C. Henceforth,
following the justification considered in [17], the former will
be our focus in the following section.

3 Reduced order modelling

To aid with the development and design of a new MRI scan-
ner, linear systems of the form (6) must be repeatability
solved a large number of times for different parameters (such
as frequency or conductivity of radiation shields), which can
lead to exponential growth in computational cost. To address
this, we consider a reduced order model (ROM) to opti-
mise work flow and reduce the overall computational cost. In
particular, we consider a form of proper orthogonal decom-
position (POD) approach e.g. [14, 30, 31], which seeks to
extract modal information from a small number of solution
snapshots corresponding to sets of snapshot parameters and
use the most important of these to construct a problem of
reduced size. These ROMs have been successfully applied
to a range of engineering problems and, in the context of
the linearised magneto-mechanical problem [17], interpo-
lated (PODI) and projected versions (PODP) of the POD for
the system (7) have been considered. In this work, we inves-
tigate a POD technique based on using a neural network
regression (PODNN). Our implementation is equivalent to
that proposed by Hesthaven and Ubbiali [21], and is less
invasive than PODP and is amenable to a large number of
potential parametersw. We briefly outline the offline (shared
by all PODapproaches) and the differing online stages below.
We also provide some practical insights in to how PODNN
should be applied to achieve accurate results.
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3.1 Offline stage

Computed solutions to (7) for different sets of (snapshot)
parameters w = w j ∈ R

P are arranged in D as:

D = (q(w1),q(w2),q(w3), . . . ,q(wNs)) ∈ C
η×Ns , (9)

with Ns representing the number of computed snapshots and
η = PAC

global. To extract the modal information, a singular

value decomposition (SVD) is applied so that D = H�GH ,
where H ∈ C

η×η and G ∈ C
Ns×Ns being unitary matrices,

� ∈ R
η×Ns being a diagonal matrix padded out with zeros

and �i i being the singular values, arranged in descending
order decay towards zero and H denoting the matrix Hermi-
tian. Then, by dropping those singular values corresponding
to �i i/�11 ≤ TOL, D can be well approximated by a trun-
cated singular value decomposition (TSVD)

D ≈ Dm = Hm�m(Gm)H , (10)

where m is the number of singular values that are retained.
Since m < Ns << η, the truncated matrices of left and right
singular vectors follow the form Hm = [h1,h2, . . . ,hm] ∈
C

η×m and (Gm)H ∈ C
m×Ns whilst the diagonal matrix fol-

lows �m ∈ R
m×m . We would like m to be small whilst also

maintaining a good approximation to D.

3.2 Online stage

The online stage involves approximating the solution of (7)
for new sets of parameters at reduced computational cost
compared to the offline stage. The aim is to calculate an
approximation q(w) for new w that are different to the snap-
shot parameters w j .

3.2.1 Interpolated POD (PODI)

In the case of interpolated POD (PODI), the approximation
is typically chosen as e.g [17, 32]

qPODI(w) =
m∑

k=1

hk�kk Ik(w, (Gm)H ), (11)

where Ik(w, (Gm)H ) is an interpolation through the kth row
of (Gm)H or equivalently the kth column of Gm , with the
overbar denoting the complex conjugate, for the parameter
set of interest w. For further details of the implementation
see [17].

3.2.2 Projected POD (PODP)

In the case of projected POD (PODP), the formof the approx-
imation is chosen as e.g [15, 17, 33]

qPODP(w) = Hmp(w), (12)

wherep(w) ∈ C
m is obtained from solving a small parameter

dependent linear system obtained by Galerkin projection of
(7)

Am(w)pm(w) = rm(w), (13)

where Am = (Hm)HA(w)Hm and rm = (Hm)Hr for each
parameter set of interest. For further details of the implemen-
tation see [17].

3.2.3 Neural network POD (PODNN)

In the case of a neural network POD (PODNN), one possible
choice is analogous to (11) i.e.

qPODNN(w) =
m∑

k=1

hk�kk Rk

(
w, p

(
(Gm)H

))
, (14)

where a Neural Network is constructed to provide a regres-
sion (instead of interpolation) through the kth row of (Gm)H

or equivalently the kth column of Gm). An alternative is to
use

qPODNN(w) =
m∑

k=1

hk Rk

(
w, p

(
�m(Gm)H

))
. (15)

The version in (15) can be seen to be equivalent to the strategy
proposed byHesthaven and Ubbiali [21], which, in the above
notation, is Rk

(
w, p

(
(Hm)HD

)) ≈ Rk
(
w, p

(
�m(Gm)H

))
by (10). In both the case of (14) and (15), the neural network
regression involves creating a function defined by parameters
p((Gm)H ) or p(�m(Gm)H ), respectively, which enables the
prediction of qPODNN at low cost for new parameters w. To
establish the advantages that (15) offers over (14), we con-
sider the ability of neural networks to capture oscillatory
functions in the next section.

3.2.4 Capture of oscillatory functions by neural networks

As a simple example, we wish to consider the ability of a
feed forward neural network to capture a vector y(x) ∈ R

100

of oscillatory functions with components

yk(x) = wk sin(κk x), (16a)

κk = 2π

k
, (16b)
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where wk are amplitudes of the functions and x ∈ [0, 1]. To
do this, we set up a dataset with N samples in the form of
ordered pairs

D :=
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(N ), y(N ))

}
, (17)

where x( j) = x( j) is a scalar input feature in this case and y( j)

is the corresponding vectorial output labels. Using a mean
squared error (MSE) as a loss function, the training of a neural
network for this problem corresponds to finding parameters
p such that

L( p) := min
p

1

N

N∑
j=1

∣∣∣y( j) − R(x(j), p)
∣∣∣
2

(18)

where R(x( j), p) describes the regression function provided
by a particular Neural Network architecture. We start with a
neural networkwith L = 1 layers andn = 10 neurons in each
layer and a dataset with N = 101 entries. In Fig. 2, the results
obtained for the cases where a single network is trained to
approximate y(x)withwk = 1, separate networks are trained
to approximate yk(x) with wk = 1 individually and a sin-
gle network is applied to capture y(x) with wk = 1/k2

(where the oscillatory functions have reducing amplitude)
are compared. The MSE loss for the single network with
wk = 1 is L( p) = 3.21 × 10−1, then using multiple net-
works with wk = 1 the loss for the first oscillatory function
is L( p) = 4.76 × 10−13 and L( p) = 4.99 × 10−1 for the
last oscillatory function. Finally, the MSE loss for a single
network with wk = 1/k2 is L( p) = 5.13 × 10−8. In this
figure, we observe that a single network is unable to capture
the oscillatory functions for wk = 1, and there are clearly
errors present even in the prediction of y1(x). On the other
hand, training separate networks capture the behaviour of
y(x)well withwk = 1. However, if the oscillatory functions
are such that wk = 1/k2, a single network is able to capture
the behaviour of the lowest modes accurately.

As L = 1 and n = 10may not represent the best choice of
hyper parameters,we nowapply aBayes optimisation param-
eter search [34] to determine the best choices of Lopt and nopt
in each case so thatL( p) isminimised.Other alternative opti-
misation strategies could be used, but we expect them to lead
to similar results. The resulting loss surfaces are shown in
Fig. 3 and, in Fig. 4, we repeat the investigation shown in
Fig. 2 for the new hyper-parameters obtained. Again, we can
state the MSE loss for the optimised single network with
wk = 1 (Lopt = 3, nopt = 16) as L( p) = 2.19×10−1, then,
usingmultiple networks withwk = 1, the optimised network
trained to the first oscillatory function (Lopt = 2, nopt = 5)
as L( p) = 2.09 × 10−10 and the optimised network trained
to the last oscillatory function (Lopt = 2, nopt = 14) as
L( p) = 4.22 × 10−1. Lastly, using an optimised single

network with wk = 1/k2 (Lopt = 1, nopt = 12) gives
L( p) = 3.12 × 10−8. Similar to Fig. 2, Fig. 4 shows that
a single network with optimised hyper-parameters is unable
to capture well y(x) when wk = 1, but is able to capture
the behaviour well when wk = 1/k2. When networks are
trained to predict yk(x) individually, the prediction is accu-
rate for the first few oscillatory functions but as they become
more oscillatory, the loss is higher, as seen on Fig. 3 for the
last oscillatory function, which hence means they are unable
to capture yk(x) for higher k.

The computational costs of using a single neural network
withwk = 1,multiple networkswithwk = 1anda single net-
work with wk = 1/k2 are compared in Fig. 5 for both a fixed
choice of L and n and also those obtained from the Bayes
optimisation Lopt and nopt. These, together with the afore-
mentioned plots, illustrate that a single network can perform
well and is efficient provided that the oscillatory functions
have reducing amplitudes.

3.2.5 Implications for PODNN

Returning again to (14) and (15), we see that the lat-
ter involves Rk

(
w, p

(
�m(Gm)H

))
, where the rows of

�m(Gm)H represent functions that are both oscillatory
and reducing in amplitude, whilst the former involves
Rk

(
w, p

(
(Gm)H

))
, with the rows of (Gm)H being oscil-

latory but not reducing in amplitude. Thus, by Sect. 3.2.4,
the latter case is preferred as it requires less computational
effort and requires only the training of a single network. In
practice, the datasets we will use for PODNN can be setup
in a similar way to D described above and, for later use, it is
useful to introduce

x( j) =
{
w j for linear spaced snapshots,

log10(w j ) for logarithmically spaced snapshots,
(19)

where the log10(w j ) should be interpreted as
(
log10(w1 j ),

log10(w2 j ), . . . , log10(wP j )
)
for P parameters and use a

similar approach for describing the continuous variable
x(w). Analogous to (18), we also state the corresponding
MSE loss function for this case as

LPODNN( p) := min
p

1

N

N∑
j=1

∣∣∣∣
(
�m(Gm)H

)
:, j

−R
(
x( j), p

(
�m(Gm)H

))∣∣∣
2
, (20)

where the notation :, j implies all rows and the j th column.
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(c) Single network with wk = 1/k2

Fig. 2 Oscillatory functions; feed forward network fit yk(x), k = 1, . . . , 10 with L = 1, n = 10 for a single network with wk = 1, b multiple
networks with wk = 1, c single network with wk = 1/k2

4 Numerical examples

Numerical examples that demonstrate the advantages of
the PODP scheme over a PODI scheme in the magneto-
mechanical problem described in Sect. 2 has been presented
in [17] and sowe focus onPODNNand the additional benefits
this offers. We begin by describing the test-magnet geome-
try in Sect. 4.1, which will be the focus of our comparisons
presented in this work. Then, in Sect. 4.2, we describe the
software used to generate our numerical results followed by
a description of the discretisation in Sect. 4.3.We present pre-
dictions of resonant modes in the Ohmic power and kinetic
energy curves using different parameter spaces for the test
magnet geometry in Sect. 4.4 followed by the predictions
of the response in the same outputs of interest for different

external vibrational loading conditions in Sect. 4.5. Then, in
Sect. 4.6, the PODNN technique is then also used to predict
the response in outputs of interest when model parameters
are uncertain.

4.1 Test magnet geometry

Our focus will be a simplified MRI configuration called the
test magnet problem, which is rotationally symmetric, and
was previously considered in [12]. For the simplified model,
only the rotational symmetric z-gradient coil is considered
and the non-rotationally symmetric x and y gradient coils are
removed. If desired, this allows the problem to be reduced
to a axisymmetric problem although we will model it as one
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(a) Single network with wk = 1 (b) Multiple networks with wk = 1; first oscillatory function

(c) Multiple networks with wk = 1; last oscillatory function (d) Single network with wk = 1/k2

Fig. 3 Oscillatory functions; the MSE loss function (18) as a function
of L = 1, . . . , 5 and n = 1, . . . , 16 used in the Bayes optimisation for
a single network with wk = 1, b multiple networks with wk = 1 for

the first oscillatory function, c multiple networks with wk = 1 for the
last oscillatory function and d single neural network wk = 1/k2
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(a) Single network with wk = 1
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(b) Multiple networks with wk = 1
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(c) Single network with wk = 1/k2

Fig. 4 Oscillatory functions; feed forward network fit yk(x), k = 1, . . . , 10 with optimum hyper-parameters for a single network with wk = 1, b
multiple networks with wk = 1 and c single network with wk = 1/k2

(a) Fixed network L = 1, n = 10 (b) Bayes optimisation L = Lopt, n = nopt

Fig. 5 Oscillatory functions; timing comparison between a single network and multiple networks based on simulations a in Fig. 2 and b Fig. 4
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quarter of the full three-dimensional geometry.1 An illustra-
tion of this MRI configuration can be seen on Fig. 6, which
shows a typical 2D cross-section and 3D view of the general
setting. In this figure, the conducting shields (4 K and 77 K)
and the outer vacuum chamber (OVC) are shown in differ-
ent shades of blue and these will deform under the presence
of electromagnetic stresses generated due to the presence
of eddy current currents in the conducting components. The
main coils and gradient coils are shown in shades of red. The
dimensions, exciting currents and materials of this problem
are commercially sensitive, but indicative values are provided
in [35]. Unless otherwise stated, we assume that UUUAC

D = 0
in the boundary condition UUUAC = UUUAC

D on ∂�D
C in (2e) to

reflect the fact that the magnet geometry is fixed in position.
Furthermore, the transmission problemdescribed by (2)must
be supplemented by the symmetry boundary conditions [17]

σm(UUUAC)n = 0, (21a)

n ·UUUAC = 0, (21b)

n ×AAAAC = 0, (21c)

that are to be imposed on the x = 0 and y = 0 planes.
As outputs of interest for the MRI configurations involve

the output (dissipated) power P0
�(ω,AAAAC

ε , BDC
0 ,UUUAC) and

the kinetic energy Ek
�(ω,UUUAC) which are defined as:

P0
�C

:= 1

2

∫

�C

γ
∣∣EEEAC

∣∣2d�

= 1

2

∫

�C

γ
∣∣ − iωAAAAC

ε + iωBDC
0 ×UUUAC

∣∣2d�, (22a)

Ek
�C

:= ω2

2

∫

�C

ρ
∣∣UUUAC

∣∣2d�, (22b)

as a function of ω. In practice, our approximation to these
will be evaluated for a particular conducting shield �C. At
an intermediate stage, we will also consider plots of approxi-
mations to ‖AAAAC

ε (ω)‖L2(�C) as a functionω, which is defined
as2

‖AAAAC
ε (ω)‖L2(�C) :=

√∫

�C

AAAAC
ε (ω) ·AAAAC

ε (ω)d�. (23)

1 Of course, if desired, a different fraction of the full geometry could
be considered provided the correct symmetry boundary conditions are
imposed.
2 Reminder that a represents the complex conjugate of a vector field a.

4.2 Software

The magneto-mechanical model will be simulated using a
simulation tool that has been extended from the previously
developed higher order finite element and reduced order
model tool developed by our group to simulate the prob-
lems described in [12, 17, 18]. The latest additions include
the extension to handle the PODI and PODNN reduced
order models for large parameter space w, uncertainty quan-
tification features and non-zero Dirichlet displacements of
the shields. The neural networks were implemented with
MATLAB’s Deep Learning Toolbox [36], which has sim-
ilar functionalities to popular python packages such as
tensorflow [37], scikit-learn [38] or pytorch
[39], since our simulation tool was also written in MATLAB
[40]. In particular, the feedforwardnet tool was used to
build multilayer perceptron (MLP) neural networks. In the
following, we focus on numerical results for the new reduced
order models as the accuracy of the linearised strategy in
(2) and the hp-finite element discretisation has already been
established in [12].

For PODNN, the split between Dtrain and Dtest is 85%
and 15%, respectively, and is applied throughout. Prior to
training using Dtrain, values were normalised to the standard
deviation and mean of
(�m(Gm)H )1,:. Additionally, the form of the activation
function followed a tan-sigmoid function. To solve the min-
imisation problems (20) the Bayesian regularisation solver
with the option to use the Jacobian for calculations was
employed with the maximum number of epochs set to 5000
and min grad= 10−10. Bayes optimisation, implemented
with MATLAB’s Statistics and Machine Learning Toolbox
[41], is applied to determine the optimum number of layers
Lopt and neurons per layer nopt, in a similar way to Sect. 3.2.4
with other hyper-parameters set as per [36]. All computations
were performed on a workstation that comprised of a 12-core
Intel XeonW-2265 Processor with 128GB (8× 16GB)RAM
and a NVIDIA Quadro RTX 4000 8GB graphical processing
unit.

4.3 Discretisation

For this problem, �c
C is truncated to form a finite computa-

tional domain� by excluding the region outside of a suitably
sized cylinder. We discretise � by an unstructured mesh
of 33 805 tetrahedral elements and employ a discretisation
with q = 3 and p = 3 order elements for AAAAC

ε,hq and UUUAC
hp ,

respectively. To dampen the resonant peaks in the model, we
employ a fixed damping ratio of ξ = 2×10−3 and to circum-
vent the Coulomb gauge we use a regularisation parameter
of ε = 10−4. This choice of discretisation has been shown to
provide accurate full order model solutions to the test magnet
geometry over the parameters of interest [12].
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Fig. 6 Test magnet problem
with z (longitudinal) gradient
coil; illustration of the
components of the problem a in
the axisymmetric meridian
plane and b 3D view

(a) 2D cross-section (b) 3D view

4.4 Prediction of resonant modes

4.4.1 Offline stage

We first consider the effects of different choices of snapshots
and the behaviour it has on the decay of �i i . Considering
the case of P = 1 and w = (ω) = 2π( f ) with 5 ≤ f ≤
5000 Hz, wewill explore five different selections of snapshot
frequencies wi = 2π( fi ) and decide which will be most
appropriate for our problem. From previous analysis in [17],
we know that the test-magnet geometry is sensitive to lower
frequencies and, hence, may require more frequencies within
that lower range.

Secondly, we consider the choice of snapshot parameters
for case of P = 2withw = (ω, γOVC

0 )where 0.1 ≤ γOVC
0 ≤

10 is a non-dimensional factor used to scale the conductivity
in the OVC such that

γOVC = γOVC
0 γOVC

ref , (24)

where γOVC
ref is a reference value for conductivity of the

shield.
In [17] a piece-wise linear choice for the snapshot fre-

quencies was made, but it is not clear that this is the best
choice. Therefore, we compare the performance of selecting
the snapshots fi in a linear, piece-wise linear and logarithmic
fashion in the following.
Linear The linear snapshot frequencies fi in Hz are chosen
such that:

fi = 5 + 5000 − 5

Nfs − 1
(i − 1), (25)

for i = 1, . . . , Nfs, where Nfs is the total number of snapshot
frequencies and, in the case of P = 1, Ns = Nfs.

Piece-wise linear The piece-wise linear snapshot frequen-
cies fi are chosen by first introducing the splitting Nfs =
N (1)
fs + N (2)

fs , which are then used to calculate the spacings

� f (1) = 1000 − 5

N (1)
fs − 1

,

� f (2) = 5000 − 1000

N (2)
fs − 1

,

(26)

where the numerators are determined the range of frequen-
cies that we intend to split by. The frequencies fi are then
constructed as

fi =
{
10 + (i − 1)� f (1) for 1 ≤ i ≤ N (1)

fs ,

1000 + (i − N (1)
fs )� f (2) for N (1)

fs < i ≤ N (2)
fs ,

(27)

with N (1)
fs and N (2)

fs chosen as in [17].
Logarithmically spaced For logarithmically-spaced fre-
quency snapshots, fi is chosen such that

log10( fi ) = log10(5) +
(
log10(5000) − log10(5)

)

Nfs − 1
(i − 1),

(28)

with i = 1, . . . , Nfs.
For Nfs = 180, we compare the distribution of fi accord-

ing to (25), (27) and (28) in Fig. 7, with the first being equally
spaced and second and third showing a clustering of samples
for smaller frequencies as expected. Making these different
choices of snapshots to generate full order model solutions
q(w j ), creating D in (9), and then applying the TSVD in
(10) leads to the decay of�i i shown in Fig. 8. Comparing the
different choices, the log-spaced snapshots in (28) leads to
fastest decay of the singular values. Setting T OL = 10−6.5

(due to the decay in Fig. 8 indicating that the decay is no
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Fig. 7 Test magnet problem with z (longitudinal) gradient coil; Offline
stage for Nfs = 180. A comparison of linear, piece-wise linear and
log-spaced snapshots for 5 ≤ fi ≤ 5000 Hz

0 10 20 30 40 50

Mode m

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
si

ng
ul

ar
 v

al
ue

Linear spacing
Piece-wise linear spacing
Log spacing

Fig. 8 Test magnet problem with z (longitudinal) gradient coil; Offline
stage for P = 1, Nfs = 180. Relative singular values �mm/�11
obtained using linear, piecewise-linear and log-spacing for fi

longer exponential after this point), then, by choosing m
according to the largest value for which �mm/�11 < TOL,
we obtain m = 34 for (25), m = 28 for (27) and m = 20
for (28), hence, leading to the smallest reduced order model
when the log-spaced frequencies are used.An additional ben-
efit of (28) over (27) is that we do not need to define a priori
where to split the piece-wise linear spacing of frequencies.

The complex amplitudes |(�m(Gm)H )i j | shown as lines
for a fixed i = 1, . . . , 10 against f j , j = 1, . . . , Nfs, are
included on Fig. 9 for the different choices of snapshots.
The general trend for linear, piece-wise linear and loga-
rithmically spaced snapshots is that the lower modes (e.g.
i = 1, 2) are simple smooth functions that are not very
oscillatory, but, as i increases, the modes become increas-

ingly more oscillatory. For higher modes, the oscillatory
nature is very pronounced for small f j and Fig. 9d indicates
there are additional benefits by showing |(�m(Gm)H )i j |
against f j , j = 1, . . . , Nfs on a log-log graph indicating
that x( j) = log10 ω j = log10(2π f j ) may be a good choice
in this case. Henceforth, we choose the frequency snapshots
according to (28) and use x( j) = log10 ω j , but in the follow-
ing we will not only consider Nfs = 180, but also cases of
Nfs = 13, 23, 45, 90 to reduce computational effort needed
for the off-line stage. The snapshots Nfs = 45, 90 follow
a similar decay and lead to models of size m = 20, but,
the Nfs = 13, 23 cases are seen to decay faster and hence-
forth a reduced model of size m = 18. However, as seen in
Sect. 4.4.2 for Nfs = 13, it will not be a sufficient amount of
snapshots to accurately capture the solution of the problem.

Having found that a logarithmic spacing fi is preferable,
we now consider how best to choose the conductivity factor
snapshots γOVC

0,i . Given that γ and ω appear as a product
in (2a) we argue that the best choice for the spacing of the
snapshots γOVC

0,i is also logarithmic. Hence, we propose

log10(γ
OVC
0,i ) = log10(0.1) +

(
log10(10) − log10(0.1)

)

Ncs − 1
i,

(29)

with i = 1, . . . , Ncs and Ncs is the chosen number of snap-
shots for the conductivity factor. This means that for the case
of P = 2 we have Ns = NcsNfs snapshots in total. The decay
of singular values, shown in Fig. 8 for P = 1, can also be
found for P = 2 and shows a similar behaviour. In this case,
however, setting T OL = 10−6.5 corresponds to a reduced
model of sizem = 44 if Ns = 23×23 and, hence, still offers
a considerable saving.

4.4.2 Online stage

Predictions for w = (ω) = 2π( f ) with P = 1 In the online
stage of either PODI or PODNN we can easily evaluate (23)
and (22) for any frequency of interest. However, for the pur-
pose of visualisation, we will show results for the case where
the ROMs are evaluated for the following output frequencies
in Hz

fi = 15 + 5000 − 15

Nfo − 1
i, (30)

for i = 1, . . . , Nfo, with Nfo = 500, unless otherwise stated.
WeuseBayes optimisation as inSect. 3.2.4 tofind Lopt and

nopt using the search space L = 1, . . . , 5 and n = 1, . . . , 16.
The resulting MSE loss LPODNN( p) is shown on Fig. 10a
for Nfs = 180. As previously observed in Fig. 3, a simi-
lar LPODNN( p) trend is observed with LPODNN( p) < 10−6

for n > 5 independent of L in this case. This investiga-
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Fig. 9 Test magnet problem with z (longitudinal) gradient coil; offline stage for P = 1, Nfs = 180. Complex amplitudes |(�m(Gm)H )i j | as lines
for a fixed i = 1, . . . , 10 against f j , j = 1, . . . , Nfs, for a linearly spaced f j , b piece-wise linearly spaced f j , c log-spaced f j and d against log f j
for log-spaced f j

tion will be repeated for Nfs = 13, 23, 45, 90 as each will
give rise to a slightly different |(�m(Gm)H )i j |. We addition-
ally show in Fig. 10b the ability of the optimised network
to fit |(�m(Gm)H )i j | for a fixed i = 1, 9, 19 against f j ,
j = 1, . . . , Nfs for Nfs = 180. As expected, the higher
modes are more oscillatory and, hence, the fitting becomes
comparatively worse for these modes. For example, i = 9 is
shown to have reasonable fitting at higher frequencies. How-
ever, for i = 19, the network is partially able to capture
|(�m(Gm)H )i j | against f j , j = 1, . . . , Nfs. Due to the fact
that�m

19,19/�m
1,1 ≈ 5.9×10−7, which is close enough to the

TOL chosen, the partial fitting of this mode is well enough
for a reasonable prediction as seen in Fig. 11.

To illustrate the interdependence between Nfs and some
of the hyper-parameters of the MLP, we show in Fig. 11 the
behaviour of ‖AAAAC

ε,hq(ω)‖L2(�C) as a function of ω = 2π f
obtained by applying (15) and then (5a) for different Nfs

and different values of the hyper-parameters L = Lopt and
n = nopt found by the Bayes optimisation with their respec-
tive LPODNN( p). The different lines in the figure correspond
to the cases where �C is considered to be the 4K, 77K
shields and the OVC in turn, also shown are the correspond-
ing solution snapshot solutions for ‖AAAAC

ε,hq(ω)‖L2(�C). For
Nfs = 23, 45, 90, 180 we get good agreement for all shields,
but not in the case of the 4K shield with Nfs = 13.

Having now established that the performance of PODNN
is similar for Nfs > 23 snapshots, we show, in Fig. 12 a com-
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Fig. 10 Test magnet problem
with z (longitudinal) gradient
coil; online stage for P = 1.
Showing a MSE loss as a
function of L = 1, . . . , 5 and
n = 1, . . . , 16 and b
comparisons of |(�m(Gm)H )i j |,
j = 1, 9, 19 for Nfs = 180
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parison between the accuracy and computational efficiencies
of PODI, PODP and PODNN. As an approximate measure
of accuracy, we introduce

ε(‖AAAAC
ε,hq‖L2(�C))

:=

√√√√√
∑Nfs

j=1

(
‖AAA AC, POD

ε,hq (ω j )‖L2(�C) − ‖AAA AC, Full
ε,hq (ω j )‖L2(�C)

)2
∑Nfs

j=1 ‖AAA AC, Full
ε,hq (ω j )‖2L2(�C)

,

(31)

where ‖AAA AC, POD
ε,hq ‖L2(�C) and ‖AAA AC, Full

ε,hq ‖L2(�C) are the eval-
uations of (23) with the reduced techniques and the full
order model, respectively. A more precise calculation would
involve the

√√√√√
Nfs∑
j=1

‖AAA AC, POD
ε,hq (ω j ) −AAA AC, Full

ε,hq (ω j )‖2L2(�C)
/

Nfs∑
j=1

‖AAA AC, Full
ε,hq (ω j )‖2L2(�C)

which does not average out possible spatial errors. However,
we have high confidence in the PODNN solutions given the
results in Fig. 11 and those presented later in this section.
To compare computational efficiencies, we consider the wall
clock time of the online stages of the calculation of qPOD for
the POD techniques.We see that PODP ismost accurate with
ε(‖AAAAC

ε,hq‖L2(�C)) ≈ 10−7 independent of the Nfs consid-
ered. PODI performs worse than PODP, especially for lower
Nfs by a few orders of magnitude but improves for larger
Nfs. PODNN does not perform as well as the PODP case
but for small Nfs, it is shown to perform better than PODI.
However, the decrease in accuracy may be due to the toler-
ances chosen within the network but the accuracy achieved
by PODNN is sufficient for this practical application. Addi-
tionally, we show the online computational expense for the
ε(‖AAAAC

ε,hq‖L2(�C)), with PODNN showing the best in terms
of performance. In Figure 10 and Figure 15 of [17], the total
online and offline costs of PODI and a full order solver aswell

as PODPwith a full order solver were compared for the same
problem (but using a differentmachine). In both cases, PODP
and PODI offer similar computational costs, but just like
in Fig. 12b, the accuracy of PODP was substantially better
than PODI. Discounting training and optimisation time, the
total costs for PODNN would be similar to PODP and PODI
shown in [17] if the same machine was used. However, the
cost of optimisation and training can be significant as Fig. 12c
shows. Whilst the training and optimisation forms part of the
offline stage in PODNN, this is significantly more expensive
than the offline stages of PODP and PODI if included in the
costs.

Using the most efficient and accurate PODNN strategy
with Nfs = 23, we show, in Fig. 13, the dissipated power
P0

�C
(ω) and kinetic energy Ek

�C
(ω) obtained by additionally

solving (8) for each output frequency fi of interest using
the reduced order model (15), field representations (5) and
applying (22). The results are in good-agreementwith the full
order model and, importantly, accurately predict the resonant
modes.

To emphasise that this is a 3D magneto-mechanical prob-
lem, we visualise the displacement andmagnetic flux density
fields obtained from solving the PODNN using the afore-
mentioned network within a conducting domain. Figure14
showcases both the variation in the magnitudes of the real
displacement field and the real magnetic flux density field in
the outer 4 K shield at output frequencies of f = 1000 Hz
and f = 5000 Hz. Bands of higher and lower magnitudes
can be seen in the displacement field at 5000 Hz, but at 1000
Hz, there is a higher displacement near the outer edges of the
domain. A similar effect can be seen with the real magnetic
flux density for 1000 Hz but at 5000 Hz, the domain shows
almost uniform field of low displacement in the conducting
domain.
Predictions forw = (ω, γOVC

0 ) = (2π f , γOVC
0 ) with P = 2

In theonline stageof either PODIorPODNNwecan easily
evaluate (23) and (22) for any frequencies and conductivity
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(a) Nfs = 13 and Lopt = 4, nopt = 16 with

LPODNN(p) = 6.27 × 10−11
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(b) Nfs = 23 and Lopt = 4, nopt = 16 with

LPODNN(p) = 3.39 × 10−13
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(c) Nfs = 45 and Lopt = 3, nopt = 16 with

LPODNN(p) = 6.27 × 10−13
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(d) Nfs = 90 and Lopt = 5, nopt = 16 with

LPODNN(p) = 6.58 × 10−13
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(e) Nfs = 180 and Lopt = 1, nopt = 16 with

LPODNN(p) = 1.26 × 10−12

Fig. 11 Test magnet problem with z (longitudinal) gradient coil; online stage for P = 1, comparison of ‖AAAAC
ε,hq (ω)‖L2(�). Results for a Nfs = 13,

b Nfs = 23, c Nfs = 45, d Nfs = 90 and e Nfs = 180
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Fig. 12 Test magnet problem with z (longitudinal) gradient coil; online stage for P = 1, comparisons of a ε(‖AAAAC
ε,hq‖L2(�C), b online stage

computational expense and c PODNN training and optimisation expense for Nfs = [23, 45, 90, 180]

factors of interest. But, for the purpose of visualisation, we
evaluate the ROMs at the frequencies stated in (30) and at
the following non-dimensional conductivity factors

γOVC
0,i = [0.35, 0.75, 3.5, 7.5] , (32)

for i = 1, . . . , Nco, with Nco = 4, unless otherwise stated.
This means that we evaluate the ROM for a total of NfoNco

sets of output parameters.
A similar investigation to that shown in Fig. 11 was

repeated for the two-parameter case, again using the Bayes
optimisation but with a search space L = 1, . . . , 10 and
n = 1, . . . , 32. It should be noted that the optimisation
time for this case takes considerably longer than for P = 1
and is more costly than the PODP method, with a time
of 5.29 × 105s, which is several days. It was found that,

in this case, using a Lopt = 3, nopt = 32 network for
Nfs = 23 and Ncs = 23 produces accurate results provided
that min grad=10−10 and the number of singular values
that is retained is m = 44 using the same TOL = 10−6.5

as carried out for P = 1. As an example, we show the
behaviour of ‖AAAAC

ε,hq(ω)‖L2(�C) as a function of ω = 2π f
with lines corresponding to different conductivity factors
γOVC
0 = 0.35, 0.75, 3.5, 7.5, which is obtained by apply-

ing (15) and then (5a) in Fig. 15, with an achieved MSE loss
of LPODNN( p) = 3.56 × 10−13. Results are shown for the
4K, 77K shields and the OVC with a comparison against
the snapshot solutions. The graphs shown in the left hand
column correspond to cases where the conductivity factors
are lower than unity, while those in the right hand column
correspond to showing the predictive the ROM where the
conductivity factors are greater than unity. The main reason

123



Engineering with Computers

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-2

100

102

104

106

108
P

0  [W
]

Full order: 4K
PODNN: 4K
Full order: 77K
PODNN: 77K
Full order: OVC
PODNN: OVC

(a) Dissipated Power P 0
ΩC

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-10

10-5

100

105

E
k  [J

]

Full order: 4K
PODNN: 4K
Full order: 77K
PODNN: 77K
Full order: OVC
PODNN: OVC

(b) Kinetic Energy Ek
ΩC

Fig. 13 Test magnet problem with z (longitudinal) gradient coil; Online stage for P = 1, comparisons of Full order and PODNN using Nfs = 23.
Results for a dissipated power P0

�C
and b kinetic energy Ek

�C

Fig. 14 Test magnet problem
with z (longitudinal) gradient
coil; online stage for P = 1 and
PODNN using Nfs = 23.
Results for a |Re (

UUUAC(ω)
) | at

1000 Hz, b |Re
(
BBBAC
hq (ω)

)
| at

1000 Hz, c |Re (
UUUAC(ω)

) | at
5000 Hz and d |Re

(
BBBAC
hq (ω)

)
|

at 5000 Hz

123



Engineering with Computers

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-10

10-9

10-8

10-7

10-6

10-5

||A
A

C , h
q
|| 

[V
sm

-1
]

PODNN: 
0
OVC = 0.35

Snapshot solutions: 
0
OVC  0.35

PODNN: 
0
OVC = 0.75

Snapshot solutions: 
0
OVC  0.75

(a) 4K shield at γOV C
0 = 0.35, 0.75

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-10

10-9

10-8

10-7

10-6

10-5

||A
A

C , h
q
|| 

[V
sm

-1
]

PODNN: 
0
OVC = 3.5

Snapshot solutions: 
0
OVC  3.5

PODNN: 
0
OVC = 7.5

Snapshot solutions: 
0
OVC  7.5

(b) 4K shield at γOV C
0 = 3.5, 7.5

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-8

10-7

10-6

10-5

||A
A

C , h
q
|| 

[V
sm

-1
]

PODNN: 
0
OVC = 0.35

Snapshot solutions: 
0
OVC  0.35

PODNN: 
0
OVC = 0.75

Snapshot solutions: 
0
OVC  0.75

(c) 77K shield at γOV C
0 = 0.35, 0.75

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-9

10-8

10-7

10-6

10-5

||A
A

C , h
q
|| 

[V
sm

-1
]

PODNN: 
0
OVC = 3.5

Snapshot solutions: 
0
OVC  3.5

PODNN: 
0
OVC = 7.5

Snapshot solutions: 
0
OVC  7.5

(d) 77K shield at γOV C
0 = 3.5, 7.5

0 1000 2000 3000 4000 5000

Frequency [Hz]

2

3

4

5

6

7

8

||A
A

C , h
q
|| 

[V
sm

-1
]

10-6

PODNN: 
0
OVC = 0.35

Snapshot solutions: 
0
OVC  0.35

PODNN: 
0
OVC = 0.75

Snapshot solutions: 
0
OVC  0.75

(e) OVC shield at γOV C
0 = 0.35, 0.75

0 1000 2000 3000 4000 5000

Frequency [Hz]

10-7

10-6

10-5

||A
A

C , h
q
|| 

[V
sm

-1
]

PODNN: 
0
OVC = 3.5

Snapshot solutions: 
0
OVC  3.5

PODNN: 
0
OVC = 7.5

Snapshot solutions: 
0
OVC  7.5

(f) OVC shield at γOV C
0 = 3.5, 7.5

Fig. 15 Test magnet problemwith z (longitudinal) gradient coil; online
stage for P = 2 and Nfs = 23, Ncs = 23 comparing ‖AAAAC

ε,hq (w)‖L2(�C)

for each of the three conducting shields. Results for a 4 K shield at
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0 = 0.35, 0.75, b 4 K shield at γOVC

0 = 3.5, 7.5, c 77 K shield at
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for this separation is due to the log spaced nature of the con-
ductivity snapshots, with a higher abundance of snapshots
occurring less than unity than above, the idea here is to see
how well the PODNN model with both those cases. In both
conductivity factor regions, the PODNN model is seen to
match reasonably well with the snapshot solutions at these
specified conductivities.

Henceforth, we fix a PODNN using a L = 3, n = 32
network and snapshot data corresponding to Nfs = 23 and
Ncs = 23 using this choice we show, in Figs. 16 and 17,
the dissipated power P0

�C
(ω) and kinetic energy Ek

�C
(ω)

obtained by additionally solving (8) for each output fre-
quency fi and conductivity factor γOVC

0,i of interest using
the reduced order model (15), field representations (5) and
applying (22), respectively.Alongside, a comparisonwith the
snapshot solutions is evaluated and can be seen to match well
with the PODNN solutions. We observe that the higher con-
ducting factors generally lead lower values of P0

�C
(ω) and

Ek
�C

(ω) for each shield and frequency of interest, although
the position of the resonant peaks is not substantially affected.

4.5 Prediction of the response to external
vibrational loading

The consideration of external vibrational loading for the
mathematical model described in Sect. 2 introduces a non-
zero boundary conditionUUUAC = UUUAC

D on ∂�D
C in (2e), which

reflects the amplitude of the external vibrational loading.
Given the nature of the rotational symmetry of the problem
considered in Sect. 4.1, we consider only the application of
non-zero amplitudes in the z direction since specifying other
non-zero components would break the rotational symmetry
of the problem and necessitate a full three-dimensional com-
putation rather than simulating quarter geometry and using
the symmetry boundary conditions in (21) on the x = 0 and
y = 0 planes.

4.5.1 Offline stage

Theoffline stage follows the approachdescribed inSect. 4.4.1
where a PODNN network with L = 3, n = 32 and Nfs = 23
snapshots for w = (ω) = 2π( f ) with P = 1 is employed as
described previously.

4.5.2 Online stage

Once (15) has been evaluated for a set of parameters of
interest, the smaller dimensional mechanical problem (8) is
solved. The magnitudes of the external vibrations are usu-
ally very small and so present results obtained by imposing
UAC

Dz
= 0, 10−6, 10−5, 10−4 m, in turn, simultaneously on

all the conducting shields. To obtain, we solve (8) for these

frequencies and each UAC
Dz

of interest. Following this, we
obtain the dissipated power and kinetic energy using (5) and
(22), respectively.

In Fig. 18, we show the resulting the dissipated power
P0

�C
(ω) and kinetic energy Ek

�C
(ω) curves, where the differ-

ent lines correspond to different amplitudes of displacement.
In these figures, we observe that the dissipated power in the
77K and OVC shields are not substantially affected by intro-
ducing non-zeroUAC

Dz
, however, there is a noticeable increase

in themagnitude of the kinetic energy curves for these shields
when using UAC

Dz
= 10−4 m, although, the frequencies of

the resonant peaks remain unchanged. In the case of the 4K
shield, we see the most noticeable changes, with the resonant
peaks all but disappearing for the case ofUAC

Dz
= 10−4 m and

the kinetic energy curve.

4.6 Response whenmodel parameters are uncertain

To understand the influence of an uncertain material param-
eter on the Ohmic power and kinetic energy curves, we may
use the previously developed ROM. We focus on the sit-
uation where the conductivity γOVC = γOVC

0 γOVC
ref in the

OVC shield is uncertain. We consider a non-dimensional
γOVC
0 ∼ N (m, s) with population mean m = 1, popula-

tion standard deviation s = loge(2) and γOVC
ref is a reference

value with units of S/m and of order 106.

4.6.1 Offline stage

Theoffline stage follows the approachdescribed inSect. 4.4.1
where a PODNN network with L = 3, n = 32 network
for Nfs = 23 and Ncs = 23 snapshots is employed for
w = (ω, γOVC

0 ) = (2π f , γOVC
0 ) with P = 2, as described

previously.

4.6.2 Online stage

In this case, Nco = 50 samples of γOVC
0 ∼ N (m, s) are

drawn and for each sample, Nfo = 500 output frequencies
considered. For each combination of fi and conductivity fac-
tor γOVC

0,i , the dissipated power P0
�C

(ω) and kinetic energy

Ek
�C

(ω) are obtained by solving (8) using the reduced order
model (15), field representations (5) and applying (22),
respectively. Using this data, the mean values and 95% con-
fidence intervals of P0

�C
(ω) and Ek

�C
(ω), at each output

frequency of interest, are evaluated and the results shown
in Fig. 19. We see, in general, the position of the peaks are
not significantly changed, but there is an noticeable differ-
ence in the amplitudes, particularly between the frequencies
of 1000 ≤ f ≤ 3000 Hz for the 4 K and 77 K shields. The
OVC shield does not seem to show as much variation, with
the mean and 95% confidence intervals for P0

�C
and Ek

�C
being almost indistinguishable on this scale.
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Fig. 16 Test magnet problemwith z (longitudinal) gradient coil; online
stage for P = 2 and Nfs = 23, Ncs = 23 comparing the dissipated
power P0

�C
for each of the three conducting shields. Results for a 4 K

shield at γOVC
0 = 0.35, 0.75, b 4 K shield at γOVC

0 = 3.5, 7.5, c 77 K
shield at γOVC
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Fig. 17 Test magnet problemwith z (longitudinal) gradient coil; online
stage for P = 2 and Nfs = 23, Ncs = 23 comparing the kinetic energy
Ek
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for each of the three conducting shields. Results for a 4 K shield

at γOVC
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Fig. 18 Test magnet problemwith z (longitudinal) gradient coil; online
stage for P = 1 and Nfs = 23; comparing the distribution of kinetic
energy Ek
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Fig. 19 Test magnet problemwith z (longitudinal) gradient coil; online
stage for P = 2 and Nfs = 23, Ncs = 23, Nco = 50; comparing the
distribution of kinetic energy Ek
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5 Conclusion

This paper has presented a practical use of a POD tech-
nique based on using a neural network (PODNN), to aid
in the design phase of new MRI scanner configurations.
We compare the performance of PODNN to different POD
techniques including projection (PODP) and interpolating
(PODI) for this challenging example. The PODNN method-
ology employed is equivalent to that proposed by Hesthaven
and Ubbiali [21]. The PODP and PODI techniques build on
our groups earlier work for the coupled magneto-mechanical
problem of interest [12, 17]. The PODP approach produced
relatively accurate results with a small numbers of snapshots
(Nfs and Ncs) but was heavily intrusive on the software and
required recalculation of FEM matrices. The PODI method
allowed the use of simple interpolants (such as a Lagrangian)
and was non-intrusive, but had limitations when considering
small snapshots. Instead, the PODNNmethod, does not have
an invasive implementation and is well suited to this and pro-
duces accurate results but the optimisation time (using Bayes
optimisation to obtain hyper-parameters) in the offline stage
increases significantly when the parameter space is P = 2,
making the PODP technique more computationally efficient
if overall time is considered.

Results have been presented for the prediction of reso-
nant modes in the Ohmic power and kinetic energy curves
using different parameter spaces and the prediction of the
response in the same outputs of interest for different external
vibrational loading conditions. The PODNN technique has
also been applied to predict the response in outputs of inter-
est when model parameters are uncertain. These results have
shown that an appropriate network architecture, can provide
high-fidelity solutions to the magneto-mechanical problem
for both the P = 1 (frequency) and P = 2 (frequency
and conductivity) parameter cases and provide rapid online
prediction of the outputs of interest for the design of MRI
scanners. In further work, we also plan to make experimental
comparisons with the fields induced in moving magnets and
make improvements to the mathematical model presented
in Sect. 2 that no longer assumes that the velocities of the
conducting components are small.
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