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Abstract
During the regular service life of high-speed railway (HSR), there might be seri-
ous defects in the concrete slabs of the infrastructure systems, whichmay further
significantly affect public transportation safety. To address these serious issues
and fulfill the regular functions of HSR, the traditional methods for railway
engineers involve carrying out regular on-site inspections manually or by semi-
automatic inspection vehicles, and conducting timely corresponding repairing
approaches and maintenance, where these methods are time-consuming and
dangerous. In recent years, machine learning methods have been widely applied
to the intelligent and automatic detection of severe defects in HSR. Currently,
one of the most serious problems is the lack of sufficient high-quality data for
model training, resulting in low recognition accuracy in HSR defects. To solve
this problem, this paper proposed an intelligent recognition of defects in con-
crete slabs of HSR based on a few-shot learning model, that is, an artificial
intelligence model based on limited data size, which recognizes three service
conditions of concrete slabs inHSR: cracks, track board gaps, andunbroken state.
Lightweight few-shot learning models specifically designed for HSR detection
were proposed. Experiments were conducted to compare the performances of
different lightweight-designed models, including accuracy, parameter quantity,
and testing time. Results showed that the optimum model can fast and satisfac-
torily recognize the defects in HSR with a very limited data size of 10 samples for
each training category, with a satisfactory accuracy of 73.9% in the test dataset
with 20 samples for each category, parameter amounts of 2.8 million, and a test-
ing time of 2.2 s per image. This study provides a reference for the automatic
recognition of defects in HSR by railway engineers with insufficient samples.

1 INTRODUCTION

Compared with the traditional railway, high-speed rail-
way (HSR) has the advantages of high speed, and high
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comfort/convenience, which is one of the key compo-
nents of the modern transport system (L. Gao, 2015;
Zhai, 2020). However, in the current practice, HSR is fac-
ing huge challenges in operational safety and long-term
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service performance because of the short construction
period, large construction scale, and lack of operation
experience (Zhai & Zhao, 2016). For example, there exist
significant defects in the civil infrastructures, including
track slab cracks, track board gaps, falling blocks, and some
other defects (Ai et al., 2018) that may greatly affect the
HSR service life and service safety. Life-cycle engineering
is an important element in the railway (X. Li et al., 2023; Val
et al., 2000;Wilson et al., 1997). Therefore, timely and accu-
rate identification ofHSRdefects is of great significance for
railway engineers.
The traditional methods of identifying HSR defect

include manual inspection, using semi-automatic track
inspection vehicles, and so forth. In the current engi-
neering practices, Germany, France, Japan, China, and
some other countries have established a series of operation
safety systems based on regular inspection and mainte-
nance operations on HSR infrastructure. In recent years,
advanced characterization methods, including ultrasonic
(K. Wang et al., 2020), ground-penetrating radar (Clark
et al., 2003; Huang et al., 2023; Nurmikolu, 2012), acoustic
emission (J. Wang et al., 2018), unmanned aerial vehicles
(UAVs) (Bang et al., 2022; Kang & Cha, 2018), infrared
imaging, and so forth, have been widely used in the field
of HSR defect identification (Park et al., 2016). However,
there are two major shortcomings of these approaches:
(1) The detection speeds of these advanced characteri-
zation methods are slow. (2) The analysis of inspection
data is mainly reliant on manual recognition by railway
engineers, which is time-consuming and labor-intensive.
With the rapid development of machine learning-based

methods (Hinton & Salakhutdinov, 2006; Rafiei & Adeli,
2017a) and computing power (Adeli & Kamal, 1989),
artificial intelligence (AI) has been widely used in the
civil engineering area (Rafiei & Adeli, 2016, 2018; Rafiei
et al., 2017), especially in the automatic recognition of
defects in civil infrastructures (Tsiflakos & Owen, 1993;
Yao et al., 2023; Yoon et al., 2016). Compared to traditional
recognition methods, AI models have better performance
and faster computation speed (Adeli, 2001; Adeli &
Park, 1995; Shajihan et al., 2022). Therefore, it is possible
to employ AI models for the automatic recognition of
defects and service conditions in railways. Trosino et al.
(2002) used machine learning-based vision technology
to detect the track state. Marino et al. (2007) proposed
a visual inspection system for railway, which used a
wavelet transform to extract features and applied a neural
network to detect if hexagonal bolt fasteners were missing.
Gibert et al. (2015, 2017) extracted a histogram of oriented
gradient features from track images and then fed them
into multiple support vector machine classifiers. Chun
et al. (2017) proposed a method for identifying cracks
and mold marks using convolutional neural networks

(CNNs). F. C. Chen et al. (2018) proposed a deep learn-
ing network based on CNN and a naive Bayesian (NB)
data fusion scheme, namely, NB-CNN, which effectively
discarded false alarm information and improved crack
detection effects in images through NB decision. Z. Liu
et al. (2018) used an improved faster region-CNN to
detect locator support. J. Chen et al. (2018) proposed a
cascade network to identify catenary accessories. T. Ye
et al. (2018) and J. Li et al. (2018) modified the convolution
type based on a single-shot multi-box detector (SSD)
and replaced the ordinary convolution with a depthwise
separable convolution to save computational cost and
realize the target detection. Zhong et al. (2019) improved
the performance versus accuracy network (PVANET)
through a feature fusion mechanism and proposed the
PVANET++ algorithm to detect cotter pins. B. Guo et al.
(2019) proposed a method for generating images of railway
intrusion targets based on improved conditional deep
convolutional generative adversarial networks. Chun
et al. have made remarkable contributions to the field of
damage detection (Chun & Hayashi, 2021; Chun et al.,
2023). They completed multiple non-destructive testing
and evaluation of internal damage in reinforced concrete
based on the random forest algorithm (Chun et al., 2020)
and completed the recording of bridge damage areas and
automatic generation of image captions based on deep
learning technology (Chun et al., 2021; Yamane et al.,
2023). T. Ye et al. (2020) designed an automatic object
detection system capable of detecting track obstacles and
curves. Y. Li et al. (2020) used the SSD to implement
railway detection. F. Guo et al. (2021) proposed a real-
time pixel-level rail components detection framework
that realized fast object detection and highly accurate
instance segmentation. Tong et al. (2023) proposed a novel
anchor-adaptive railway track detection network realizing
full-angle railway track detection for the UAV aerial
images taken from arbitrary viewing angles. W. Ye et al.
(2022, 2023) realized rapid detection of apparent cracks
in rail concrete based on deep learning and developed a
systematic pixel-level crack segmentation–quantification
method suited for nighttime detection of slab tracks. Q.
Wang et al. (2023) enabled rapid, low-cost, and continuous
monitoring for rail wear on a running band by a depth-
plus-region fusion network. Rosso, Aloisio, et al. (2023)
analyzed the exertion of various deep learning models in
order to increase the productivity of classifying ground
penetrating radar images for monitoring structural health
purposes, especially focusing on road tunnel linings
evaluations. In addition, they implemented intelligent
detection of road tunnel defects based on ground pene-
trating radar and employed state-of-the-art neural visual
transformer architecture and migration learning methods
in the existing defect classification framework (Rosso,
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Marasco, et al., 2023). Their research impressively
increases the capabilities of the AI-based road tunnels
automatic defects classification paradigm for road tun-
nel structural health monitoring. These deep learning
algorithms have made remarkable progress in terms of
model accuracy, scalability, and robustness, resulting in
great success in defect identification areas (He et al., 2016;
Krizhevsky et al., 2017).
Previously, most of these AI models have relied heavily

on large amounts of training data. In real civil engineering
practices, obtaining very large-scale datasets is sometimes
unachievable. For example, transportation engineers often
face problems such as small and unbalanced datasets (N.
Chen et al., 2022). In this case, when the data sizes of
specific categories are insufficient and/or unbalanced, the
deep neural network model tends to overfit (Zhou et al.,
2017) or underfit.
At present, there has been significant progress in the AI

models with small sample sizes (Gao & Mosalam, 2018;
Grabczewski & Jankowski, 2007; Lake et al., 2013), such
as few-shot learning models, which can improve the anti-
inference ability and generalization performance. As one
of the most widely used few-shot learning models, the
Siamese network (SN) (Bromley et al., 1993) is robust to
category imbalance problems and easy to do integration
learning. Chopra et al. (2005) used SN for face recogni-
tion to increase the number of sample cycles for training
without changing the original number of training samples,
preventing the overfitting problem caused by too few sam-
ples. Yuan et al. (2017) creatively applied SN to solve the
problem of sparsely labeled samples and unbalanced cat-
egory distribution, enhancing the application value of SN
in solving small-sample data learning. Zhang et al. (2019)
proposed an SN model for rolling bearing fault diagnosis
with limited data. In addition, it can also be enhanced by
Ganerative adversarial network (GAN) and other methods
to overcome the problems caused by the limited amount of
data (Marano et al., 2023).
Meanwhile, in computer vision, the research on

image retrieval (Triantafillou et al., 2017), object tracking
(Bertinetto et al., 2016), radar signal recognition (Luo
et al., 2022), and other image recognition (W. Wang et al.,
2022; Zheng et al., 2023) based on small sample learning is
developing rapidly. Xue et al. (2023) proposed an adaptive
cross-scenario few-shot learning framework for structural
damage detection. Pan et al. (2023) applied few-shot
learning to the identification of pavement textures in
extremely limited sample scenarios. These studies make
it applicable to realize automatic HSR defect recognition
using deep learning techniques designed for practices
with limited data size.
In general, deep learning models contain too many

parameters and require complex computational processes,

consuming significant resources in terms of both storage
and computation. In railway engineering, especially for
HSR infrastructure, it is more important to quickly rec-
ognize the defects with reasonable accuracy. Therefore,
it is necessary to conduct lightweight design of AI mod-
els. Deep learning model compression algorithms usually
involve tensor low-rank decomposition, parameter clip-
ping, training adjustment, network structure optimization,
and so forth (Choudhary et al., 2020; Deng et al., 2020).
Compared with the original networks, lightweight models
have the advantages of a light structure, simple calcula-
tions, and strong portability (Xu et al., 2018; Yang et al.,
2019). At present, lightweight models have been widely
used in natural language processing (Jelodar et al., 2020),
data mining (Feng et al., 2019), medical image processing
(Fan et al., 2020), and semantic segmentation (Chaura-
sia & Culurciello et al., 2017; Paszke et al., 2016; Sun
et al., 2020). At the same time, the lightweight network
is also widely used in the identification and detection of
infrastructure injuries and damages (Hu et al., 2021). Z.
Liu et al. (2023) evaluated different types of pavement
damage recognition based on the lightweight design of
GANs. Cao et al. (2022) presented a more effective detec-
tion method based on a lightweight neural network for
the problem of foreign object intrusion in railways. Y. Li
et al. (2022) andOuyang et al. (2023) have offeredmore effi-
cient and accurate approaches for detecting crack diseases
in various structures, such as dams and tunnels. Based
on the abovementioned techniques, this paper proposed
a method for intelligent recognition of defects in slabs
of HSR based on lightweight-designed few-shot learning
models. SN designed specifically for automatic detection
of HSR defect is created. The computational steps are
as follows: First, various lightweight-designed SNs were
utilized for HSR slab defect classification. Second, the
results on classification accuracy, parameter quantity, and
testing time between the original SN and the improved
SN were compared under the same conditions. Finally,
the optimum lightweight was determined. The model’s
performance metrics encompass three aspects: accuracy,
complexity, and computational cost. Accuracy refers to the
proportion of correctly classified samples to the total num-
ber of samples. Complexity is represented by the number of
parameters, while computational cost is measured by test-
ing time. The flowchart of thismethod is shown inFigure 1.
The advantages of thismethod include: (1) A lightweight

few-shot learning model for HSR slab defect classifica-
tion based on SN was established, which significantly
reduces the parameter quantity and testing time. (2) The
classification accuracies of the lightweight SN were fur-
ther improved by designing deeper and wider networks,
making it more suitable for practical railway engineering
applications.
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4 CAI et al.

F IGURE 1 Flowchart of high-speed railway (HSR) defects
recognition method based on lightweight few shots learning
(Siamese network).

F IGURE 2 The original structure of the SN sub-network.

2 METHODOLOGY

2.1 SN

SN is a type of neural network consisting of two identi-
cal sub-networks, which share the same architecture and
weights (Bromley et al., 1993). When the dataset has very
limited samples, SN outperforms conventional deep learn-
ing methods for classification tasks, as the SN minimizes
the distance between samples from the same category and
maximizes the distance between samples from different
categories during training, thus making full use of the
samples and introducing more computation.
The key to achieving a satisfactory classification result

for SN is that its sub-network can effectively extract the
characteristics of samples, from which the similarities and
differences between different HSR defects can be learned.
In this study, the inception module was adopted as the
backbone of the sub-networks in the SN, which has been
demonstrated to achieve excellent performance in classi-
fication tasks and has the advantage of being lightweight
(Szegedy et al., 2015). The inception module uses multi-
scale filters to perform parallel convolutions on the input
data and concatenate the outputs. In this way, the incep-
tion module can capture features of different scales and
complexities in the input data and improve computational
efficiency.
The original structure of the SN sub-network proposed

in this paper using the inception module is shown in
Figure 2. The blue blocks represent convolutional lay-
ers, the red blocks represent pooling layers, the yellow
blocks represent fully connected (FC) layers, and the
green blocks represent dimension concatenation. The
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same pattern applies to Figures 2 through 12. The input
image first goes through a 7 × 7 convolution layer with
64 channels, followed by parallel operations including:
(1) passing through a max pooling layer with a pooling
kernel size of 3 × 3, then through a 1 × 1 convolution
layer; (2) passing through a 1 × 1 convolution layer with
32 channels, then through a 5 × 5 convolution layer; (3)
passing through a 1× 1 convolution layer with 32 channels,
then through a 3 × 3 convolution layer; and (4) passing
only through a 1 × 1 convolution layer. Each feature
map of the parallel operations has 128 channels. Then,
the feature maps are concatenated and converted into a
one-dimensional vector, which is then passed through
an FC layer with 100 output nodes. The output vector of
the FC layer is the feature vector extracted by the SN sub
-network.
In this study, to realize the target of both lightweight

computation and satisfactory recognition accuracy,
a total of 10 improved models were designed and
tested: initially two lightweight-designed models, six
deepened-designed models, and two widened-designed
models.

2.2 Lightweight network design

To realize a rapid detection of HSR defects at a reason-
able computation cost, this study proposed two methods
to lightweight the original network structures: (1) narrow-
ing and deepening the FC layer and (2) adding a 1 × 1
convolution layer.
The reason why the original sub-network structure of

the SN is not lightweight enough is that there are too
many input and output nodes in the FC layer, resulting
in too many parameters. Therefore, the two abovemen-
tioned approaches were aimed at reducing the output
nodes and the input nodes. However, as fewer output
nodes may lead to a decrease in the feature extraction
effect, this study further used the method of narrowing
and deepening the FC layer. The output nodes of the
FC layer were reduced to 10, and two FC layers with 10
output nodes were added after this layer, as shown in
Figure 3, thus increasing the feature extraction capability
while lightweighting the network. The input nodes were
derived from the one-dimensional feature vector formed
by transforming the featuremap extracted by the inception
module. Simply, reducing the input nodes means com-
pressing the feature map output by the inception module.
Accordingly, this study proposed adding a 1× 1 convolution
layer with 128 channels after the featuremap output by the
inception module to achieve lightweighting as shown in
Figure 4.

F IGURE 3 Narrowing and deepening the fully connected (FC)
layer for the SN sub-network.

F IGURE 4 Adding a 1 × 1 convolution layer for the SN
sub-network.

2.3 Deeper network design

To achieve higher recognition accuracy in HSR defects
with a very limited dataset, designing deeper networks to
enhance feature extraction capability is crucial. This study
used six methods to increase the depth of the sub-network
of the SN. First, four methods were employed based on the
lightweight design method of adding a 1 × 1 convolution
layer: (1) adding 1 × 1 convolution layers; (2) adding 3 × 3
convolution layers; (3) adding 3 × 3 convolution layers and
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6 CAI et al.

F IGURE 5 Adding 1 × 1 convolution layers for the SN
sub-network.

pooling layers; (4) adding more 3 × 3 convolution layers
and pooling layers. Second, an FC layerwith 100 nodeswas
added to the original structure of the sub-network of the
SN. Third, double inception modules were used to deepen
the network.
Normally, to increase the depth of the network, the sim-

plest method is to add 1 × 1 convolution layers, as shown
in Figure 5, which only have a few parameters and compu-
tations. On the contrary, adding 3 × 3 convolution layers
introduces more parameters and computations, as shown
in Figure 6, while having a higher feature extraction capa-
bility than 1 × 1 convolution layers. To avoid excessive
complexity when adding 3 × 3 convolution layers, it is rea-
sonable to set a 3 × 3 pooling layer with a stride of 2 × 2
after the 3 × 3 convolution layer, which can reduce the
dimensions of the feature map and avoid excessive com-
putations. To investigate whether the deeper network has
better performance, two structures of adding three and six
3× 3 convolution layers were designed. For the structure of
adding three convolution layers, a maximum pooling layer
was set after each convolution layer, as shown in Figure 7,
while for the structure of adding six convolution layers,
a maximum pooling layer was set after the first, second,
and sixth 3 × 3 convolution layers as shown in Figure 8. In
addition, adding an FC layer with 100 nodes directly is also
feasible as shown in Figure 9.
At the same time, to compare the effectiveness of these

methods with directly stacking the inception modules, a
structure with two inceptionmodules was also included in

F IGURE 6 Adding three 3 × 3 convolution layers for the SN
sub-network.

F IGURE 7 Adding three 3 × 3 convolution layers while adding
three pooling layers for the SN sub-network.
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F IGURE 8 Adding six 3 × 3 convolution layers and three
pooling layers for the SN sub-network.

F IGURE 9 Adding one FC layer for the SN sub-network.

F IGURE 10 Double inception modules for the SN
sub-network.

the experiment, where the concatenated featuremap of the
first inception module was used as the input of the second
inception module as shown in Figure 10. The structure of
the second inception module was the same as the first but
with different weights, and the output of the FC layer of
the second inception module was the feature vector of the
SN sub-network.

2.4 Wider network design

Another method to improve the accuracy of the few-shot
learning model for HSR defect detection was to increase
the width of the inception module in the sub-network of
SN. At the same time, to reduce the computational cost,
1 × 1 convolution layers were used while increasing the
width of the inception module.
The original inception module has three scales of

convolution kernels: 1 × 1, 3 × 3, and 5 × 5. To enhance
its capability of extracting larger-scale features, a 7 × 7
convolution kernel was added. Correspondingly, a branch
was added to the parallel computing of the inception
module, where the feature map first passed through a 1 × 1
convolution layer with 32 channels and then through a
7 × 7 convolution layer with 128 channels. After that, the
five sets of 128-channel feature maps were concatenated,
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8 CAI et al.

F IGURE 11 Adding a branch for the SN sub-network.

F IGURE 1 2 Adding a branch and a 1 × 1 convolution layer for
the SN sub-network.

converted to one dimension, and passed through an FC
layer to obtain a feature vector as shown in Figure 11. Due
to the excessive number of channels after concatenating
the five sets of 128-channel feature maps, which led to
a high amount of parameters and computations, a 1 × 1
convolution layer with 128 channels was applied to reduce
the number of channels. Then, it was converted to one
dimension and passed through an FC layer to obtain the
feature vector as shown in Figure 12.

3 EXPERIMENT DESIGN

3.1 Dataset

The image data were sourced from on-site photographs
of the Beijing–Shanghai HSR lines taken by railway engi-
neers. Due to limitations of field safety, Figure 13 is used

F IGURE 13 Schematic view of HSR defect detection (at China
Academy of Railway Sciences test loop).

F IGURE 14 Examples of HSR typical defects.

as a schematic view to show the detection of HSR defects
for the collection of image dataset on the test loop of the
China Academy of Railway Sciences. To facilitate image
processing and minimize computational cost, all images
were cropped to a size of 112 × 112 pixels and converted
to single-channel grayscale images. As a preliminary work
on HSR defect recognition based on a very limited dataset,
this paper focuses on the classification of three conditions
of HSR infrastructures: slab cracks, track board gaps, and
unbroken states, corresponding to the images shown in
Figure 14.
The ballastless track of HSR is a reinforced concrete

structure (Ahmadkhanlou&Adeli, 2005; Aldwaik&Adeli,
2016). The slab cracks in Figure 14b refer to cracks or
fissures on the surface of track boards. As these cracks
gradually expand, the internal steel reinforcements may
corrode, resulting in a reduction in the load-bearing capac-
ity and durability of the track. If the cracks continue
to develop, the track boards may experience through-
cracks, seriously affecting the stability and safety of the
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CAI et al. 9

TABLE 1 Sample composition of the dataset.

Slab
cracks

Track board
gaps

Unbroken
state

Sample size of
training set

10 10 10

Sample size of
test set

20 20 20

track. The track board gaps in Figure 14c are gaps that
occur between the structural layers of the track when
subjected to complex operating conditions. These gaps
can lead to severe track irregularities, thereby affecting
train safety. Both of these typical defects frequently occur
during the operation of high-speed rail and can be visu-
ally observed in the images (Zhai et al., 2014; Zhu &
Cai, 2012).
Considering that it might be very difficult to collect

the on-site HSR defect data and to provide rail engineers
with a method to intelligently recognize the HSR defects
even with very few samples, this study conducted a clas-
sification task based on a very small dataset. Only 10
and 20 samples were used for each category as the train-
ing and test set, respectively, as shown in Table 1. The
whole researchwas named as a three-way 10-shot few-shot
Learning task.

3.2 Comparative experiments

To investigate the accuracy of 10 improved models, com-
parative experiments were designed. As illustrated in
the Introduction, the improvements of SN were mainly
focused on three aspects: lightweight, deepening, and
widening effects. For the original SN and each improved
SN, they were trained under the same conditions. To
reduce the negative influences of errors caused by ran-
domness, each training SN experiment was repeated three
times, and themodels obtained from the three experiments
were used for HSR defect classification. The test time and
accuracy of each classification experiment were recorded,
and the average model results of the original SN and each
improved SN were calculated. Finally, by comparing the
parameter amount, average test time, and average accu-
racy of different networks, the optimal improved SN was
determined.
As shown in Table 2, the original SN and a total of

10 improved SNs were developed. Test-1 corresponds to
the original SN composed of a 7 × 7 convolution layer,
an inception module, and an FC layer with 100 output
nodes. Test-2 corresponds to the lightweight SN-1, which
changes the output nodes of the FC layer to 10 and adds
two FC layers with output nodes of 10 based on the origi-

nal SN. Test-3 corresponds to the lightweight SN-2, which
adds a 1 × 1 convolution layer based on the original SN.
Test-4 corresponds to the deepened SN-1, which adds two
1 × 1 convolution layers based on the lightweight SN-2.
Test-5 corresponds to the deepened SN-2, which adds three
3 × 3 convolution layers based on the lightweight SN-2.
Test-6 corresponds to the deepened SN-3, which adds three
3× 3maximumpooling layers based on the deepened SN-2.
Test-7 corresponds to the deepened SN-4, which adds three
3× 3 convolution layers based on the deepened SN-3. Test-8
corresponds to the deepened SN-5, which adds an FC layer
with 100 output nodes based on the original SN. Test-9 cor-
responds to the deepened SN-6, which adds an inception
module based on the original SN. Test-10 corresponds to
thewidened SN-1, which adds a parallel branch of 1× 1 and
7 × 7 convolution layers based on the original SN. Test-11
corresponds to the widened SN-2, which adds a 1 × 1 con-
volution layer based on the widened SN-1. The structure
of each test and its corresponding network are shown in
Table 2.
The input data processed by the SN are in the form of

sample pairs. Therefore, before training the SN, the HSR
defect data in the training set have been constructed into
sample pairs. Positive sample pairs consisted of two images
from the same category, while negative sample pairs con-
sisted of two images from different categories. There were
135 positive sample pairs and 300 negative sample pairs.
All sample pairs were randomly divided into two parts for
training and validation of the SN, comprising 217 sample
pairs and 218 sample pairs, respectively.
The SN in this study measured the distance between

different feature vectors using theEuclidean distance func-
tion and then calculated the similarity of sample pairs.
The distance between positive sample pairs was very small,
whereas the distance between negative sample pairs was
large. The contrastive loss was used to determine whether
the output of the SNmatched the labels of the sample pairs.
The loss was small when they matched and large when
they did not, resulting in a greater adjustment of network
parameters.
The root mean square propagation optimizer was used

to accelerate the optimization, with a learning rate of 10−5.
The model was trained for 10 epochs with a batch size of
16. All other parameters were kept at their default settings.

3.3 Test environment

The tests were conducted on a mobile workstation
with an Intel Core i9-9880H Central Processing Unit
(CPU) @2.30 GHz, featuring 16 cores and 32 GB of RAM.
Pythonwas used to implement all themodels, utilizing the
TensorFlow library.
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10 CAI et al.

TABLE 2 Comparative tests and the corresponding network structures.

Test Improved method Model Structure
1 / Original Siamese network (SN) conv(7) + Inception + dense(100)
2 Lightweight structure Lightweight SN-1 conv(7) + Inception + 3*dense(10)
3 Lightweight SN-2 conv(7) + Inception + conv(1) + dense(100)
4 Deepen network Deepened SN-1 conv(7) + Inception + 3*conv(1) + dense(100)
5 Deepened SN-2 conv(7) + Inception + conv(1) + 3*conv(3) + dense(100)
6 Deepened SN-3 conv(7)+ Inception+ conv(1)+ 3*conv(3)maxpool(3)+ dense(100)
7 Deepened SN-4 conv(7) + Inception + conv(1) + 2*conv(3)maxpool(3) + 3*conv(3)

+ conv(3)maxpool(3) + dense(100)
8 Deepened SN-5 conv(7) + Inception + 2*dense(100)
9 Deepened SN-6 conv(7) + 2*Inception + dense(100)
10 Widen network Widened SN-1 conv(7) + Inception(&conv(1)conv(7)) + dense(100)
11 Widened SN-2 conv(7) + Inception(&conv(1)conv(7)) + conv(1) + dense(100)

4 RESULTS AND DISCUSSION

4.1 Analysis of the model training
process

Analyzing the variation of the loss function during the
model training process holds vital significance in assess-
ingwhether themodel is underfitting or overfitting (Rosso,
Marasco et al., 2023; Zhou et al., 2020). To ensure the
absence of underfitting or overfitting issues in the pro-
posed model, a thorough analysis of the loss function
curves during the training processes for various SNs is con-
ducted as depicted in Figure 15. The loss function of the
original SN exhibits instability due to its generic nature,
not being explicitly designed for HSR defect detection.
Additionally, the loss function of deepened SN-6 remains
unstable due to its excessive structural complexity. In con-
trast, the remaining nine SN models introduced in this
paper exhibit stable convergence throughout the train-
ing epochs. Among these, lightweight SN-1, lightweight
SN-2, deepened SN-1, deepened SN-2, widened SN-1, and
widened SN-2 demonstrate rapid convergence rates, while
deepened SN-3 and deepened SN-4 exhibit slower conver-
gence rates due to the trade-off between stability enhance-
ment and learning speed introduced by pooling layers.
Overall, the training of the proposed models in this paper
proves to be both stable and effective.

4.2 Analysis of accuracy

The most crucial indicator for intelligent recognition of
HSR defects is accuracy, which determines the effective-
ness of the neural work and is therefore evaluated first. The
output of the SN was the distance between sample pairs,
which could be adjusted to obtain the classification results,

and the classification accuracy was then calculated. The
simplest adjustment method was to calculate the average
distance between each test data and each class of train-
ing data by constructing sample pairs. The training data
class with the smallest average distance was the category
of the test data. Then, the accuracy of classification was
judged based on the label. This method had the advan-
tage of simple operation and no changes required to the
structure of the SN. The training of each SN was repeated
three times. The modeling results obtained from the three
repetitions were tested separately. The average accuracy
was calculated. The arithmeticmean of all three categories’
accuracies was used to represent the average classification
accuracy as shown in Table 3.
Based on the above results, the original SN achieved an

average classification accuracy of 64.4% for HSR defects.
Compared to the original network, all improved SNs
showed increased classification accuracy, except for deep-
ened SN-5, which may be due to having too many nodes
in the FC layers, resulting in overfitting due to exces-
sivemodel parameters and computational complexity. The
highest performing improved SNs were deepened SN-3
and deepened SN-4, with both achieving an accuracy of
73.9%, indicating that deepening the network by adding
3 × 3 convolution layers and maximum pooling layers
can improve classification accuracy for HSR defects, while
adding too many 3 × 3 convolution layers will not fur-
ther improve classification accuracy. The second-highest
performing improved SN was the widened SN-2, which
achieved 71.7% accuracy, demonstrating that increasing
the width of the inception module can improve feature
extraction capabilities. Interestingly, both lightweight SNs
also surpassed the original SN in accuracy because they
increased the network depth while still being lightweight
designed. It is noted that the 1 × 1 convolution layer had a
positive effect on improving the classification accuracy of
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CAI et al. 11

F IGURE 15 Training loss curves of various SNs.
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12 CAI et al.

F IGURE 15 Continued

TABLE 3 The classification accuracy of high-speed railway defects.

Accuracy
Test Model Slab cracks Track board gaps Unbroken state Average
1 Original SN 0.7 0.633 0.6 0.644
2 Lightweight SN-1 0.633 0.717 0.65 0.667
3 Lightweight SN-2 0.683 0.7 0.667 0.683
4 Deepened SN-1 0.683 0.65 0.767 0.7
5 Deepened SN-2 0.65 0.667 0.75 0.689
6 Deepened SN-3 0.65 0.583 0.983 0.739
7 Deepened SN-4 0.633 0.583 1 0.739
8 Deepened SN-5 0.667 0.667 0.567 0.634
9 Deepened SN-6 0.7 0.617 0.767 0.695
10 Widened SN-1 0.683 0.667 0.7 0.683
11 Widened SN-2 0.683 0.65 0.817 0.717

the SN for HSR defects, as evidenced by the comparisons
among Test-1, Test-3, and Test-4, which only differed in
whether or not they added 1× 1 convolution layers andhow
many were added. Additionally, deepened SN-2 and deep-
ened SN-6 also showed improvements in classification
accuracy for HSR defects.

The confusion matrices of the top three improved SNs
with the highest classification accuracy were analyzed and
shown in Figure 16. Deepened SN-3 and deepened SN-4
can accurately distinguish images from unbroken state but
have a higher probability of misclassifying images with
slab cracks or track board gaps. Widened SN-2 had similar
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CAI et al. 13

F IGURE 16 Confusion matrices of the top-3 improved SNs
with the highest classification accuracy.

TABLE 4 The parameter quantity and testing time for each SN.

Test Model
Parameter
quantity

Testing
time

1 Original SN 642,416,420 2 min 41 s
2 Lightweight SN-1 64,389,030 2 min 12 s
3 Lightweight SN-2 160,792,484 3 min 27 s
4 Deepened SN-1 160,825,508 4 min 14 s
5 Deepened SN-2 161,235,236 5 min 51 s
6 Deepened SN-3 2,835,236 4 min 18 s
7 Deepened SN-4 3,277,988 4 min 25 s
8 Deepened SN-5 642,426,520 2 min 41 s
9 Deepened SN-6 642,720,100 6 min 1 s
10 Widened SN-1 803,182,532 3 min 8 s
11 Widened SN-2 161,011,780 3 min 56 s

accuracy for all three categories and was more suitable for
distinguishing between track board gaps and slab cracks.
It should be noted that as this is very preliminary research
focusing on using limited dataset for distress detection in
HSR infrastructures, there exist limitations of this method,
for example, not very significant improvement in the accu-
racy as we care more about the reduction of computation
time. Meanwhile, the elapsed time may not represent a
fair metric to compare or account for the computational
effort. These limitations will be considered and addressed
in future research.

4.3 Analysis of lightweight degree

This study evaluated two aspects of lightweight models:
parameter quantity and test time. Parameter quantity
reflects the difficulty of model training and storage vol-
ume. Models with fewer parameters are normally easier
to train and occupy less storage. Test time represents the
time it takes to identify each HSR defect image, and the
shorter the testing time, the faster the repair work and
maintenance by railway engineers. Therefore, lightweight
models with fewer parameters and shorter testing times
are considered to be optimal. Table 4 shows the parameter
quantity and testing time for each SN, where test time
refers to the total time for testing all the data in the test set.
For each SN trained three times separately, its parameter
number was fixed, and its testing time was expressed as
the average of the three tests.
The experiment results of the degree of lightweightmod-

els showed that the proposed methods effectively reduced
the parameter quantity and test time for HSR defect classi-
fication using few-shot learning networks. The lightweight
SN-1 and lightweight SN-2 effectively reduced the param-
eter quantity by decreasing the output nodes of the FC
layer and the input nodes of it, respectively. The improved
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14 CAI et al.

TABLE 5 Comprehensive comparative of the improved SNs.

Accuracy Parameter quantity Testing time
Model (%) Increase (%) (×106) Decrease (%) (s) Decrease (%)
Original SN 64.4 / 642.4 / 161 /
Lightweight SN-1 66.7 2.3 64.4 90.0 132 18.0
Lightweight SN-2 68.3 3.9 160.8 75.0 207 −28.6
Deepened SN-1 70.0 5.6 160.8 75.0 254 −57.8
Deepened SN-2 68.9 4.5 161.2 74.9 351 −118.0
Deepened SN-3 73.9 9.5 2.8 99.6 258 −60.2
Deepened SN-4 73.9 9.5 3.3 99.5 265 −64.6
Deepened SN-5 63.4 −1.0 642.4 0 161 0
Deepened SN-6 69.5 5.1 642.7 −0.05 361 −124.2
Widened SN-1 68.3 3.9 803.2 −25.0 188 −16.8
Widened SN-2 71.7 7.3 161.0 74.9 236 −46.6

SN with the least parameter quantity was the deepened
SN-3, with approximately 2.8 million parameters. It incor-
porated three 3 × 3 maximum pooling layers with stride
2 × 2, which reduced the size of feature maps and sig-
nificantly reduced the input of FC layers. The deepened
SN-4 also used three 3 × 3 maximum pooling layers with
stride 2 × 2, resulting in a small number of parameters, but
more than the deepened SN-3 due to the additional convo-
lution layers. The improved SN with the most parameters
was the widened SN-1, which showed the negative effect of
widening the inception module. However, adding a 1 × 1
convolution layer while widening the inception module
can solve this problem as seen in the comparisons between
Test-11 and Test-10 and in comparison with Test-1.
For the evaluation of reducing test time, the lightweight

SN-1 achieved positive results as it saved computation
resources in the FC layer. However, the test time for the
lightweight SN-2 increased due to the computational cost
of the 1 × 1 convolution layer exceeding the savings from
the FC layer. The deepened and widened SN had higher
testing times than the original SN, as expected, since more
layers inevitably brought more computational costs. How-
ever, note that the test time of deepened SN-5 was equal to
that of the original SN. This was because it only added an
FC layer with very few input and output nodes, resulting
in a minimal increase in computational cost. It should be
noted that the SN with the lowest parameter quantity may
not necessarily have the shortest test time, as most of the
parameters were concentrated in the FC layers while the
convolution layers carried out most of the computations.

4.4 Comprehensive comparative
analysis

Table 5 provides a comprehensive analysis of different SNs,
including accuracy, parameter quantity, testing time, and

changes based on the original SNs. Note that the increase
in accuracy referred to the absolute increase in the numer-
ical value, while the decreases in parameter quantity and
test time were relative.
Based on the comprehensive comparison, it can be

concluded that the deepened SN-3 and the deepened SN-
4 achieved the highest classification accuracy for HSR
defect recognition, both reaching 73.9%. Furthermore, the
deepened SN-3 also had the least number of parameters,
reducing it by 99.6%, compared to the original SN. The
SN with the shortest test time was the lightweight SN-1,
which only took 132 s to complete all tests, equivalent to
2.2 s per image. It should be noted that the computation is
lightweight structure-based, indicating that civil engineers
can conveniently perform HSR defect recognition without
relying on large indoor computation equipment. Addition-
ally, if engineers have requirements for both accuracy and
training time, the widened SN-2 is an optimal model.

5 CONCLUSION

This paper proposed a method for intelligent recognition
of HSR infrastructure defects based on lightweight SN.
This method can classify three categories of images: slab
cracks, track board gaps, and unbroken state, based on a
very small dataset. Overall, 10 improved SNs were pro-
posed to increase accuracy, reduce parameter quantity, and
shorten test time. Results showed that three improved SNs
had optimal performances:

1. If the priority is focused on HSR defect classification
accuracy or using a network with the least parame-
ter quantity, the deepen-designed SN-3 is the optimal
model with an accuracy of 73.9% and only 2.8 million
parameters.
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CAI et al. 15

2. If the priority is focused on the computation speed of
the HSR defect recognition model, the lightweight-
designed SN-1 is the optimal model, which can
complete recognition in 2.2 s with an accuracy
of 66.7%.

3. In the priorities are focused on both accuracy and com-
putation speed of the model, the widen-designed SN-2
is the optimal model, with faster speed than the deep-
ened SN-3 and higher accuracy than the lightweight
SN-1, although its 161 million parameters occupy more
storage space.

Overall, the optimum model can fast and satisfacto-
rily recognize the defects in HSR with a very limited
data size of 10 samples for each training category. The
methods proposed in this paper provide an effective tool
for rail engineers engaged in HSR operation and mainte-
nance work, enabling HSR defect recognition to be done
automatically, conveniently, and quickly. Themodel based
on few-shot learning also provides a new idea for the
development of the railway inspection field.
It should be noted that this study also has some short-

comings. First, as it is a preliminary study, there were only
three categories of HSR service conditions studied. Sec-
ond, the dataset used was limited. Third, as an innovative
preliminary study, the accuracy achieved in this paper is
not particularly high.
Future research will take these issues into consider-

ation and investigate newer supervised machine learn-
ing/classification algorithms, such as neural dynamic
classification algorithm (Rafiei & Adeli, 2017b), dynamic
ensemble learning algorithm (Alam et al., 2020), finite ele-
ment machine for fast learning (Pereira et al., 2020), and
self-supervised learning (Rafiei et al., 2023), in order to
continue to explore and advance the field of automated
defect detection in HSR infrastructures.
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