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In this paper, we present an approach to characterising fast-reaction limits of systems

with nonlinear diffusion, when there are either two reaction-diffusion equations, or one

reaction-diffusion equation and one ordinary differential equation, on unbounded do-
mains. Here, we replace the terms of the form uxx in usual reaction-diffusion equation,

which represent linear diffusion, by terms of form φ(u)xx, representing nonlinear diffu-
sion. We prove the convergence in the fast reaction limit k → ∞ that is determined by

the unique solution of a certain scalar nonlinear diffusion problem.
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1. Introduction

Nonlinear diffusion is needed in certain modelling scenarios to describe processes

involving fluid flow, heat transfer or diffusion. For instance, it can describe the

flow of an isentropic gas through a porous medium [12]. In this paper, we study

the reaction diffusion systems with nonlinear diffusion in one-dimensional spatial

domains. A prototype for the form of nonlinear diffusion considered with this paper

is (um)xx, where m > 1. We will consider general nonlinear diffusion terms of the

form φ(u)xx, where the function φ ∈ C2(R), φ and φ′ are assumed to be strictly

increasing with

φ(s) > 0 as s > 0 and φ′(s) = φ(s) = 0 when s = 0. (1.1)

The problems we consider are motivated by a prototype reaction diffusion system

which consists of a chemical A and an immobile substrate B that react in a semi-

infinite region. We denote by u the concentration of A and v the concentration of

B at x ∈ (0,∞) and time t ∈ (0, T ). The reaction of u and v is described as{
ut = uxx − kuv,
vt = −kuv, (1.2)

where k is the rate constant of the reaction (which is positive). The chemical reaction

can be modelled for simplicity by the one-dimensional spatial domain (0,∞) with

1
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u = U0 at the surface x = 0. That u and v are nonnegative is natural since they

typically correspond to concentration of chemical substances.

In [6], Hilhorst, van der Hout and Peletier study the asymptotic behaviour of k-

dependent solutions (uk, vk) of (1.2) as k →∞ (i.e. the reaction is very fast). They

establish a free boundary problem which is satisfied in the limit when solutions

(uk, vk) converge to a self-similar limit (u, v)
(
x√
t

)
as k → ∞. The free boundary

has the form x = a
√
t, where a > 0 and divides the area in which the mobile

chemical A is present from the area where A is absent. The fast-reaction limit of

(1.2) can be motivated by the study of penetration of radio-labeled antibodies into

tumourous tissue since the attachment of antibodies to antigens in the tissue may

react very fast.

Modelling can give rise to other systems related to (1.2) such that the fast-

reaction limit in which one mobile substance invades a mobile substrate. Among

other problems, Crooks and Hilhorst [4] study the system analogous to (1.2) when

reactant u and substrate v are both mobile, for example, when carbonic acid pen-

etrates into water. In this case, the substrate will diffuse, which is modelled by

introducing a term dvvxx where dv > 0. The paper [4] is concerned with the free

boundary problems in the limit that k →∞ in four cases: dv > 0 with two mobile

reactants, dv = 0 with one mobile and one immobile reactant, problems defined

on the spatial domain (0,∞) as in (1.3) and also on the whole real line R, which

can arise, for instance, in modelling neutralisation of an acid and a base that are

initially separated. In all four cases, the free boundary has the form x = a
√
t where

the constant a is determined by a different equation in each case and plays an im-

portant role in characterising the rate of penetration of one substance into the other

in the limit k →∞. When the problem is considered on the spatial domain R with

dv > 0, the constant a in the corresponding limit is not necessarily positive. Note

that when a > 0, substance u penetrates into substance v, while on the other hand,

v penetrates into u when a < 0. For each of the problems with dv ≥ 0 on both the

spatial domains R and (0,∞), an explicit formula is given in [4] for the self-similar

limit function.

An analogue of (1.2) with nonlinear diffusion in bounded multi-dimensional

domains is studied in [10] by Hilhorst, van der Hout and Peletier. They consider

the substrate u with nonlinear diffusion modelled with a term ∆φ(u), where φ(u) =∫ u
0
D(s)ds and D is the diffusivity of the medium. Under assumptions in [10], D(s)

may vanish at s = 0, so the equation for u need not be uniformly parabolic. Thus [10]

focuses on weak solutions since it is possible that the system studied has no classical

solution. In studying of the multi-dimensional limiting free boundary problems in

[10], the free boundary Γ(t) of the limit problem is assumed as a smooth surface

that lies entirely within the bounded domain and varies smoothly with t.

We treat two pairs of problem with nonlinear diffusion terms on the spatial

domains R+ and R. The first pair of problems defined on the half-strip ST :=
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{(x, t) : 0 < x <∞, 0 < t < T}, one with ε > 0 and the other with ε = 0, are
ut = φ(u)xx − kuv, (x, t) ∈ (0,∞)× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ (0,∞)× (0, T ),

u(0, t) = U0, εφ(v)x(0, t) = 0, for t ∈ (0, T ),

u(x, 0) = uk0(x), v(x, 0) = vk0 (x), for x ∈ R+.

(1.3)

As in [6] kuv is the contribution of a chemical reaction where k determines the reac-

tion rate. We define, as in [4], the initial data for the limiting self-similar solutions

as

u∞0 =

{
U0 x = 0,

0 x > 0,
v∞0 =

{
0 x = 0,

V0 x > 0,

which equal constant initial conditions on the half-line in [6], where U0 and V0 are

positive constants, and choose the initial data uk0 , v
k
0 that satisfy

(i) uk0 , v
k
0 ∈ C2(R+);

(ii) 0 ≤ uk0 ≤ U0, 0 ≤ vk0 ≤ V0;

(iii) uk0 → u∞0 , v
k
0 → v∞0 in L1(R+) as k →∞.

(iv) For each r > 0, there exists a continuous function ωr : R+ 7→ R+ with

ωr(µ)→ 0 as µ→ 0 and

‖uk0(·+ δ)− uk0(·)‖L1((r,∞)) + ‖vk0 (·+ δ)− vk0 (·)‖L1((r,∞)) ≤ ωr(δ),

for all k > 0, δ < r
4 .

For both ε = 0 and ε > 0, we will prove the existence and uniqueness of weak

solutions (uk, vk) of problem (1.3) for every k > 0, and study the asymptotic be-

haviour of (uk, vk) as k → ∞. As we will see, the limits u of uk and v of vk are

separated by a free boundary and given by the positive and negative parts respec-

tively of a function w, where w satisfies the limit problem (4.5) and

u = w+ and v = −w−,

where s+ = max{0, s} and s− = min{0, s}. The k → ∞ limit problem (4.5) is a

scalar problem, where the nonlinear diffusion function (4.4) depends on whether w

is positive or negative. We prove that there exists a unique weak solution of the

limit problem (4.5) in Theorem 4.3.

The second pair of problems is defined on the strip

QT := {(x, t) : x ∈ R, 0 < t < T}, one with ε > 0 and the other one with ε = 0

are 
ut = φ(u)xx − kuv, (x, t) ∈ R× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ R× (0, T ),

u(x, 0) = uk0(x), v(x, 0) = vk0 (x), for x ∈ R,
(1.4)

where we define, as in [4] that

u∞0 =

{
U0 x < 0,

0 x > 0,
v∞0 =

{
0 x < 0,

V0 x > 0,
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with U0, V0 positive constants, k as in (1.3) and initial data uk0 , v
k
0 satisfy

(i) uk0 , v
k
0 ∈ C2(R);

(ii) 0 ≤ uk0 ≤ U0, 0 ≤ vk0 ≤ V0;

(iii) uk0 → u∞0 , v
k
0 → v∞0 in L1(R) as k →∞.

(iv) There exists a continuous function ω : R+ 7→ R+ with ω(µ) → 0 as µ → 0

and

‖uk0(·+ δ)− uk0(·)‖L1(R) + ‖vk0 (·+ δ)− vk0 (·)‖L1(R) ≤ ω(δ),

for all k > 0, δ ∈ R.

Note that for simplicity, we use the same notation u∞0 , v
∞
0 for both half-line

and whole line initial functions. We again consider both the case of two mobile

reactants where ε > 0, and the case of one mobile and one immobile reactant, when

ε = 0. Similarly to the half-line case, we prove the existence and uniqueness of weak

solutions (uk, vk) of problem (1.4), and study the convergence to self-similar limit

profiles (u, v) as k →∞, where u and v are given by a function w, the unique weak

solution of the limit problem (5.14).

The work of this paper continues and extends earlier studies of fast-reaction

limits [4][6][10], by introducing the nonlinear function φ, in both the case of two

mobile reactants (ε > 0) in addition to that of one mobile reactant (ε = 0) and

in considering the whole-line problem (1.3) in addition to the half-line problem

(1.4). In [10], the existence of weak solutions is proved by looking at a sequence

of uniformly parabolic problems in which φ′n(u) ≥ 1
n and studying the solutions

in the limit as n → ∞. We exploit some ideas and an iterative method from [10],

but our domains are unbounded and when ε > 0, the equations for both u and v

of (1.3) and (1.4) have nonlinear diffusion and are not uniformly parabolic. In the

problems treated in [4], where the diffusion is linear and the problems are studied in

unbounded domains, the overall strategy and a series of cut-off functions are useful

in studying the k →∞ limit. Here, we consider φ(uk), φ(vk) rather than uk, vk and

in order to deal with the nonlinear diffusion, alternative methods and additional

procedures are needed, for example, in proving the estimates of the differences of

time translate, there will be an extra term because of the nonlinear diffusion.

This paper is organised as follows. In Section 2, we study the half-line problem

(1.3), starting with the uniqueness of weak solutions for (1.3). Under the assump-

tions on φ in (1.1), the equations for u, v need not be uniformly parabolic when

ε > 0, so the existence of weak solution for (1.3) are proved in Theorem 2.1 by an

iterative method. Section 3 is concerned with passing to the limit as k →∞ of the

weak solutions (uk, vk), via some a priori estimates and a key bound on kukvk in

L1(ST ), independent of k and ε ≥ 0 which is proved in Theorem 4.1. Section 5 con-

tains the whole-line counterparts of the study of the half-line problem in Sections

2-3.

The unique weak solutions of the limit problems (4.5) and (5.14) can in fact be

shown to be self-similar solutions, as was established in [4] for the case of linear
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diffusion. Note that in contrast, to the case of linear diffusion [4], we know of no

explicit self-similar solutions for the k →∞ limit problems with nonlinear diffusion

that are obtained here. We will present the study of the self-similar solutions of

the limit problem elsewhere [3]. It can be shown that the limit function w of (4.5)

satisfies one of two self-similar problems, depending on whether ε > 0 or ε = 0. The

function f : R+ → R describes a self-similar limit solution such that w(x, t) = f(η)

where η = x/
√
t for (x, t) ∈ ST . The existence of self-similar solutions of the limit

problems is proved by using one or two parameter shooting methods.

2. Half-line case: existence and uniqueness of weak solutions for

ε > 0

Let ε > 0. We consider first an approximate problem to (1.3). Given R > 1, consider

the problem
ut = φ(u)xx − kuv, in (0, R)× (0, T ),

vt = εφ(v)xx − kuv, in (0, R)× (0, T ),

u(0, t) = U0, φ(v)x(0, t) = 0, for t ∈ (0, T ),

φ(u)x(R, t) = 0, φ(v)x(R, t) = 0, for t ∈ (0, T ),

u(x, 0) = u0,R, v(x, 0) = v0,R, for x ∈ (0, R),

(2.1)

where u0,R, v0,R ∈ C2(R+) are such that 0 ≤ u0,R ≤ U0, 0 ≤ v0,R ≤ V0 and

u0,R = uk0β
R, v0,R = −(V0 − vk0 )βR + V0, (2.2)

where the family of cut-off functions βR ∈ C∞(R+) with R > 1 are defined as

βR =

{
1 x ≤ R− 1,

β1(x+ 2−R) x ≥ R− 1.

with β1 ∈ C∞ (R+) is a non-negative cut-off function such that 0 ≤ β1(x) ≤ 1 for

all x ∈ R+, β1(x) = 1 when x ≤ 1 and β1(x) = 0 when x ≥ 2.

Since φ′(s) may vanish at s = 0, the equations for u and v as ε > 0 in problem

(2.1) need not be uniformly parabolic and it is possible that there is no classical

solution. Thus we are led to introduce a notion of a weak solution.

Now define

ΩR :=
{
α ∈W 1,2(0, R)| α = 0 at x = 0

}
, (2.3)

and let û ∈ C∞(R+) be a smooth function that û = U0 when x = 0 and û = 0

when x > 1.

Definition 2.1. A pair (uR, vR) ∈ L∞ ((0, R)× (0, T )) × L∞ ((0, R)× (0, T )) is

called a weak solution of (2.1) if (i) φ(uR) ∈ φ(û) + L2(0, T ; ΩR), φ(vR) ∈
L2(0, T ;W 1,2(0, R));
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(ii) (uR, vR) satisfies∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt =

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

vRξtdxdt =

∫ T

0

∫ R

0

εφ(vR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,

where ξ ∈ FRT :=
{
ξ ∈ C1 ([0, R]× [0, T ]) | ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T )

}
.

We use the following comparison theorem for (2.1) to prove the uniqueness of

the weak solution of (2.1). The proof is similar to that of [4, Lemma 3.2]. We sketch

the points here, focusing on the parts where our problem needs a slightly different

argument.

Lemma 2.1. Suppose that ε ≥ 0 and (uR, vR), (uR, vR) be such that

(a) uR, uR ∈ L∞((0, R)× (0, T )]);

(b) φ(uR) ∈ φ(uR(0, ·)) + L2(0, T ; ΩR), φ(uR) ∈ φ(uR(0, ·)) + L2(0, T ; ΩR);

(c) uRt, uRt, φ(uR)xx, φ(uR)xx ∈ L1((0, R)× (0, T ));

(d) vR, vR ∈ L∞((0, R)× (0, T ));

(e) If ε > 0, φ(vR), φ(vR) ∈ L2(0, T ;W 1,2(0, R)), vRt, vRt, φ(vR)xx, φ(vR)xx ∈
L1((0, R)× (0, T )).

(uR, vR), (uR, vR) satisfy

uRt ≥ φ(uR)xx − kuRvR, uRt ≤ φ(uR)xx − kuRvR, in (0, R)× (0, T ),

vRt ≤ εφ(vR)xx − kuRvR, vRt ≥ εφ(vR)xx − kuRvR, in (0, R)× (0, T ),

uR(0, ·) ≥ uR(0, ·), φ(vR)x(0, ·) ≤ φ(vR)x(0, ·), on (0, T ),

φ(uR)x(R, ·) ≥ φ(uR)x(R, ·), φ(vR)x(R, ·) ≤ φ(vR)x(R, ·), on (0, T ),

uR(·, 0) ≥ uR(·, 0), vR(0, ·) ≤ vR(0, ·), on (0, R).

Then

uR ≥ uR, vR ≤ vR in (0, R)× (0, T ).

Proof. Take a smooth non-decreasing convex function m+ : R→ R with

m+ ≥ 0, m+(0) = 0,
(
m+
)′

(0) = 0, m+(r) ≡ 0 for r ≤ 0, m+(r) = r − 1

2
,

for r > 1. For α > 0, we define the functions

m+
α (r) := αm+

( r
α

)
,

which approximate the positive part of r as α → 0 and (m+
α )′(r) → sgn+(r) as

α → 0. Let w = φ(uR) − φ(uR) and z = φ(vR) − φ(vR). Multiplying equation for
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uR by (m+
α )
′
(w) and equation for vR by (m+

α )
′
(z). It follows that adding these two

equations together that∫ t0

0

∫ R

0

(
m+
α

)′
(w)(uR − uR)t +

(
m+
α

)′
(z)(vR − vR)tdxdt

≤− k
∫ t0

0

∫ R

0

[(
m+
α

)′
(w)−

(
m+
α

)′
(z)
]

(uRvR − uRvR)dxdt.

With the nonlinear function φ, we need to deal with (m+
α )′(w) and (m+

α )′(z) to

simplify the left hand side.

Now letting α→ 0 gives

lim
α→0

(
m+
α

)′
(w) = lim

α→0

(
m+
α

)′
(φ(uR)− φ(uR))→ sgn+(φ(uR)− φ(uR)),

where s+ = max {s, 0}. Note that sgn+
[
φ(uR)− φ(uR)

]
= sgn+(uR − uR), since φ

is increasing. By [8, Lemma 7.6], we obtain∫ t0

0

∫ R

0

[
sgn+(uR − uR)(uR − uR)t + sgn+(vR − vR)(vR − vR)t

]
dxdt

=

∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, t0)dx−

∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, 0)dx

≤− k
∫ t0

0

∫ R

0

[
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR)dxdt,

and the expression [
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR) ≥ 0.

Thus ∫ R

0

[
(uR − uR)+ + (vR − vR)+

]
(x, t0)dx

≤− k
∫ t0

0

∫ R

0

[
(sgnw)+ − (sgnz)+

]
(uRvR − uRvR)dxdt ≤ 0. (2.4)

Hence [
(uR − uR)+ + (vR − vR)+

]
(·, t0)dx = 0 on (0, R).

The following corollary is immediate from Lemma 2.1.

Corollary 2.1. Let ε > 0. For given initial data u0,R, v0,R, there is at most one

solution (uR, vR) of (2.1).

If we take (uR, vR) = (0, 0) and (uR, vR) = (uR, vR), then take (uR, vR) =

(uR, vR) and (uR, vR) = (U0, V0) in Lemma 2.1, we obtain the following.

Corollary 2.2. Let (uR, vR) be a weak solution of (2.1). Then we have

0 ≤ uR(x, t) ≤ U0 and 0 ≤ vR(x, t) ≤ V0, (2.5)
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for (x, t) ∈ (0, R)× (0, T ).

We will prove the existence of a weak solution of the appropriate problem (2.1)

using an iterative method inspired by [10]. As the first step in the iteration we

consider the problem
(
u
(1)
R

)
t

= φ
(
u
(1)
R

)
xx
− ku(1)R V0, (x, t) ∈ (0, R)× (0, T ),

u
(1)
R (0, t) = U0, φ

(
u
(1)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

u
(1)
R (x, 0) = u0,R(x), for x ∈ (0, R).

(2.6)

We will prove the existence and uniqueness of a weak solution u
(1)
R in the following

and then substitute u
(1)
R in the problem

(
v
(1)
R

)
t

= εφ(v
(1)
R )xx − ku(1)R v

(1)
R , (x, t) ∈ (0, R)× (0, T ),

φ
(
v
(1)
R

)
x

(0, t) = φ
(
v
(1)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

v
(1)
R (x, 0) = v0,R(x), for x ∈ (0, R),

(2.7)

and obtain a unique weak solution v
(1)
R . Our strategy is to replace V0 in Problem

(2.6) by v
(1)
R and again we will have a weak solution u

(2)
R , and so on. In this way,

we will obtain sequences
{
u
(m)
R

}
and

{
v
(m)
R

}
. Finally letting m tend to infinity, we

will obtain a solution of Problem (2.1) in the limit.

In order to be able to carry out this procedure, we first introduce a notion of

weak solutions for problems of the following type:
uRt = φ(uR)xx − kuRp, (x, t) ∈ (0, R)× (0, T ),

uR(0, t) = U0, φ(uR)x(R, t) = 0, for t ∈ (0, T ),

uR(x, 0) = u0,R(x), for x ∈ (0, R),

(2.8)

and 
vRt = εφ(vR)xx − kvRq, (x, t) ∈ (0, R)× (0, T ),

φ(vR)x(0, t) = φ(vR)x(R, t) = 0, for t ∈ (0, T ),

vR(x, 0) = v0,R(x), for x ∈ (0, R),

(2.9)

where 0 ≤ p ≤ V0 and 0 ≤ q ≤ U0 almost everywhere in (0, R)× (0, T ).

Definition 2.2. (I). A function uR ∈ L∞((0, R)× (0, T )) is called a weak solution

of problem (2.8) if

(i) φ(uR) ∈ φ(û) + L2(0, T ; ΩR);

(ii) uR satisfies∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt =

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRpdxdt,

where ξ ∈ FRT .

(II). A function vR ∈ L∞((0, R) × (0, T )) is called a weak solution of problem

(2.9) if
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(i) φ(vR) ∈ L2(0, T ;W 1,2(0, R));

(ii) vR satisfies∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

vRξtdxdt =

∫ T

0

∫ R

0

εφ(vR)xξxdxdt+ k

∫ T

0

∫ R

0

ξvRqdxdt

where ξ ∈ FRT .

Next we will quote the following lemma which is proved in the Appendix in [10].

We will use it to prove the existence of weak solutions of (2.8) and (2.9).

Lemma 2.2. Let
{
u
(n)
R

}
⊂ L∞((0, R) × (0, T )) and {φn} ⊂ C(R) be sequences

with properties

u
(n)
R ⇀ uR in L2((0, R)× (0, T )),

φn is nondecreasing,

φn → φ uniformly on compact subset of R,

φn(u
(n)
R )→ χ in L2((0, R)× (0, T )),

then χ = φ(uR).

Now we can prove the following lemma.

Lemma 2.3. Let p, q ∈ L∞((0, R) × (0, T )) be such that 0 ≤ p ≤ V0, 0 ≤ q ≤ U0.

Then problems (2.8) and (2.9) have unique weak solutions uR and vR respectively

with the following properties

0 ≤ uR ≤ U0, 0 ≤ vR ≤ V0 in (0, R)× (0, T ).

Proof. First we construct the solutions
{
u
(n)
R

}
,
{
v
(n)
R

}
of sequences of uniformly

parabolic problems in which φ in (2.8) and (2.9) have been replaced by smooth

functions φn where φn(U0) = φ(U0) and φ′n(u
(n)
R ) ≥ 1

n . Under these assumption

on φn, the equations are parabolic non-degenerate and we may apply standard

quasilinear theory to obtain the existence and uniqueness of classical solutions.

Then by the similar arguments to that in [10, p809] we know that φn

(
u
(n)
R

)
is bounded in L∞((0, R) × (0, T )), φn

(
u
(n)
R

)
x

is bounded in L2((0, R) × (0, T ))

and φn

(
u
(n)
R

)
t

is bounded in L2((0, R) × (0, T )). By [7, p.170], which says that

W 1,1(Ω) ⊂ BV (Ω), we therefore have φn

(
u
(n)
R

)
is bounded in BV ((0, R)× (0, T ))

and there exists a subsequence
{
u
(nj)
R

}
and a function χ1 ∈ BV ((0, R) × (0, T ))

such that

φnj

(
u
(nj)
R

)
→ χ1 in L1((0, R)× (0, T )) as j →∞.
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As ε > 0, it follows similarly for v that there exists a subsequence
{
v
(nj)
R

}
and

a function χ2 ∈ BV ((0, R)× (0, T )) such that

φnj

(
v
(nj)
R

)
→ χ2 in L1((0, R)× (0, T )) as j →∞.

We may choose these sequences such that

u
(nj)
R ⇀ uR, v

(nj)
R ⇀ vR in L2((0, R)× (0, T )),

and the sequence {φn} such that φn → φ uniformly. By Lemma 2.2 we have χ1 =

φ(uR), χ2 = φ(vR). We know that φn

(
u
(n)
R

)
− φ(U0) is bounded in L2(0, T ; ΩR)

and φn

(
v
(n)
R

)
is bounded in L2(0, T ;W 1,2(0, R)), so there are subsequences, again

denoted by
{
u
(nj)
R

}
and

{
v
(nj)
R

}
such that

φnj

(
u
(nj)
R

)
− φ(U0) ⇀ φ(uR)− φ(U0) in L2(0, T ; ΩR),

φnj

(
v
(nj)
R

)
⇀ φ(vR) in L2((0, R)× (0, T )).

By a standard limiting argument we obtain that uR is a weak solution of Problem

(2.8) and vR is a weak solution of Problem (2.9).

The uniqueness is shown similarly to the proof of Lemma 2.1.

From Lemma 2.3 we immediately deduce that u
(1)
R and v

(1)
R are weak solutions

of (2.6) and (2.7). We then define the sequences
{
u
(m)
R

}
and

{
v
(m)
R

}
inductively as

follows, let u
(m)
R be the weak solution of the problem

u
(m)
Rt = φ

(
u
(m)
R

)
xx
− ku(m)

R v
(m−1)
R , (x, t) ∈ (0, R)× (0, T ),

u
(m)
R (0, t) = U0, φ

(
u
(m)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

u
(m)
R (x, 0) = u0,R(x), for x ∈ (0, R),

(2.10)

let v
(m)
R be the weak solution of the problem
v
(m)
Rt = εφ(v

(m)
R )xx − ku(m)

R v
(m)
R , (x, t) ∈ (0, R)× (0, T ),

φ
(
v
(m)
R

)
x

(0, t) = φ
(
v
(m)
R

)
x

(R, t) = 0, for t ∈ (0, T ),

v
(m)
R (x, 0) = v0,R(x), for x ∈ (0, R).

(2.11)

Then u
(m)
R and v

(m)
R satisfy

(i) φ
(
u
(m)
R

)
∈ φ(û) + L2(0, T ; ΩR), and∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

u
(m)
R ξtdxdt

=

∫ T

0

∫ R

0

φ
(
u
(m)
R

)
x
ξxdxdt+ k

∫ T

0

∫ R

0

ξu
(m)
R v

(m−1)
R dxdt,



August 13, 2023 17:28 WSPC/INSTRUCTION FILE fastreaction

11

(ii) φ
(
v
(m)
R

)
∈ L2(0, T ;W 1,2(0, R))∫ R

0

v0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

v
(m)
R ξtdxdt

=

∫ T

0

∫ R

0

εφ
(
v
(m)
R

)
x
ξxdxdt+ k

∫ T

0

∫ R

0

ξu
(m)
R v

(m)
R dxdt,

where ξ ∈ FRT .

In the following, we prove the monotone dependence of u
(m)
R , v

(m)
R on m.

Lemma 2.4. The problem (2.10) and (2.11) have unique solutions with the follow-

ing properties

(i) u
(m)
R and v

(m)
R are weak solutions of problems (2.10) and (2.11);

(ii) 0 ≤ u(m)
R ≤ u(m+1)

R ≤ U0, 0 ≤ v(m+1)
R ≤ v(m)

R ≤ V0.

Proof. The proof proceeds by induction. We first note that u
(1)
R and u

(2)
R satisfy

the equations

u
(1)
Rt = φ

(
u
(1)
R

)
xx
− ku(1)R V0,

u
(2)
Rt = φ

(
u
(2)
R

)
xx
− ku(2)R v

(1)
R ,

almost everywhere in (0, R)× (0, T ).

Since u
(1)
R , u

(2)
R satisfy identical initial and boundary conditions, u

(1)
R is a sub-

solution for (2.10) with m = 2, since v
(1)
R ≤ V0, which implies u

(2)
R ≥ u

(1)
R . Now

consider v
(1)
R and v

(2)
R

v
(1)
Rt = εφ

(
v
(1)
R

)
xx
− ku(1)R v

(1)
R ,

v
(2)
Rt = εφ

(
v
(2)
R

)
xx
− ku(2)R v

(2)
R .

Since v
(1)
R , v

(2)
R satisfy identical initial and boundary conditions, v

(2)
R is a subsolution

for (2.11) as m = 2, which implies v
(1)
R ≥ v

(2)
R . The proof of monotone dependence

of u
(m)
R and v

(m)
R of m for large values of m is similar.

We can now establish the existence of a weak solution of Problem (2.1) when ε

is strictly positive.

Theorem 2.1. There exists a unique weak solution (uR, vR) of Problem (2.1) such

that

0 ≤ uR ≤ U0 and 0 ≤ vR ≤ V0.
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Proof. Lemma 2.4 implies that the functions u
(m)
R and v

(m)
R tend (pointwise) to

functions uR, vR as m tends to infinity. By the proof of Lemma 2.3 we conclude

there are subsequences
{
u
(mj)
R

}
and

{
v
(mj)
R

}
such that

φ
(
u
(mj)
R

)
− φ(U0) ⇀ φ(uR)− φ(U0) weakly in L2(0, T ; ΩR),

φ
(
v
(mj)
R

)
⇀ φ(vR) weakly in L2(0, T ;W 1,2(0, R)).

Then, by the Dominated Convergence Theorem, passing to the limit as mj → ∞
leads to∫ R

0

u0,Rξ(x, 0)dx+

∫ T

0

∫ R

0

uRξtdxdt =

∫ T

0

∫ R

0

φ(uR)xξxdxdt+ k

∫ T

0

∫ R

0

ξuRvRdxdt,

where ξ ∈ FRT . We can readily show uR is a weak solution of (2.8) with p = vR.

From DiBenedetto [5, Theorem 7.1], and conclude that uR ∈ C([0, R] × [0, T ]).

Similarly, we know that vR is a weak solution of problem (2.9) with q = uR and

we can conclude also that vR ∈ C([0, R] × [0, T ]). It follows from Lemma 2.1 that

(uR, vR) is the unique weak solution of problem (2.1).

Next, we will prove the existence of a weak solution of (1.3) with ε > 0 by

looking at (uR, vR) in the limit R→∞. First, we prove some preliminary estimates.

In the following, C(L) denotes some L-dependent constant which varies according

to context.

Lemma 2.5. Suppose ε > 0 and L > 0. Then there exists a constant C(L) inde-

pendent of k such that if R > L+ 1, then

k

∫ T

0

∫ L+1

0

uRvRdxdt ≤ C(L). (2.12)

Proof. Introduce a cut-off function ϕ1 ∈ C∞(R+) such that 0 ≤ ϕ1(x) ≤ 1 for all

x ∈ R+, ϕ1(0) = ϕ1
x(0) = 0, ϕ1(x) = 1 when x ∈ [1, 2] and ϕ1(x) = 0 when x ≥ 3.

Then given L ≥ 2, define the family of cut-off functions ϕL ∈ C∞(R+) such that

ϕL(x) = ϕ1(x) when x ∈ [0, 1], ϕL(x) = 1 when x ∈ [1, L] and ϕL(x) = ϕ1(x+2−L)

when x ≥ L. Note that 0 ≤ ϕL ≤ 1 for all L, and ϕLx , ϕLxx are bounded in L∞(R+)

independently of L.

Multiplying the equation for uR by ϕL and integrating over (0, R)× (0, T ) gives

that

k

∫ T

0

∫ L+1

0

uRvRϕ
Ldxdt =

∫ T

0

∫ L+1

0

φ(uR)ϕLxxdxdt+

∫ L+1

0

ϕLu0,Rdx

−
∫ L+1

0

ϕLuR(x, T )dx.

The fact that 0 ≤ uR ≤ U0, together with the Lebesgue’s Monotone Convergence

Theorem, yield (2.12).
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Lemma 2.6. Suppose ε > 0. Then for each L ≥ 1, φ(uR), φ(vR) are bounded in

L2
(
0, T ;W 1,2(0, L)

)
independently of k and R.

Proof. Now we introduce a cut-off function ψ1 ∈ C∞ (R+) such that 0 ≤ ψ1 ≤ 1

for x ∈ R+, ψ1 = 1 when x ≤ 1 and ψ1 = 0 when x ≥ 2. Then given L ≥ 1, define

the family of cut-off functions ψL ∈ C∞(R+) such that ψL = 1 when x ≤ L and

ψL = ψ1(x+ 1−L) when x ≥ L. Clearly ψL, ψLx and ψLxx are bounded in L∞(R+)

independently of L. Suppose that R > L+ 1. Then multiplying the equation for uR
by
[
φ(uR)− φ(U0)

]
ψL and integrating over (0, R)× (0, T ) gives∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRtdxdt

=−
∫ T

0

∫ L+1

0

|φ(uR)x|2ψLdxdt+
1

2

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]2
ψLxxdxdt

− k
∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRvRdxdt,

Now letting F =

∫ uR

0

φ(s)ds ≤ C, we have

∫ T

0

∫ L+1

0

|φ(uR)x|2ψLdxdt

=−
∫ L+1

0

φ(U0)
(
u0,R − uR(x, T )

)
ψLdx−

∫ L+1

0

[
F (x, T )− F (x, 0)

]
ψLdx

+
1

2

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]2
ψLxxdxdt− k

∫ T

0

∫ L+1

0

[
φ(uR)− φ(U0)

]
ψLuRvRdxdt.

We know φ(uR)− φ(U0) ∈ L∞((0, R)× (0, T )), so Lemma 2.5 yields∫ T

0

∫ L+1

0

|φ(uR)x|2dxdt ≤ C, (2.13)

independently of k and R. If ε > 0, the estimate for φ(vR)x can be proved likewise,

using the equation for vR.

In order to prove that the sets {uR}R>0, {vR}R>0 are each relatively compact

in L2
loc(R+× (0, T )), we now prove estimates of space and time translates of uR, vR.

It is convenient to introduce a shorthand notation for space and time translates.

Given a function h, let

Sδh(x, t) := h(x+ δ, t), Tτh(x, t) := h(x, t+ τ), (2.14)

for all (x, t) in a suitable space-time domain and appropriate δ and τ .

As a result of the gradient bounds in Lemma 2.6, the following result can be

proved by adapting the proof of [2, Lemma 2.6].
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Lemma 2.7. Suppose ε > 0. Then for each L > 0 and r ∈ (0, 1), there exists a

constant C(L), independent of k and δ, such that∫ T

0

∫ L+1

r

|φ(SδuR)− φ(uR)|2dxdt ≤ C(L)|δ|2,∫ T

0

∫ L+1

r

|φ(SδvR)− φ(vR)|2dxdt ≤ C(L)|δ|2,

for all δ ∈ R, |δ| ≤ r.

Lemma 2.8. Suppose ε > 0. Then for each L > 0, there exists a constant C(L)

independent of k and τ ∈ (0, T ) such that∫ T−τ

0

∫ L+1

0

|φ(TτuR)− φ(uR)|2dxdt ≤ τC(L),∫ T−τ

0

∫ L+1

0

|φ(TτvR)− φ(vR)|2dxdt ≤ τC(L).

Proof. The proof takes the advantage of [4, Lemma 2.16], see also [2, Lemma 3].

Since we have nonlinear diffusion terms, we also need to deal with the nonlinearity

φ. Let ψL be as in the proof of Lemma 2.6. Then it follows using the Mean Value

Theorem that ∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|2 dxdt

≤N
∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)| |TτuR − uR|dxdt,

where N = φ′(U0) such that φ′(s) ≤ N for all s ∈ [0, U0], since φ′ is increasing.

Then we have∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|2 dxdt

≤N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ (TτuR)− φ(uR)|φ(uR)xx(x, t+ s)dxdtds

−Nk
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|uR(x, t+ s)vR(x, t+ s)dxdtds

=I1 + I2 + I3,

with

I1 := −N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|x φ(uR)x(x, t+ s)dxdtds,

I2 := −N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLx |φ(TτuR)− φ(uR)|φ(uR)x(x, t+ s)dxdtds,

I3 := −Nk
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψL |φ(TτuR)− φ(uR)|uR(x, t+ s)vR(x, t+ s)dxdtds.
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I1 can be split into two terms, and using the Cauchy-Schwarz inequality and the

property ψL ≤ 1 yields

|I1| =

∣∣∣∣∣−N
∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLφ(TτuR)xφ(uR)x(x, t+ s)dxdtds

+N

∫ τ

0

∫ T−τ

0

∫ L+1

0

ψLφ(uR)xφ(uR)x(x, t+ s)dxdtds

∣∣∣∣∣
≤2τN

{∫ T

0

∫ L+1

0

|φ(uR(x, t))x|2 dxdt

} 1
2

.

which is bounded by Lemma 2.6. By (2.2) and the Cauchy-Schwarz inequality, there

exist C independent of k such that

|I2| ≤ sup |ψLx |NCτ

{∫ T−τ

0

∫ L+1

L

|φ(uR)x(x, t+ s)|2 dxdt

} 1
2

ds,

which is bounded by (2.13) and the fact that sup |ψLx | is bounded independent of

L. The last term is easier to handle, by (2.2) we get

|I3| ≤ 2MτN

∫ T

0

∫ L+1

0

kuRvRdxdt,

which is bounded by Lemma 2.5. An analogous estimate for vR can be obtained by

using similar arguments.

We can now establish the existence of a weak solution of the original problem

(1.3) of ST when ε > 0. Now with

ΩJ :=
{
α ∈W 1,2((0, J))| α = 0 at x = 0

}
,

and define

FT :=
{
ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0} .

Theorem 2.2. Let ε > 0. Given k > 0, there exists a weak solution (uk, vk) ∈
(L∞(ST ))2 of (1.3) such that for each J > 0,

(i) φ(uk) ∈ φ(û) + L2(0, T ; ΩJ), φ(vk) ∈ L2(0, T ;W 1,2((0, J)))

(ii) (uk, vk) satisfies∫
R+

uk0ξ(x, 0)dx+

∫∫
ST

ukξtdxdt =

∫∫
ST

φ(uk)xξxdxdt+ k

∫∫
ST

ξukvkdxdt,∫
R+

vk0ξ(x, 0)dx+

∫∫
ST

vkξtdxdt =

∫∫
ST

εφ(vk)xξxdxdt+ k

∫∫
ST

ξukvkdxdt,
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where ξ ∈ FT .

Proof. Let u0,R, v0,R be as in the formulation of problem (2.2) and note that as

R → ∞, u0,R → uk0 , v0,R → vk0 in C1
loc(R+). Then given Rn → ∞, it follows

from the Fréchet-Kolmogorov Theorem (see, for example, [1, Corollary 4.27]) and

(2.2), Lemma 2.7 and 2.8, that there exist subsequences
{
Rnj

}
and functions uk ∈

L∞(ST ) and vk ∈ L∞(ST ) such that

uRnj
→ uk, vRnj

→ vk strongly in L2
loc(ST ) and a.e. in ST

as j → ∞. Now we know that φ(uRnj
) − φ(U0) is bounded in L2(0, T ; ΩJ) and

φ(vRnj
) is bounded in L2(0, T ;W 1,2(0, J)) by Lemma 2.6, then we have that, up to

a subsequence, as j →∞

φ(uRnj
)− φ(U0) ⇀ φ(uk)− φ(U0) in L2(0, T ; ΩJ),

φ(vRnj
) ⇀ φ(vk) in L2(0, T ;W 1,2((0, J))).

By the Dominated Convergence Theorem we can then easily pass to the limit in

the weak form of (1.3).

We use the following comparison principle theorem for (1.3) to show the unique-

ness of the weak solution of (1.3). Note that this result covers both the case ε > 0

and the case ε = 0.

Lemma 2.9. Let ε ≥ 0 and (u, v), (u, v) be such that

(a) u, u ∈ L∞(ST );

(b) φ(u) ∈ φ(u(0, ·)) + L2(0, T ; ΩJ), φ(u) ∈ φ(u(0, ·)) + L2(0, T ; ΩJ);

(c) ut, ut, φ(u)xx, φ(u)xx ∈ L1(ST );

(d) v, v ∈ L∞(ST ), vt, vt ∈ L1(ST );

(e) If ε > 0, φ(v), φ(v) ∈ L2(0, T ;W 1,2((0, J))), φ(v)xx, φ(v)xx ∈ L1(ST );

and (ū, v̄), (u, v) satisfy

ut ≥ φ(u)xx − kuv, ut ≤ φ(u)xx − kuv, in ST ,

vt ≤ εφ(v)xx − kuv, vt ≥ εφ(v)xx − kuv, in ST ,

u(0, ·) ≥ u(0, ·), εφ(v)x(0, ·) = εφ(v)x(0, ·) = 0, on (0, T ),

u(·, 0) ≥ u(·, 0), v(0, ·) ≤ v(0, ·), on R+.

Then

u ≥ u, v ≤ v in ST .

Proof. Take the function m+ as in the proof of Lemma 2.1, ψL be as in the

proof of Lemma 2.6 and let w = φ(u) − φ(u) and z = φ(v) − φ(v). This result

follows from arguments analogous to those used in the proof of Lemma 2.1, replacing
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(m+
α )′(w) by (m+

α )′(w)ΨL, (m+
α )′(z) by (m+

α )′(z)ΨL and integrals over R+× (0, t0)

by (0, R)× (0, T ). Letting α→ 0, we have∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, t0)dx

≤
∫
R+

ψL
[
(u− u)+ + (v − v)+

]
(x, 0)dx+

∫ t0

0

∫
R+

ψLxx(w+ + εz+)dxdt

≤
∫ t0

0

∫
R+

ψLxx

{[
φ(u)− φ(u)

]+
+ ε
[
φ(v)− φ(v)

]+}
dxdt, (2.15)

which is bounded independently of L and t0 by the definition of ψL and in particular,

ψLxx 6= 0 only if x ∈ [L,L + 1]. Now using Lebesgue’s Monotone Convergence

Theorem we deduce that [(u − u)+ + (v − v)+] ∈ L∞
(
0, T ;L1(R+)

)
, thus (2.15)

tends to 0 as L→∞. Hence[
(u− u)+ + (v − v)+

]
(·, t0) = 0 on R+.

The following corollaries are immediate from Lemma 2.1.

Corollary 2.3. Let ε ≥ 0. For given initial data uk0 , v
k
0 , there is at most one solution

(uk, vk) of (1.3).

Corollary 2.4. Let ε ≥ 0 and (uk, vk) be a weak solution of (1.3). Then for given

k > 0, we have

0 ≤ uk(x, t) ≤ U0 and 0 ≤ vk(x, t) ≤ V0 for (x, t) ∈ ST . (2.16)

3. Half-line case: a priori bounds, existence and uniqueness of

weak solutions for ε = 0

In this section, we prove some a priori estimates for ε = 0 and for ε > 0 that will

be used both in proving existence of a weak solution of (1.3) when ε = 0 and in the

next section, to study the limit of (1.3) as k →∞.

The next bound for kukvk is key in the following. The strategy to obtain the

estimate is to consider the integral over (1,∞)× (0, T ) by studying the equation of

uk and the integral over (0, 1)× (0, T ) by studying the equation of vk. The proof of

this result uses a similar approach to that used in the proof of [4, Lemma 3.4] and

we omit the details. Note that a similar result in the whole-line case is established

in Lemma 5.2, where more involved arguments are needed and we provide a proof.

Lemma 3.1. There exists a constant C > 0, independent of ε ≥ 0 and k > 0, such

that for any solution (uk, vk) of (1.3), we have∫∫
ST

kukvkdxdt ≤ C.

The following result prove the L1 bounds of uk and vk − V0.
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Lemma 3.2. There exists a constant C > 0, independent of ε ≥ 0 and k > 0, such

that for any solution (uk, vk) of (1.3), we have∫
R+

uk(x, t0)dx ≤ C and

∫
R+

|vk(x, t0)− V0|dx ≤ C, (3.1)

for all t0 ∈ [0, T ].

Proof. The estimate for uk is immediate from the proof of Lemma 3.1 and the

Monotone Convergence Theorem. Choose a smooth convex function m : R → R
with

m ≥ 0, m(0) = 0, m′(0) = 0, m(r) = |r| − 1

2
for |r| > 1.

For each α > 0, define the functions

mα(r) := αm(
r

α
),

which approximate the modulus function as α → 0. Denote v̂ = vk − V0, ẑ =

φ(vk)− φ(V0).

Multiplying the equation of v̂ by m′α(ẑ)ψL, where ψL as in the proof of Lemma

2.6, and integrating over R+ × (0, t0), we obtain∫ t0

0

∫
R+

m′α(ẑ)ψLv̂tdxdt =ε

∫ t0

0

∫
R+

m′α(ẑ)ψLẑxxdxdt− k
∫ t0

0

∫
R+

m′α(ẑ)ψLukvkdxdt.

Letting α→ 0 and [8, Lemma 7.6] yields∫
R+

|v̂(x, t0)|ψLdx−
∫
R+

|v̂(x, 0)|ψLdx

≤ε
∫ t0

0

∫
R+

|ẑ|ψLxxdxdt− k
∫ t0

0

∫
R+

sgn(ẑ)ψLukvkdxdt. (3.2)

We know that ψLxx 6= 0 only when ψLxx ∈ [L,L+1] and by Lemma 3.1, the right-hand

side of (3.2) is bounded independently of L and k. So it follows from the fact that

vk0 − v∞0 is bounded in L1(R+), there exists C > 0 independent of k, such that for

all t0 ∈ [0, T ] ∫
R+

|vk(x, t0)− V0|dx ≤ C.

By using the Mean Value Theorem and a priori bounds on uk, vk on Corollary

2.4, we can get the following corollary of Lemma 3.2.

Corollary 3.1. There exists a constant C > 0, independent of ε ≥ 0 and k > 0,

such that for any solution (uk, vk) of (1.3), we have∫
R+

φ(uk)(·, t0)dx ≤ C and

∫
R+

|φ(vk)(·, t0)− φ(V0)|dx ≤ C, (3.3)

for all t0 ∈ [0, T ].
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Next we prove a bound for the L2-norm of the space derivatives φ(uk)x and

φ(vk)x.

Lemma 3.3. There exists C > 0, independent of ε ≥ 0 and k > 0, such that for

any solution (uk, vk) of (1.3),∫∫
ST

|φ(uk)x|2dxdt ≤ C, and ε

∫∫
ST

|φ(vk)x|2dxdt ≤ C. (3.4)

Proof. The proof follows the similar arguments in Lemma 2.6. Let ψL be as in the

proof of Lemma 2.6. Then multiplying the equation for uk by
[
φ(uk) − φ(U0)

]
ψL

and integrating over ST give∫∫
ST

|φ(uk)x|2ψLdxdt

=−
∫
R+

φ(U0)
(
uk0 − uk(x, T )

)
ψLdx−

∫
R+

[
F (x, T )− F (x, 0)

]
ψLdx

+
1

2

∫∫
ST

[
φ(uk)− φ(U0)

]2
ψLxxdxdt− k

∫∫
ST

[
φ(uk)− φ(U0)

]
ψLukvkdxdt,

where F =

∫ uk

0

φ(s)ds. By the Mean Value Theorem and (2.16), we obtain for

s ∈ [0, U0] such that

F (x, T )− F (x, 0) = φ(s)uk(x, T ),

which yields∣∣∣∣∫
R+

[F (x, T )− F (x, 0)]ψLdx

∣∣∣∣ ≤ φ(U0) sup
0≤t≤T

∫
R+

uk(x, t)dx,

which is bounded by Lemma 3.2. Combining with Lemma 3.1, using Lebesgue’s

Monotone Convergence Theorem and letting L → ∞ imply that there exists a

constant C > 0 such that ∫∫
ST

|φ(uk)x|2dxdt ≤ C,

independently of k. If ε > 0, the estimate for φ(vk)x can be proved likewise, using

the equation for vk.

The following estimates for the differences of space and time translates of so-

lutions will yield sufficient compactness both to obtain the existence of solutions

of (1.3) when ε > 0 and ε = 0, and to study the strong-interaction limit k → ∞.

The estimates for the differences of space translates of solutions are proved in the

similar way to [4, Lemma 2.15], which importantly allows ε = 0. Note that we need

alternative procedures to deal with the nonlinear diffusion, and the monotonicity

properties of φ and [8, Lemma 7.6] are both used here.

Recall the notion for space and time translates introduced in (2.14).
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Lemma 3.4. Suppose that ε ≥ 0 and let (uk, vk) be a solution of (1.3) satisfying

(2.16). Then for each r ∈ (0, 1), there exists a function Kr ≥ 0 independent of ε ≥ 0

and k > 0 such that Kr(δ) → 0 as |δ| → 0 and for all |δ| ≤ r
4 and t ∈ (0, T ), we

have ∫ ∞
r

∣∣φ(uk)− φ(Sδu
k)
∣∣+
∣∣φ(vk)− φ(Sδv

k)
∣∣dx ≤ Kr(δ).

Proof. Let

u := uk − Sδuk, g := φ(uk)− φ(Sδu
k),

v := vk − Sδvk, n := φ(vk)− φ(Sδv
k), (3.5)

and define a cut-off function γ1r ∈ C∞(R+) such that 0 ≤ γ1r ≤ 1, γ1r (x) = 0 when

x ∈ [0, r/2], γ1r (x) = 1 when x ∈ [r, 1] and γ1r (x) = 0 when x ≥ 2. Then given

L ≥ 1 define a family of cut-off function γLr ∈ C∞(R+) such γLr (x) = γ1r (x) when

x ∈ [0, r], γLr (x) = 1 when x ∈ [r, L] and γLr (x) = γ1r (x+ 1− L) when x ≥ L. Note

that 0 ≤ γLr ≤ 1 for all L, and (γLr )x, (γLr )xx are bounded in both L∞(R+) and

L1(R+) independently of L.

This follows from the similar form of argument used to show in [4, Lemma 3.7],

but with nonlinear diffusion. We omit most of the details and only note two key

calculations involving nonlinear diffusion.

Let mα be as defined in the proof of Lemma 3.2. Letting α→ 0 gives

lim
α→0

(mα)′(φ(uk)− φ(Sδu
k))→ sgn(φ(uk)− φ(Sδu

k)) = sgn(uk − Sδuk).

Then by [8, Lemma 7.6], we have∫ ∞
r
2

γLr {|u(x, t0)|+ |v(x, t0)|}dx

≤
∫ ∞

r
2

γLr {|u(x, 0)|+ |v(x, 0)|}dx+

∫ t0

0

∫
r
2

(
γLr
)
xx
{|g|+ ε|n|} dxdt

− k
∫ t0

0

∫ ∞
r
2

γLr [sgn(g) + sgn(n)]
(
ukvk − SδukSδvk

)
dxdt

≤
∫ ∞

r
2

γLr {|u(x, 0)|+ |v(x, 0)|}dx+

∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
{|g|+ ε|n|}dxdt, (3.6)

because

[sgn(g) + sgn(n)]
(
ukvk − SδukSδvk

)
≥ 0. (3.7)

Now we prove the following bound for the right-hand side of (3.6),

∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
|g|dxdt ≤|δ|

[∫ t0

0

∫ ∞
r
4

(
γLr
)2
xx

dxdt

] 1
2
[∫ t0

0

∫ ∞
r
4

∣∣φ(uk)x(x+ δ, t)
∣∣2 dxdt

] 1
2

.
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By Lemma 3.3 and a similar estimate for n, we get∫ t0

0

∫ ∞
r
2

(
γLr
)
xx
{|g|+ ε|n|}dxdt ≤ Kr|δ|, (3.8)

for some constant Kr. The result follows from (3.6), the fact that ‖uk0(· + δ) −
uk0(·)‖L1((r,∞)) + ‖vk0 (· + δ) − vk0 (·)‖L1((r,∞)) ≤ ωr(δ) where ωr(µ) → 0 as µ → 0

and Lebesgue’s Monotone Convergence Theorem combining with the Mean Value

Theorem.

The estimates for the difference of time translates are proved by using similar

methods to those in the proof of Lemma 2.8, passing to the limit as L → ∞ in

integrals over (0, L + 1) to obtain estimates on integrals over R+, we leave the

details to reader.

Lemma 3.5. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.3) satisfying (2.16).

Then there exists C > 0, independent of ε and k, for any τ ∈ (0, T ) that∫ T−τ

0

∫
R+

|φ(Tτu
k)− φ(uk)|2dxdt ≤ τC,∫ T−τ

0

∫
R+

|φ(Tτv
k)− φ(vk)|2dxdt ≤ τC.

Lemma 3.6. Let (uk, vk) be weak solutions of (1.3) with k > 0 and ε ≥ 0. Then

φ(uk)− φ(û) ∈ L2(0, T ;W 1,2
0 (R+)), (3.9)

and

ε[φ(vk)− φ(V0)] ∈ L2(0, T ;W 1,2(R+)), (3.10)

where û ∈ C∞(R+) is a smooth function such that û = U0 when x = 0 and û = 0

when x > 1.

Proof. The result for uk follows from Corollary 2.4 and Corollary 3.1 which ensure

that φ(uk)− φ(U0) ∈ L∞(ST ) and φ(uk)− φ(U0) ∈ L1(ST ), together with Lemma

3.3 which ensures that φ(uk)x ∈ L2(ST ). If ε > 0, the estimates for vk can be proved

likewise.

We can now prove a convergence result for solutions (uk, vk) of (1.3) as ε→ 0.

Lemma 3.7. Let k > 0 be fixed and (ukε , v
k
ε ) be solution of (1.3) satisfying (2.16)

with ε > 0. Then there exist (uk?, v
k
? ) ∈ (L∞(ST ))

2
such that up to a subsequence,
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for each J > 0

φ(ukε)→ φ(uk?) in L2((0, J)× (0, T )),

ukε → uk? a.e. in (0, J)× (0, T ),

φ(vkε )→ φ(vk? ) in L2((0, J)× (0, T )),

vkε → vk? a.e. in (0, J)× (0, T ),

φ(ukε)− φ(û) ⇀ φ(uk?)− φ(û) in L2
(

0, T ;W 1,2
0 (R+)

)
,

as ε → 0, where û ∈ C∞(R+) is a smooth function that û = U0 when x = 0 and

û = 0 when x > 1.

Proof. It follows from Lemma 3.2, Lemma 3.3 and Corollary 2.4 that φ(ukε) and

φ(vkε ) − φ(V0) are bounded independently of ε ≥ 0 in L2(ST ). By Lemma 3.4

and Lemma 3.5, using the Riesz-Fréchet-Kolmogorov Theorem [1, Theorem 4.26],

yield that the sets
{
φ(vkε )− φ(V0)

}
ε>0

and
{
φ(ukε)

}
ε>0

are each relatively compact

in L2 ((0, J)× (0, T )) for each J > 0. The weak convergence of φ(ukε) − φ(û) in

L2
(

0, T ;W 1,2
0 (R+)

)
follows from Lemma 3.6. Then we know that φ(ukε) → φ(uk?)

and φ(vkε )→ φ(vk? ) almost everywhere in (0, J)× (0, T ), so since φ−1 is continuous,

then we have ukε → φ−1(φ(uk?)) and vkε → φ−1(φ(vk? )) almost everywhere in (0, J)×
(0, T ).

Recall that

FT :=
{
ξ ∈ C1(ST ) : ξ(0, t) = ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [0, J ]× [0, T ]

for some J > 0} .
(3.11)

and

ΩJ :=
{
α ∈W 1,2(0, J)| α = 0 at x = 0

}
.

Lemma 2.9 and Lemma 3.7 enable the following result to be established.

Theorem 3.1. Let ε = 0 and k > 0. Then Problem (1.3) has a unique weak

solution (uk, vk) ∈ (L∞(ST ))2 for each J > 0 such that

(i) φ(uk) ∈ φ(û) + L2(0, T ; ΩJ), where û ∈ C∞(R+) is a smooth function that

û = U0 when x = 0 and û = 0 when x > 1;

(ii) (uk, vk) satisfies∫
R+

uk0ξ(x, 0)dx+

∫∫
ST

ξtu
kdxdt =

∫∫
ST

ξxφ(uk)xdxdt+ k

∫∫
ST

ξukvkdxdt,

(3.12)∫
R+

vk0ξ(x, 0)dt+

∫∫
ST

ξtv
kdxdt = k

∫∫
ST

ξukvkdxdt, (3.13)

for all ξ ∈ FT .
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Proof. The existence of a solution (uk, vk) to (3.12)-(3.13) follows by using Lemma

3.7 to pass to the limit along a subsequence as ε → 0. The uniqueness of (uk, vk)

follows from the comparison principle proved in Lemma 2.9.

4. Half-line case: limit problem for (1.3) as k → ∞

We now establish the existence of limits of solutions of (1.3) as k →∞, both when

ε > 0 and ε = 0, by using the a priori estimates of the previous section.

Lemma 4.1. Let ε ≥ 0 be fixed and (uk, vk) be weak solutions of (1.3) satisfy-

ing (2.16) with k > 0. Then there exists (u, v) ∈ (L∞(ST ))2 such that up to a

subsequence, for each J > 0 that

φ(uk)→ φ(u) in L2((0, J)× (0, T )),

uk → u a.e. in (0, J)× (0, T ),

φ(vk)→ φ(v) in L2((0, J)× (0, T )),

vk → v a.e. in (0, J)× (0, T ),

φ(uk)− φ(û) ⇀ φ(u)− φ(û) in L2
(

0, T ;W 1,2
0 (R+)

)
,

and for ε > 0

φ(vk)− φ(V0) ⇀ φ(v)− φ(V0) in L2
(
0, T ;W 1,2(R+)

)
,

as k → ∞, where û ∈ C∞(R+) is a smooth function that û = U0 when x = 0 and

û = 0 when x > 1.

Proof. The proof is directly analogous to that of Lemma 3.7, using bounds in-

dependent of k in place of bounds independent of ε. The weak convergence of

φ(vk)− φ(V0) in L2
(
0, T ;W 1,2(R+)

)
follows from Lemma 3.6.

The following segregation result is a key to characterisation of the limits u, v in

Lemma 4.1.

Lemma 4.2. Let ε ≥ 0 and (u, v) be as in Lemma 4.1. Then

uv = 0 a.e. in ST . (4.1)

Proof. It follows from Lemma 3.1 and Lemma 4.1 that uv = 0 almost everywhere

in ST combining with Lemma 2.4 and using Lebesgue’s Dominated Convergence

Theorem.

To derive the limit problem, we set

wk := uk − vk, w := u− v. (4.2)

Then it follows from Lemma 4.1 and Lemma 4.2 that as a sequence kn →∞,

wkn → w in L2 ((0, J)× (0, T )) for all J > 0 and a.e in ST ,
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and that

u = w+, v = −w−,

where s+ = max {0, s} and s− = min {0, s}.
Next result follows using Lemma 4.1 and the fact that uk0 → u∞0 and vk0 → v∞0

in L1(R+) as k →∞.

Lemma 4.3. Let ε ≥ 0 and (u, v) be as in Lemma 4.1. Then∫∫
ST

(u− v)ξtdxdt+

∫
R+

(u∞0 − v∞0 )ξ(x, 0)dx =

∫∫
ST

(φ(u)− εφ(v))xξxdxdt,

(4.3)

for all ξ ∈ FT , where FT as in (3.11).

Now define

D(s) :=

{
φ(s) s ≥ 0,

− εφ(−s) s < 0,
(4.4)

and the limit problem
wt = D(w)xx, in ST ,

w(x, 0) = w0(x) := −V0, for x > 0,

w(0, t) = U0, for t ∈ (0, T ).

(4.5)

Definition 4.1. A function w is a weak solution of (4.5) if

(i) w ∈ L∞(ST ),

(ii) D(w) ∈ D(ŵ) +L2(0, T ;W 1,2
0 (R+)), where ŵ ∈ C∞(R+) is a smooth func-

tion with ŵ = U0 when x = 0 and ŵ = −V0 when x > 1,

(iii) w satisfies∫
R+

w0(x)ξ(x, 0)dx+

∫∫
ST

wξtdxdt =

∫∫
ST

D(w)xξxdxdt. (4.6)

for all ξ ∈ FT , where FT as in (3.11).

Theorem 4.1. Let ε ≥ 0. The function w defined in (4.2) is a weak solu-

tion of problem (4.5) and the whole sequence (uk, vk) in Lemma 4.1 converges to

(w+,−w−).

Proof. The existence of a weak solution is a straightforward consequence of Defi-

nition 4.1 and Lemma 4.3. The fact that the whole sequence (uk, vk) converges to

(w+,−w−) follows from the uniqueness results proved in Theorem 4.3.

Now we prove the uniqueness of the weak solution of (4.5). The proof is inspired

by [9, Proposition 5], but here we use a different auxiliary function and a different

problem to obtain a useful family of test functions. First, if we choose a smooth

test function ξ̂ ∈ C∞0 (R+ × [0, T ]), the weak solution w satisfies
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(i) w ∈ L∞(ST ),

(ii) D(w) ∈ D(ŵ) +L2(0, T ;W 1,2
0 (R+)), where ŵ ∈ C∞(R+) is a smooth func-

tion with ŵ = U0 when x = 0 and ŵ = −V0 when x > 1,

(iii) w satisfies∫
R+

w0(x)ξ̂(x, 0)dx+

∫∫
ST

wξ̂tdxdt =

∫∫
ST

D(w)xξ̂xdxdt. (4.7)

Theorem 4.2. Let ε ≥ 0 and consider two solutions w, w̃ of problem (4.5) with

initial data w0, w̃0 respectively, then∫∫
ST

|w − w̃|dxdt ≤ C(T )

∫
R+

|w0 − w̃0|dx, (4.8)

and there exists at most one solution of problem (4.5) for given initial function w0.

Proof. We know that there exists ξ̂m ∈ C∞0 (R+ × [0, T ]) such that ξ̂m → ξ̂ in

W 1,2
2 (ST ) as m→∞. Now we can rewrite (4.7) as∫

R+

w0(x)ξ̂m(x, 0)dx+

∫∫
ST

wξ̂mtdxdt =

∫∫
ST

D(w)ξ̂mxxdxdt,

with ξ̂m ∈ C∞0 (R×[0, T )), then letting m→∞, we deduce that for all ξ̂ ∈W 1,2
2 (ST )

with ξ̂(·, T ) = 0 and ξ̂(0, ·) = 0, the difference w − w̃ satisfies

0 =

∫∫
ST

(w − w̃)(ξ̂t + aξ̂xx)dxdt+

∫
R+

(w0 − w̃0)ξ̂(x, 0)dx, (4.9)

where a :=


D(w)−D(w̃)

w − w̃
w 6= w̃,

0 otherwise.
Observe that a ∈ L∞(ST ), now consider a sequence {an} of smooth function

such that 1
n ≤ an ≤ ‖a‖L∞(ST ) + 1

n and
an − a√
an

→ 0 almost everywhere in ST as

n→∞.

Let ξ̃n ∈W 1,2
2 (ST ) be the solution of problem

λ = ξ̃nt + anξ̃nxx, in ST ,

ξ̃n(0, t) = 0, t ∈ (0, T ),

ξ̃n(x, T ) = 0, x ∈ R+,

(4.10)

where λ ∈ C∞c (R+ × [0, T )).

The existence of a solution to this problem follows from standard parabolic

theory, see for example [11, IV, Theorem 9.1]. We claim that the following estimates

hold,

(i) ‖ξ̃n‖L∞(ST ) ≤ C(‖λ‖L∞(ST ), T );

(ii)

∫∫
ST

an|ξ̃nxx|2 ≤ C(λ, T ).
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The maximum principle and a comparison of ξ̃n with the functions ξ̃+n , ξ̂
−
n defined

by

ξ̃+n = eα(T−t), ξ̃−n = −eα(T−t),

where α = eT ‖λ‖L∞(ST ), gives (i).

To prove (ii), multiplying the equation of ξ̃n by ξ̃nxx and integrating over R+ ×
(t, T ), we get∫ T

t

∫
R+

λξ̃nxxdxdt =
1

2

∫
R+

(ξ̃nx)2(t)dx+

∫ T

t

∫
R+

an(ξ̃nxx)2dxdt.

We deduce from above that∫∫
ST

an(ξ̃nxx)2dxdt ≤ ‖ξ̃n‖L∞(ST )‖λxx‖L1(ST ).

Using ξ̃n as a test function of (4.9), we obtain

0 =

∫∫
ST

(w − w̃)
[
λ+ (a− an)ξ̃nxx

]
dxdt+

∫
R+

(w0 − w̃0)ξ̃n(x, 0)dx.

We deduce by Hölder’s inequality and (ii) that

lim
n→∞

sup

∣∣∣∣∫∫
ST

(w − w̃)(a− an)ξ̃nxx

∣∣∣∣
≤ lim
n→∞

sup

∥∥∥∥∫∫
ST

(w − w̃)
a− an√
an

)

∥∥∥∥
L2(ST )

∥∥∥√anξ̃nxx∥∥∥
L2(ST )

= 0.

Thus, in the limit n→∞, we get∫∫
ST

(w − w̃)λdxdt ≤ C(‖λ‖L∞(ST ), T )

∫
R+

(w0 − w̃0).

Taking a sequence {λi}i∈N, λi ∈ C∞c (ST ) with ‖λi‖L∞(ST ) ≤ 2 and λi → sgn(w−w̃)

almost everywhere, we obtain by letting i→∞∫∫
ST

|w − w̃|dxdt ≤ C(T )

∫
R+

|w0 − w̃0|dx.

By Theorem 4.1 and Theorem 4.2, we obtain the following.

Theorem 4.3. Let ε ≥ 0. Then there exists a unique solution w of the limit problem

(4.5).

5. The whole-line case: Problem (4.5)

In this chapter, we consider the problem (4.5) on the whole real-line by using similar

arguments to those used in Section 2 in the half-line case. We omit most of the details

and concentrate on differences between half-line case and whole line case.
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5.1. Existence and uniqueness of weak solutions for ε > 0

Let ε > 0. Similarly to the half-line case, we use an approximate problem to establish

existence of solutions of (1.4). For each R > 1, let (5.1) denote the problem

ut = φ(u)xx − kuv, (x, t) ∈ (−R,R)× (0, T ),

vt = εφ(v)xx − kuv, (x, t) ∈ (−R,R)× (0, T ),

φ(u)x(−R, t) = φ(u)x(R, t) = 0, for t ∈ (0, T ),

φ(v)x(−R, t) = φ(v)x(R, t) = 0, for t ∈ (0, T ),

u(x, 0) = uk0,R(x), v(x, 0) = vk0,R(x), for x ∈ (−R,R),

(5.1)

where uk0,R, v
k
0,R ∈ C2(R+) are such that 0 ≤ uk0,R ≤ U0, 0 ≤ vk0,R ≤ V0 and

uk0,R =

{
U0 − (U0 − uk0)ψ̂R x < 0,

uk0ψ̂
R x ≥ 0,

vk0,R =

{
vk0 ψ̂

R x < 0,

V0 − (V0 − uk0)ψ̂R x ≥ 0,

(5.2)

which define the functions uk0,R, v
k
0,R on the whole real line, where the family of

cut-off functions ψ̂R ∈ C∞(R+) with R > 1 are defined as ψ̂R = 1 when |x| ≤ R

and ψ̂R = ψ̂1(x+ 1−R) when |x| ≥ R where ψ̂1 ∈ C∞ (R) is a even, non-negative

cut-off function such that 0 ≤ ψ̂1(x) ≤ 1 for all x ∈ R, ψ̂1(x) = 1 when |x| ≤ 1 and

ψ̂1(x) = 0 when |x| ≥ 2.

Define the family of test functions

F̂T :=
{
ξ ∈ C1(QT ) : ξ(·, T ) = 0 for t ∈ (0, T ) and supp ξ ⊂ [−J, J ]× [0, T ]

for some J > 0} .
(5.3)

Arguments analogous to those used in Section 2 yield existence of solutions of

Problem (1.4) by passing to the limit R→∞ in problem (5.1). We leave the details

to reader and simply state the result.

Theorem 5.1. Suppose ε > 0. Then for given k > 0, there exists a weak solution

(uk, vk) ∈ (L∞(QT ))2 of (1.4) such that for each J > 0

(i) φ(uk) ∈ L2(0, T ;W 1,2((−J, J))), φ(vk) ∈ L2(0, T ;W 1,2(−J, J));

(ii) (uk, vk) satisfies∫
R
uk0Ψ(x, 0)dx+

∫∫
QT

ukΨtdxdt =

∫∫
QT

φ(uk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,∫
R
vk0Ψ(x, 0)dx+

∫∫
QT

vkΨtdxdt =

∫∫
QT

εφ(vk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,

where Ψ ∈ F̂T .

The following comparison principle which follows from arguments analogous to

those used in the proof of Lemma 2.9, replacing ψL by ψ̂L and integrals over ST by
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integrals over QT , to prove the uniqueness of the weak solution of Problem (1.4),

for both ε > 0 and ε = 0.

Lemma 5.1. Suppose ε ≥ 0 and let (uk, vk), (uk, vk) be such that

(a) uk, uk ∈ L∞(QT );

(b) φ(uk), φ(uk) ∈ L2(0, T ;W 1,2(R)), ukt , u
k
t , φ(uk)xx, φ(uk)xx ∈ L1(QT );

(c) vk, vk ∈ L∞(QT ), vkt , v
k
t ∈ L1(QT );

(d) If ε > 0, φ(vk), φ(vk) ∈ L2(0, T ;W 1,2(R)), φ(vk)xx, φ(vk)xx ∈ L1(QT );

(uk, vk), (uk, vk) satisfy

ukt ≥ φ(uk)xx − kukvk, ukt ≤ φ(uk)xx − kukvk, in QT ,

vkt ≤ εφ(vk)xx − kukvk, vkt ≥ εφ(vk)xx − kukvk, in QT ,

uk(·, 0) ≥ uk(·, 0), vk(·, 0) ≤ vk(·, 0), on R.

Then

uk ≥ uk, vk ≤ vk in QT .

The following two corollaries follow immediately from Lemma 5.1.

Corollary 5.1. Suppose ε ≥ 0 and k > 0. Then for given initial data uk0 , v
k
0 , there

is at most one solution (uk, vk) of (1.4).

Corollary 5.2. Let (uk, vk) be a weak solution of (1.4). Then we have

0 ≤ uk(x, t) ≤ U0 and 0 ≤ vk(x, t) ≤ V0 for (x, t) ∈ QT . (5.4)

5.2. A priori bounds and existence of weak solutions for ε = 0

Similar to the half-line case, the following a priori bounds will be used to study the

ε→ 0 and k →∞ limits.

The next result follows from a similar argument to that of [4, Lemma 2.12] and

is the whole-line analogue of Lemma 3.1. Since this result is crucial in the following

and the whole-line requires the term kuv to be controlled by the equation of uk on

R+ and the equation of vk on R−, we give a short proof here for the convenience

of the reader.

Lemma 5.2. There exists a constant C > 0, independent of ε ≥ 0 and k > 0, such

that for any solution (uk, vk) of (1.4), we have∫∫
QT

kukvkdxdt ≤ C.

Proof. Define β1 ∈ C∞ (R) such that 0 ≤ β1(x) ≤ 1 for all x ∈ R, β1(x) = 1 when

x ∈ [0, 1] and β1(x) = 0 when x ∈ (−∞,−1]∪ [2,∞). Then given L ≥ 1, the family

of cut-off functions βL ∈ C∞(R) are defined by βL(x) = β1 when x < 0, βL(x) = 1

when x ∈ [0, L] and βL(x) = β1(x+1−L) when x ≥ L. We also define β̃L ∈ C∞(R)
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by β̃L(x) = βL(−x) for all x ∈ R. Note that 0 ≤ βL(x), β̃L(x) ≤ 1 for all x ∈ R
and βLx , β

L
xx, β̃

L
x , β̃

L
xx are bounded in both L∞(R) and L1(R) independently of L.

Multiplying the equation for uk by βL and integrating over R × (0, t0) where

t0 ∈ (0, T ], give∫
R
βLuk(x, t0)dx+ k

∫ t0

0

∫
R
βLukvkdxdt =

∫ t0

0

∫
R
βLxxφ(uk)dxdt+

∫
R
βLuk0(x)dx,

which, by the definition of βL, (5.4) and uk0 is bounded independently of k in

L1(R+), imply that the right-hand side is bounded independently of L and k, given

the existence of C > 0 such that for all k > 0 and t0 ∈ (0, T ]∫ L+1

−1
βLuk(x, t0)dx+ k

∫ t0

0

∫ L+1

−1
βLukvkdxdt ≤ C, (5.5)

and then, letting L→∞ and using Lebesgue’s monotone convergence theorem give

k

∫ T

0

∫ ∞
0

ukvkdxdt ≤ C. (5.6)

Similarly, since {vk0} is bounded independently of k in L1(R−), multiplying the

equation for vk by β̃L and integrating over R× (0, t0) yields that C can be chosen

large enough that for all L and k > 0, we have∫ 1

−∞
β̃Lvk(x, t0)dx+ k

∫ t0

0

∫ 1

−∞
β̃Lukvkdxdt ≤ C, (5.7)

and hence, letting L→∞ yields that

k

∫ T

0

∫ 0

−∞
ukvkdxdt ≤ C. (5.8)

The result then follows from (5.6) and (5.8).

The L1-bounds of {uk(·, t) − u∞0 } and {vk(·, t) − v∞0 } follow from a similar

approach to that used in the proof of [4, Lemma 2.13].

Lemma 5.3. There exists a constant C > 0 independently of ε ≥ 0 and k > 0,

such that for any solution (uk, vk) of (1.4), we have

‖uk(·, t)− u∞0 ‖L1(R) ≤ C and ‖vk(·, t)− v∞0 ‖L1(R) ≤ C. (5.9)

The following corollary is immediate from (5.4) and the Mean Value Theorem.

Corollary 5.3. There exists a constant C > 0 independently of ε ≥ 0 and k > 0,

such that for any solution (uk, vk) of (1.4), we have

‖φ(uk)(·, t0)− φ(u∞0 )‖L1(R) ≤ C and ‖φ(vk)(·, t0)− φ(v∞0 )‖L1(R) ≤ C, (5.10)

for all t0 ∈ [0, T ].
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The following is the whole-line analogue of Lemma 3.3, which follows from the

the similar arguments to the proof of Lemma 3.3, replacing ψL with ψ̂L and integrals

over ST with QT .

Lemma 5.4. Suppose that ε 0. Then there exists C > 0, independent of ε > 0 and

k > 0, such that for any solution (uk, vk) of (1.4),∫∫
QT

|φ(uk)x|2dxdt ≤ C, and ε

∫∫
QT

|φ(vk)x|2dxdt ≤ C. (5.11)

Recall the notion for space and time translates introduced in (2.14). The fol-

lowing results are the estimates for the differences of space and time translates of

solutions, which follow from the same form of arguments used to show [4, Lemma

2.15]. Here we using sgn(φ(uk)−φ(Sδu
k)) = sgn(uk −Sδuk) and [8, Lemma 7.6] to

deal with the nonlinear diffusion.

Lemma 5.5. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.4) satisfying (5.4).

Then there exists a function K ≥ 0 independent of ε ≥ 0 and k > 0 such that

K(δ)→ 0 as |δ| → 0, and for t ∈ (0, T ],∫
R

∣∣φ(uk)− φ(Sδu
k)
∣∣+
∣∣φ(vk)− φ(Sδv

k)
∣∣ dx ≤ K(δ).

The following result follows from arguments analogous to those used in the proof

of Lemma 3.5, replacing ψL by ψ̂L and integrals over R+ by integrals over R.

Lemma 5.6. Suppose ε ≥ 0 and let (uk, vk) be a solution of (1.4) satisfying (5.4).

Then there exists C > 0, independent of ε and k, such that for any τ ∈ (0, T ),∫ T−τ

0

∫
R
|φ(Tτu

k)− φ(uk)|2dxdt ≤ τC,∫ T−τ

0

∫
R
|φ(Tτv

k)− φ(vk)|2dxdt ≤ τC.

We can now prove a convergence result for solution (uk, vk) of (1.4) as ε→ 0.

Lemma 5.7. Let k > 0 be fixed and (ukε , v
k
ε ) be solution of (1.4) satisfying (5.4)

with ε > 0. Then there exist (uk?, v
k
? ) ∈ (L∞(QT ))

2
such that up to a subsequence,

for each J > 0

φ(ukε)→ φ(uk?) in L2((0, J)× (0, T )),

ukε → uk? a.e. in (0, J)× (0, T ),

φ(vkε )→ φ(vk? ) in L2((0, J)× (0, T )),

vkε → vk? a.e. in (0, J)× (0, T ),

φ(ukε)− φ(ũ) ⇀ φ(uk?)− φ(ũ) in L2
(
0, T ;W 1,2(R)

)
,

as ε→ 0, where ũ ∈ C∞(R) is a smooth function such that ũ = u∞0 for all |x| > 1.
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Proof. It follows from Corollary 5.2, Lemma 5.3, 5.5, 5.6, 5.4 together with the

Riesz-Fréchet-Kolmogorov Theorem [1, Theorem 4.26]. We know that φ(ukε) →
φ(uk?) and φ(vkε ) → φ(vk? ) almost everywhere in (−J, J) × (0, T ), so since φ−1 is

continuous, then we have ukε → φ−1(φ(uk?)) and vkε → φ−1(φ(vk? )) almost everywhere

in (−J, J)× (0, T ).

Lemma 5.7 and Corollary 5.2 enable the following result to be established using

arguments similar to those that yield Theorem 3.1. We omit details of the proof.

Theorem 5.2. Let ε = 0 and k > 0. Then Problem (1.4) has a unique weak

solution (uk, vk) ∈ (L∞(QT ))2 such that

(i) φ(uk) ∈ L2(0, T ;W 1,2((−J, J)));

(ii) (uk, vk) satisfies∫
R
uk0Ψ(x, 0)dx+

∫∫
QT

ukΨtdxdt =

∫∫
QT

φ(uk)xΨxdxdt+ k

∫∫
QT

Ψukvkdxdt,∫
R
vk0Ψ(x, 0)dx+

∫∫
QT

vkΨtdxdt = k

∫∫
QT

Ψukvkdxdt,

for all Ψ ∈ F̂T , where F̂T is defined in (5.3).

5.3. The limit problem for (1.4) as k → ∞

The next result follows directly from arguments similar to those used in Section 2.3,

exploiting the whole-line estimates established in Section 4.2.

Lemma 5.8. Let ε ≥ 0 be fixed and (uk, vk) be solutions of (1.3) satisfying (5.4)

with k > 0. Then there exists (u, v) ∈ (L∞(QT ))2 such that up to a subsequence,

for each J > 0

φ(uk)→ φ(u) in L2((−J, J)× (0, T )),

uk → u a.e. in (−J, J)× (0, T ),

φ(vk)→ φ(v) in L2((−J, J)× (0, T )),

vk → v a.e. in (−J, J)× (0, T ),

φ(uk)− φ(ũ) ⇀ φ(u)− φ(ũ) in L2
(
0, T ;W 1,2(R)

)
,

and for ε > 0

φ(vk)− φ(ṽ) ⇀ φ(v)− φ(ṽ) in L2
(
0, T ;W 1,2(R)

)
,

as k → ∞, where ũ, ṽ ∈ C∞(R) are smooth functions such that ũ = u∞0 , ṽ = v∞0
for all |x| > 1. Moreover

uv = 0 a.e. in QT . (5.12)

Taking wk and w as

wk := uk − vk, w := u− v, (5.13)
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we clearly again have that as a sequence kn →∞, wkn → w in L2(QT ) and almost

everywhere in QT , and that u = w+, v = w−.

The following result focus on the function u−v, which is useful on the derivation

of the limit problem, which follows by using Lemma 5.8 and the fact that uk0 → u∞0
and vk0 → v∞0 as k →∞.

Lemma 5.9. Let ε ≥ 0 and (u, v) be as in Lemma 5.8. Then∫∫
QT

(u− v)Ψtdxdt+

∫
R

(u∞0 − v∞0 )Ψ(x, 0)dx =

∫∫
QT

[φ(u)x − εφ(v)x] Ψxdxdt,

for all Ψ ∈ F̂T .

Now recall the definition of D from (4.4) and define the limit problem
wt = D(w)xx, in QT ,

w(x, 0) = w0(x) :=

{
U0, if x < 0,

−V0, if x > 0.

(5.14)

Definition 5.1. A function w is a weak solution of problem (5.14) if

(i) w ∈ L∞(QT ),

(ii) D(w) ∈ D(ŵ) +L2(0, T ;W 1,2(R)), where ŵ ∈ C∞(R) is a smooth function

with ŵ = U0 when x < −1 and ŵ = −V0 when x > 1,

(iii) w satisfies for all T > 0∫
R
w0Ψ(x, 0)dx+

∫∫
QT

wΨtdxdt =

∫∫
QT

D(w)xΨxdxdt, (5.15)

for all Ψ ∈ F̂T .

Theorem 5.3. The function w defined in (5.13) is a unique weak solution of prob-

lem (5.14) and the whole sequence (uk, vk) in Lemma 5.8 converges to (w+,−w−).

Proof. The existence of a weak solution is a straightforward consequence of Def-

inition 5.1 and Lemma 5.9. The fact that the whole sequence (uk, vk) converges

to (w+,−w−) follows from the uniqueness, which can be proved by using the ar-

guments analogous to those used in Theorem 4.2, replacing spatial domain R+ by

R.

6. Conclusions

In this paper we have established the existence of a unique weak solution of each

of the fast reaction nonlinear diffusion limit problems (4.5) and (5.14) as k → ∞,

building on earlier work in the linear diffusion case [4]. Two pairs of problems are

treated in two cases, when ε > 0, where both substances are mobile and undergo

nonlinear diffusion, and when ε = 0, where one substance is mobile with nonlin-

ear diffusion and the other one is immobile. Practically, such results can help to
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characterise the penetration of one substance into another and it is interesting to

investigate how the specific form of the nonlinear diffusion operators in (4.5) and

(5.14) affect the rate of this penetration. The companion work [3] both shows that

these solutions are in fact self-similar solutions satisfying certain ordinary differ-

ential equations, and includes some initial analysis of how some specific forms of

nonlinear diffusion affect the solution behaviour.

Here we consider the same type of nonlinear diffusion for both components for

simplicity, but a natural extension would be to explore convergence to other types

of limit problem when there are two different φ for the two components, motivated

by particular applications, for instance, one with a nonlinear diffusion term φ(u)xx
and the one with linear diffusion term vxx. Another interesting investigation would

to extend the one-dimensional study here to multidimensional spatial domains.
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