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Abstract

This paper introduces a metamodelling technique that leverages gradient-enhanced Gaussian pro-
cess regression (also known as gradient-enhanced Kriging), effectively emulating the response of diverse
hyperelastic strain energy densities. The approach adopted incorporates principal invariants as inputs
for the surrogate of the strain energy density. This integration enables the surrogate to inherently en-
force fundamental physical constraints, such as material frame indifference and material symmetry, right
from the outset. The proposed approach provides accurate interpolation for energy and the first Piola-
Kirchhoff stress tensor (e.g. first order derivatives with respect to inputs). The paper presents three
notable innovations. Firstly, it introduces the utilization of Gradient-Enhanced Kriging to approximate
a diverse range of phenomenological models, encompassing numerous isotropic hyperelastic strain en-
ergies and a transversely isotropic potential. Secondly, this study marks the inaugural application of
this technique for approximating the effective response of composite materials. This includes rank-one
laminates, for which analytical solutions are feasible. However, it also encompasses more complex com-
posite materials characterized by a Representative Volume Element (RVE) comprising an elastomeric
matrix with a centered spherical inclusion. This extension opens the door for future application of this
technique to various RVE types, facilitating efficient three-dimensional computational analyses at the
macro-scale of such composite materials, significantly reducing computational time compared to FEM?.
The third innovation, facilitated by the integration of these surrogate models into a 3D Finite Ele-
ment computational framework, lies in the assessment of these models scenarios encompassing intricate
cases of extreme twisting and more importantly, buckling instabilities in thin-walled structures, thereby
highlighting both the practical applicability and robustness of the proposed approach.
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1. Introduction

Modern design relies upon the use of modelling to develop configurations which maximise the poten-
tial of the device for the required application. A challenge associated with modelling these materials is
their often composite nature. An example is the use of layered lamination which enables one to enhance
the overall properties of the device by combining multiple materials with different advantageous proper-
ties [1-3]. The effective properties of these type of composites can be obtained [4, 5] by making use of
rank-n homogenisation theory [6], requiring a Newton-Raphson type procedure at the microscopic level.
Other more challenging (from the computational standpoint) types of composite materials, such as an
elastomeric matrix where spherical or ellipsoidal inclusions are incorporated, require computational ho-
mogenisation for the computation of their effective properties, which further escalates the computational
demands.

Machine Learning (ML) techniques are increasingly being employed across many fields including that
of constitutive modelling. Artificial Neural Networks (ANNs) have been utilised by Linka et al. [7] for the
development of mechanical constitutive models and Klein et al. [8] in the context of electro-mechanically
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coupled constitutive models making use of either physical (in the physical lab) or numerical/in-silico
data. Gaussian Process Regression (GPR) (or Kriging from now on) is also gaining traction and has
been applied by Aggarwal et al. [9] in the development of data-based constitutive models in soft tissue
applications. This study is primarily centered on the examination of incompressible transversely isotropic
models, which are articulated using a reduced set of two invariants. Significantly, a fundamental aspect
of this research is the rigorous imposition of polyconvexity for the Kriging prediction from its inception.
Previously, it had been applied [10] in order to approximate the behaviour of the Mooney-Rivlin model.
An advantage of using Kriging over ANN approach is their inherent probabilistic nature which includes
the ability to specify prior knowledge, produce a distribution over potential predictive functions, and the
capability to directly calculate uncertainty over the prediction [11-13]. One can also control the degree
to which Kriging interpolates between known points through specifying the noise used in the correlation
function [14].

Kriging [15-17] involves predicting the values of a Gaussian random field based on observations col-
lected at a finite set of observation points. This has become a popular method for a large range of
applications, such as geostatistics [17], numerical code approximation [18], global optimization (Jones
[19]) or machine learning (Rasmussen and Williams [11]). Utilising the properties of Gaussian distribu-
tions, Kriging defines a joint distribution in terms of the observed data and the data to be predicted. A
covariance is defined which spatially correlates all of the data and can be used to weight the importance
of observations on the predictions. The joint distribution can then be conditionalised on the observed
data leaving a distribution describing the prediction. This is characterised by a mean and covariance
which once obtained, enables one to sample the distribution and thereby make predictions [20]. This
particular type of emulator has gained increasing popularity in the last decade due to its flexibility in
capturing nonlinear functions and its ability to provide statistical information on the predicted output
[19, 21]. The probabilistic response of the prediction has a two-fold benefit: (1) it provides probabilistic
confidence intervals of the prediction, and (2) it can help defining infill sampling strategies to adaptively
refine the metamodel depending on the region of interest.

This paper proposes a metamodelling technique based on a gradient-enhanced Kriging to emulate the
response of various ground truth hyperelastic strain energy densities used to characterise the behaviour
of soft/flexible materials. The primary goal for this approach is to develop an offline method capable
of emulating the strain energy density (ground truth model). By incorporating principal invariants as
inputs to the surrogate model, a notable advantage arises: the ability to enforce fundamental physical
constraints, such as material frame indifference and material symmetry, right from the outset. One of the
notable advantages of Gradient Kriging lies in its ability to interpolate precise values not only for energy
but also for the first Piola-Kirchhoff stress tensor (e.g. derivatives of the strain energy with respect
to its inputs). This capability ensures a higher level of accuracy in satisfying the governing equations.
Furthermore, incorporating derivative information into the model allows for a significant reduction in
the number of required sampling points while still achieving the desired accuracy at unobserved points.

A prominent advantage, in comparison to other machine learning methods presented in the literature
like neural networks, is found in the inherent interpolatory nature of Kriging. This characteristic allows
for the precise matching of the first Piola-Kirchhoff stress tensor at the sampling points, rather than
relying on the minimization of an aggregated fitness function (typically used in neural networks).

The layout of this paper is as follows: Section 2 lays the foundation by introducing the fundamental
components of nonlinear continuum mechanics, with a specific focus on consitutive modeling in finite
strain hyperelasticity. Subsequently, in Section 3, we present a comprehensive self-contained overview of
Gaussian Process Regression (GPR) and Kriging, providing the necessary background for our method-
ology. Section 4 carries out the calibration of the Kriging-based surrogate models by utilizing synthetic
data derived from well-established ground truth strain energy densities, including Mooney-Rivlin, Gent,
Arruday-Boyce, and others. Finally, in Section 5, we demonstrate the implementation of these surro-
gate models within a 3D Finite Element computational platform. Rigorous assessments are performed
to evaluate the accuracy of these models in various challenging scenarios, comparing displacement and
stress fields with their respective ground-truth analytical model counterparts. Notably, the examples
encompass intricate cases involving extreme twisting and buckling instabilities in a thin-walled structure,
showcasing the practical applicability and robustness of the proposed approach.



Notation: Throughout this paper, A : B = A;;Br;, VA, B € R3*3, and the use of repeated indices
implies summation. The tensor product is denoted by & and the second order identity tensor by I.
The tensor cross product operation X between two artibrary second order tensor A and B entails
[AX Bl = Erpo€irsAprBgs. Furthermore, £ represents the third-order alternating tensor. The
full and special orthogonal groups in R3 are represented as O(3) = {A € R¥>3 |ATA = I} and
SO3) = {A e R¥>3 | AT A = I, detA = 1}, respectively and the set of invertible second order tensors
with positive determinant is denoted by GL*(3) = {A € R3*3|detA > 0}.

2. Finite strain elasticity

2.1. Differential governing equations in finite strain elasticity

Let By C R3 represent the undeformed or material configuration of an elastic solid. We assume the
existence of an injective mapping ¢ : By — R3 relating every material particle X € By with those in
the deformed or spatial configuration B C R3, namely x € B, through the relationship & = ¢(X) (see
Figure 1). Associated with the mapping ¢ it is possible to define its material gradient F € GL™(3), and
the cofactor H and determinant J of the latter as

F = 0x¢, J=detF=%F:(FxF), H=CofF=JF‘T=%FxF. (1)
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Figure 1: mapping of material quantities to the spatial quantities.

The response of the deformable solid By is governed by the following boundary value problem

DIVP + f, = 0, in By
(,i) = (,i)*7 on 0¢B() (2)
PN =t in 0By

where P represents the first Piola-Kirchhoff stress tensor, related to the deformation gradient tensor F'
through a suitable constitutive law (see Section 2.2). Furthermore, the undeformed boundary 0By is
divided into non-overlapping regions where Dirichlet and Neumann boundary conditions are imposed,
according to 0By = JgpBy U 0By, with dpBy N By = 0. In addition, f( represents the force per unit
underformed volume By, whilst ¢y represents forces per unit under area acting upon 0¢83y, being IN the
outward unit vector in X € o0¢By.

2.2. The strain energy density in hyperelasticity

In hyperelasticity, the constitutive model of the undeformed solid By is encapsulated in the strain
energy density per unit underformed volume, denoted as

U:GLT(3) = R, (F)— U(F) (3)

Differentiation of the strain energy density with respect to F' yields the first Piola-Kirchhoff stress
tensor P (2) as
P =0pV (4)



The internal energy density W(F') must comply with the principle of objectivity or material frame
indifference, i.e. invariance with respect to rotations @ € SO(3) of the spatial configuration, namely

U(QF)=U(F) VFeGLT(3),QeS0®3). (5)

Furthermore, the strain energy density must adhere to the material symmetry group G C O(3), which
characterizes the isotropic or anisotropic nature of the underlying material. This can be mathematically
stated as

U(FQ)=¥(F) VFeGL"(3).QegcCO(3). (6)

Crucially, the strain energy density and the first Piola-Kirchhoff stress tensor must vanish in the
absence of deformations, namely

‘I’(F)|F:I =0, 8F‘I’(F)|F=I =0. (7)

The conditions (5), (6) and (7) can be considered as physical conditions. In addition to these, suitable
mathematical conditions are also requested to be satisfied by the strain energy density function. In this
regard, the strain energy density typically complies with some mathematical constraints related to the
notion of convexity. These conditions will be described in the following Section.

2.3. Some notions on generalised converity conditions

One of the simplest conditions is that of convezity of ¥(F), that is

UAF; + (1 =N F3) < AU(F1) + (1 - \NU(Fg); VFp,Fye GLT(3); M€ 0,1], (8)

which for functions with first order differentiability can be alternatively written as?

U(F +6F) - U(F)— DY(F)[§F]>0; VFcGL"(3),6F ¢ R®?, (9)
and for functions with second order differentiability as
D?*U(F)[0F;0F) =0F eCeSF >0; YF cGL"(3),§F c R3*3, (10)
which requires positive semi-definiteness of the fourth-order elasticity tensor C, defined as
C = 0%pV. (11)

However, convexity away from the origin (i.e. F = I) is not a suitable physical restriction as
it precludes the realistic behavior of materials such as buckling [22]. An alternative mathematical
restriction is that of quasiconvexity of W(F') [23]. Unfortunately, quasiconvexity is a nonlocal condition
that is very difficult, even impossible, to be verified. A necessary restriction implied by quasiconvexity is
that of generalised rank-one convexity of V. A generalised rank-one convex energy density verifies

UAF + (1= NF) <AU(F)+(1-\N¥(F); VFeGLT(3); Aelo1], (12)

and with F = F+0F and 0F =u®V, with u, V any arbitrary vectors. For the case of energies with
first order differentiability, generalised rank-one convexity can alternatively be written as

U(F +6F)—Y(F)— DV (F)[0F] > 0; F=u®V; VF € GL*(3),u,V € R3, (13)
and for energies with second order differentiability,
D*U(F)[6F;0F)=0FeCeiF >0; (F=u®V; VFcGL"3),u,VeR.  (14)

Condition (14) is referred to as the Legendre-Hadamard condition or ellipticity of U, linked to
the propagation of travelling plane wave within the material defined by a vector V' and speed c¢. The

2D (F)[6F] represents the directional derivative of W(F), being DU(F)[§F] = 0p¥ : 6 F



derivation of the above Legendre-Hadamard condition (14) has its roots in the study of the hyperbolicity
(or stability in the quasi-static case) of the system of the generalised Cauchy-Maxwell equations [24] in
order to ensure the existence of real wave speeds propagating throughout the domain. Crucially, the ab
initio existence of real wave speeds for the specific system of governing equations (2) can be monitored
via the study of the so-called acoustic tensor Q. defined as

[Quc(F, V)ij = [C(F)irj ViV (15)

Specifically, the eigenvalues of the acoustic tensor Q,. are proportional to the squared of the volu-
metric and shear wave speeds of the material. Hence, the above tensor Q,. can be used as a suitable
localisation measure for the onset of material instabilities by ensuring that the wave speeds are kept real
throughout the entire deformation process. This can be achieved by ensuring that

u-Qu(F,V)u>0; VYFcGL"3),u,VcR? (16)

2.4. Polyconverzity

A sufficient and local condition that complies with the rank-one condition in (12)-(14) is that of
polyconvexity of W. The strain energy density is defined as polyconvex [22] if there exists a convex and
lower semicontinuous function W : GL™(3) x GL™(3) x RT — RU{+oc} (in general non-unique) defined
as

U(F)=WU), U= (F,H,J). (17)
Notice that convexity of W(U) implies that
WU+ (1= NU2) S AXWU)+(1-NW(Us); YU, U € GLT(3)x GLT(3)xRT; A€ [0,1]. (18)
which for functions with sufficient differentiability, can be alternatively written as
WU +dU)—WMU) - DWU)[0U] > 0; YU € GLT(3) x GLT(3) x RT, oU € R¥3 x R¥P xR, (19)
or even in terms of the Hessian operator 8124uW as
D2>WU)[0U; U) = Uy, Wedld > 0; YU € GLT(3)x GLT(3) xRT, s € R¥>3xR¥>3 xR. (20)

As presented by Ball in [22], polyconvexity in conjunction with suitable growth conditions, ensures
the existence of minimisers in nonlinear elasticity.

2.5. Invariant-based hyperelasticity

A simple manner to accommodate the principle of objectivity or material frame indifference and
the requirement of material symmetry is through the dependence of the strain energy density function
U(F) with respect to invariants of the right Cauchy-Green deformation gradient tensor C = FTF.
Let I = {I},I5,...,I,}, represent the n objective invariants required to characterise a given material
symmetry group G. Then, it is possible to express the strain energy density ¥(F') equivalently as

U(F) =U(T) (21)

Application of the chain rule into equation (4) yields the first Piola-Kirchhoff stress tensor in terms
of the derivatives of U(I) as

n

p=Y (afi U) Opl; (22)

i=1
Furthermore, application of the chain rule over equation (11) permits to obtain the elasticity tensor
C in terms of the derivatives of U(I) as

n

C= ZZ (3%1]-U) Orl; ® Orl; + Z (01,U) 0% pI;. (23)

i=1 j=1 i=1



2.5.1. Isotropic elasticity

For the case of isotropic elasticity, the invariants required to characterise this material symmetry
group, and the first derivatives of the latter with respect to F' (featuring in the definition of P in (22))
and second derivatives with respect to F' (featuring in the definition of C in (23)) are

I, =F:F =tx(C), Iy = H : H = tr(CofC), I3 = J = (detC)/?,
opl, = 2F, Oply =2H X F, opls = H, (24)
0% pl, = 2T, Opply =2F XIXF + 2T x H, Oppls=H®QH+IXF

with Z the fourth-order tensor defined as [Z]p = 601, being ;5 the i 3 component of the second order
identity tensor, and with [AX A],']j] = gjkngKL-AiIkKAlL and [A X A]Ujj = &kl(‘:[KLAkK.AleJ, for
A € R¥3X33 and A € R3¥3. Inserting the expressions in (24) into (22) yield the following expression
for the first Piola-Kirchhoff stress tensor P

P = (0,U)2F + (0,U)2H x F + (0,U) H (25)

Notice that for the elasticity tensor, all the terms featuring in its generic expression in equation (23),
including the first and second derivatives of I; with respect to F' can be found in (24).

2.5.2. Transversely isotropic elasticity

For the case of transverse isotropy, where the preferred direction N is perpendicular to the plane of
isotropy of the material, in addition to invariants {I, I2, I3} in (24) and their respective first and second
derivatives with respect to F', two additional invariants are needed, found below

I,=FN.-FN =t (CN & N), Is= HN - HN = tz(CofCN ® N),
Oply =2FN ® N, 8FI5=2(HN®N)XF, (26)
[8%F14]i1jj = 262']'[N®N][J, 8%11;1]5 = FXG%{HI5XF+I><8HI5

with F)IQLIHIE) = B%FLL and Ogls = 2(HN ® N). In this case, the first Piola Kirchhoff stress tensor P
adopts the following expression

= (a,l U) oOF + (a,zU) SHXF (813U>H n (814U> 2FN © N + (815U)2 (HN @ N)xF (27)

Notice that for the elasticity tensor C, all the terms featuring in its generic expression in equation
(23), including the first and second derivatives of I; with respect to F' can be found in (24) and (26).

2.5.8. Orthotropy

For the case of orthotropy, there are three preferred directions {IN1, No, N3} characterizing this
material symmetry group, being the three of them unitary vectors mutually orthogonal between each
other. Then, in addition to invariants {I1, I2, I3} in (24) and their respective first and second derivatives
with respect to F', three additional invariants are needed, found below

I, = FN, - FNy, Is=HN, HN,, Ig = FNy - FNo,
Oply, =2FN|® Ny, 8F15:2(HN1®N1)XF, Opls =2F Ny ® Ny
[a%FLL]ﬂjJ=251‘j[N1®N]1J, a%FI5=FX8%IHI5XF—|—IX8HI5, [a%FIG]Z‘[jJ:251‘j[N2®N2]1J

(28)
with 8%[HI5 = 8%FI4 and Ogls = 2(HN; ® N1). In this case, the first Piola Kirchhoff stress tensor
P adopts the following expression

P = (0,U)2F + (0,U)2H x F + (0,U | H
(29)
+ (8I4U> 9F N, ® N1+ (GISU)Q (HN, @ N|) X F + (GIGU)2FN2 ® N».



Notice that for the elasticity tensor C, all the terms featuring in its generic expression in equation
(23), including the first and second derivatives of I; with respect to F' can be found in (24) and (28).

Remark 1: While it may seem logical to incorporate the invariant I = HNo- H N9 into an irreducible
basis of invariants for orthotropic materials, this is not required. Only three anisotropic invariants are
needed for a comprehensive characterization of the orthotropic material symmetry group. This aligns
with the principles of defining irreducible bases of invariants using structured tensors, as elucidated by
[25]. The structured tensor characterizing the orthotropic material symmetry group is as follows:

G=7N1R®N1+7Ny® Ngy+v3N3x® N3 (30)

with 71, v, 73, € R. This tensor permits to define the two anisotropic invariants typically needed for
this material symmetry group as

L=t (F'FG); I=t(H"HG) (31)

Notice that the tensor G in (30) can be conveniently re-written as
G=ypl+a,G (32)
with a; = (71 — 73) and with the new structured tensor G defined as
G=(N,& N+ 8Ny®N,), (33)
with 8 = 42, and as = (72 — 73). Making use of (32) enables to re-write both I, and I5 in (31) as
Ii=tr (FTFQ) =yl +aly;  Is=tr (H'HG) = 31z + a1 15 (34)
with

fo=tr (FTFG) . fs=tr (HTH(;) (35)

Therefore, an irreducible basis of invariants comprises the set {Iy, Iy, I, 14, 1 5} totaling five distinct
invariants. Notably, both I, and I5 depend on the structured tensor G in (33), which, in turn, relies on
the parameter 5. Therefore, when including these five invariants and -1, the total count becomes six.
This numeric correspondence precisely matches the count of invariants essential for the irreducible basis
n (28), required for a comprehensive characterization of the orthotropic material symmetry group.

2.6. Application to composite materials

Section 2.5 considers the case of phenomenological strain energy densities, expressed in terms of
principal invariants. However, in the context of composite materials, computing the effective or homog-
enized strain energy density, based on the individual phenomenological strain energy densities of each
constituent, necessitates the use of a homogenization technique. In this section, we specifically focus on
two distinctive type of composite materials. These are:

e Rank-one laminates. These laminates are composed of two constituents intercalated with the
lamination orientation being perpendicular to a vector N (see Figure 2a).

e Representative Volume Element (RVE) comprising elastomeric matrix with spherical inclusion (see
Figure 2b).



Figure 2: (a) Rank-one laminate composite material; (b) Composite material comprising an elastomer matrix endowed with
spherical inclusions.

2.6.1. Rank-one laminate composite materials
For these composite materials, rank-n homogenisation theory [6] permits to express the macroscopic
deformation gradient tensor F' in terms of their microscopic counterparts F® and F?, according to

F=cF*+ FP, [F]x N =0, (36)

where the indices a and b differentiate the constituents and ¢* and ¢® denote their respective volume
fractions, with ¢® = 1 — ¢%. A possible definition for F* and F® compatible with (36) is the following

F*(F,a)=F + Pa® N; F'(F,a)=F — fa & N. (37)

where a represents the amplitude vector, which needs to be determined. This can be done by postulating
the effective energy W(F') as

¥ (F) = argmin{¥ (F, o) }; U (F,a) = "0 (F*(F,a)) + 0° (Fb (F, a)) . (38)
o
The stationary condition of U with respect to v yields
DV [ba] = c*c® (Pa - Pb)  (ba@N)=0 VYéa =  [P|N=0. (39)

which represent a nonlinear vector equation from which a an be obtained. Finally, computation of «
permits to obtain the effective first Piola-Kirchhoff stress tensor, as

P =P+ PP PU=0pU(FY(F,a)), P’=0n0(F°(F, a)) (40)

The specific form of the strain energy of each of the individual phases, namely ¥%(F) and ¥°(F)
used in this work can be seen in Appendix A .

2.7. RVE with elastomeric matriz and spherical inclusion

In this case, the microscopic deformation gradient tensor F'j, is defined in terms of the microscopic
current position x, as
_ Oz
00X,
being X ,, the material counterpart of «,. In the context of periodic first-order homogenization [? |, x,,
can be decomposed as

F

(41)

x,=a+FX,, (42)

where F' represents the macroscopic deformation gradient tensor and a : By, — R3 represent the
microscopic fluctuations. The latter are subjected to periodic boundary conditions of the form [a] = 0,
where [(1)] = ()7 — () represents the jump of the field (-) across opposite boundaries of Bp,. The
microscopic field F', can be related with its macroscopic counterpart F' as

1

F = v F/,I,(X[,L) dV,u’ VM = / dVH (43)
K JBo, Boy,
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We assume the existence of a strain energy density at both macro and microscales, denoted as W (F')
and ¥, (F), respectively. Then, the effective or macroscopic strain energy density is postulated as

U(F)V, = inf {/
—— acV B

U, (F,) dvﬂ}, V= {a (@), € HY(Bo,), [a] =0, =0 on 8aBOM}
()

Op

(44)
where 0qBp, C 0By, is the region where zero Dirichlet boundary conditions are prescribed for a,
preventing rigid body motions. The stationary conditions of the homogenized energy in (44) yields
vy

Pieiva = [ Pu: g avi o ()

which permit to obtain the micro-fluctuations a. In (45), P, can be obtained through the following
relationship

P, = d\IIH(FN)

" OF,

where ¥, (F,,) adopts a different form for the matrix and the spherical inclusion (see Figure 2b). Their

specificly, expressions can be found in Appendix A. Finally, use of the Hill-Mandel principle [? | permits
to obtain the effective or homogenised first Piola-Kirchhoff stress tensor P as

(46)

=— [ P,av,. (47)

3. Kriging predictors

In the context of computer experiments, metamodelling or surrogate modelling involves substituting
an expensive-to-evaluate model or simulator U = .2 (I) with a computationally efficient emulator . (I).
Both the simulator and emulator share the same input space D; C R™ and output space Dy C R. In
our specific context, .# represents the response of a ground truth strain energy density U, which is
dependent on principal invariants I (as discussed in Section 2.5). This justifies replacing the input field,
typically denoted as x in the literature, with I, and the output, usually denoted as y, with U. Since the
strain energy U is scalar in nature, the theoretical developments presented in this paper will solely focus
on the case of scalar outputs.

In this paper, we make use of Kriging models [26, 27] which are also known as Kriging modelling.
This particular type of emulator has gained increasing popularity in the last decade due to its flexibility
in capturing nonlinear functions and its ability to provide statistical information on the predicted output
[19, 21].

The construction of the emulator typically consists of three stages:
e The first stage involves the generation of a finite number, m, of observations

U = {U@ = #(1Y), i = 1m}

evaluated onto an experimental design & = {I(i), o I } These observations are used in the
process of searching the space of possible functions that emulate the behaviour of the simulator
A . This process is known as supervised learning in the field of statistical learning [11]. In this
paper, the so-called Bayesian prediction methodology presented by Rasmussen and Williams [11]
and Santner et al. [16] is adopted. In this approach a prior probability is assigned to functions
based upon prior beliefs known around the model, thus promoting the most suitable functions. In
practice it is difficult to know what type of functions are the most suitable ones, since the function
A is a priori unknown. For this reason, the approach adopted in Kriging modelling consists in
assuming an a priori structure for the emulator depending on a set of unknown parameters.



e At a second stage, optimization algorithms are used to find the optimal set of parameters that best
fit the model to the observations. This stage is typically called model parameter estimation and
metamodel training. All the technical steps required to carry out this stage are carefully described
throughout Sections 3.1-3.3.

e Finally, the third stage consists of the validation of the surrogate model by estimating the accuracy
via global and local indicators.

3.1. Kriging based prediction

Kriging modelling assumes that the output U = .Z(I)? is a sample path of the Kriging to be
characterised by

U=g@)- B+ 2(I), (48)
where g(I) - B denotes the prior mean of the Kriging and corresponds to a linear regression model on
a given functional basis {g;,i = 1,...,p} € Lo(Ds,R). The second term, Z(I), denotes a zero mean
Kriging with a constant variance 0(2] and a stationary autocovariance function as follows

CILY) =o?R(LT.0), (49)

where R is a symmetric positive definite autocorrelation function, and @, the vector of hyperparameters.

Remark 2: The stochastic process described by equation (48) represents the prior knowledge of the
simulator. This prior embodies our beliefs regarding the types of functions we anticipate observing
before any data is observed [11]. Consequently, the choice of the correlation function R should align
with the known properties of the simulator, such as its derivability or periodicity. Various correlation
functions are commonly used as examples, including the following;:

n
exp <Z—9k ‘Ik - I,'c

k=1

n
eXp (Z —9k ‘Ik — I];
k=1

n
T2 15m + 050
k=1 Spherical kernel

R(LI,0) = { n = min{1, 0y ‘Ik - I,;’ (50)

T xeOme)
k=1

) Exponential kernel

2
) Gaussian kernel

1 — 1507 4305}, 0<m <02
Spline kernel

Xk(k) = § 1.25(1 — m;,)?, 02<m <1
07 Nk Z 1
Nk = min{1, Ok, | I — I,;‘}

The construction of a Kriging model consist of the two-stage framework described in the upcoming
subsections 3.2 and 3.3.

3Notice that we are making a slight abuse of notation. The symbol U now represents a probabilistic model, in contrast
to the deterministic nature of the strain energy denoted as U in Section 2.
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3.2. The conditional distribution of the prediction

The Bayesian prediction methodology assumes that observations gathered in the vector
T
U= [ua®),ua®),....ua)

along with any other unobserved value U(I) are a realisation of a random vector distributed according
to a joint parametric distribution. This section aims to obtain the random prediction for this unobserved
quantity by exploiting this statistical dependency. The hypothesis of Gaussianity of Z(I) on the right-
hand side of equation (48) and the linearity of the regression model permits to conclude that the vector
of observations U is also Gaussian, with

U ~ N(GB, 0L R), (51)
being G and R the regression and correlation matrices, defined as
Gij=g;AY), i=1,...,m, j=1,...,p, (52)

and . '
Ry =RAV IV 9) i=1,....m, j=1,...,m. (53)

Similarly, a new random vector composed of the set of observations U and any other unobserved
value U(I) is jointly Gaussian distributed as

(o= {rfat e ")) o0

where g(I) is the vector of regressors evaluated at I and r(I) is the vector of cross-correlations between
the observations and prediction given by

r(I) =RAVL,0) i=1,...,m. (55)

Assuming that the autocovariance function given by equation (49) is known, the conditional distri-
bution of the prediction U(I) = U(I)|U is given by the best linear unbiased predictor (BLUP) theorem
[16]. According to the BLUP the unobserved quantity of interest U(I) = .#(I) under the prior model
in equation (48) is the Gaussian random variable U with mean

no (1) = g(1) - B+ (D) - R (U - GB), (56)
and variance o
o2(I) = oF (1 — (D) R (D) + u(I) - (GTR—IG) u(I)), (57)
where
3= (GTR‘1G>_1GTR‘1U, (58)

is the generalised least-squares estimate of the underlying regression problem, and
u(I) = G'R'r(I) — g(I). (59)

The derivations leading to equations (56)-(59), representing the mean value and variance of the BLUP
(also denoted as universal Kriging predictor [16]), are considered standard procedures. For readers who
are not familiar with these derivations, we recommend referring to the comprehensive treatment pro-
vided in Reference [28], which offers a detailed explanation of the underlying mathematical principles
and methodologies.

Remark 3:  As shown in Figure 3¢ the BLUP is an exact interpolator of the observations U. To prove
it, lets consider the prediction for the observation ¢

11



pp19) = g(1) . B+r1)- R (U - GB)

— g(ID). B+ R (1) (U B GB) (60)

Noticing that the vector #(I)), from its definition in (55), is indeed the i** column of the correlation
matrix, this allows 7(I?)) to be written as r(I)) = Re;, which permits that R™!7(I()) in (60) can be
expressed as

R 'r(1Y) = R"'Re; = e;. (61)

Substituting (61) into (60) allows py; to be re-written as

pp V) = g(1)-B+e - (U-GB)

(62)
:g( ) :3+ez U-Gle;- B.

From the definition of the regression matrix G' in (82) it is possible to express GTe; = g(I%)), which
permits pﬁ(I(i)) to be given by

ppI9) =g(19)-B+e-U-g(1)-g=Ua). (63)

3.8. Joint maximum likelihood estimation of the Kriging parameters

In the preceding sections, it has been assumed that the autocovariance function is known a priori.
However, the type of correlation functions R(I, I, 0), as well as the value of the variance 0[21 is generally
unknown a priori. In this work, the type of the correlation function (see Remark 1) will be assumed a
priori, and the determination of the hyperparameters @ and the variance 0(2] will be obtained from the
observation dataset following the mazimum likelihood estimation (MLE) technique. The resulting pre-
dictor is known as the empirical best linear unbiased predictors (EBLUP) [16]. The Kringing parameter
estimation entails the solution of the following minimisation problem

{ﬁ*, U,H*} = argﬁmln ZL(U|B,0%,0), (64)

UU,G
where Z(U|B, 0(21, 0) is the opposite log-likelihood of the observations U with respect to its multivariate
normal distribution given by

L(UIB,07,6) = o (U ~ G R(O) (U ~ GP) + 3 log(2m) + T loglot) + Slog(IRO))).  (65)

2%

The MLE of 8 and o7 are obtained from the first order optimality conditions of £ (U|B,0%,0),
namely

0gL = —2GTR (GB —U) = 0;
Oy

_ 66
) (v-aGp) R~ (U-GB) (66)

20U o

from which the following optimal values can be obtained
—1 —
B*(9) = (GT R(B)‘1G> G7 <R(0)> U;

(67)

o' 0) = (U-cp)- (rO) - (U-Gp0).

These solutions are the so-called generalized least-squares estimates and were previously derived in
(58). Notice in equation (67) that the dependence of both 3* and 07" on the vector of hyperparameters
0. has been explicitly stated for the first time, which is a consequence of the definition itself of the
correlation matrix R(@). This dependence will continue to be explicitly written in subsequent derivations.

12



Substituting the optimal values 3*(8) and 0" (8) into the log-likelihood function (65) enables it to be
re-written as

% * ]-
218" 0%, 0) = =+ Dlog(2m) + Tlog (o} 7(8) ) + Slog (|1R(0)])

2 "2 2 2 (68)

m m

= log(1(0)) + ' (1og(2m) + 1),
where the reduced likelihood function has been introduced as
¥(6) =7 ()| R(O)]/™. (69)
This entails that the minimisation problem in equation (64) is equivalent to

0" = argngn (), st. [0l; >0 i={1,2,--- ,n} (70)

Unfortunately, there is not an analytical solution for the optimal hyperparameters, @ € R", and
instead, a numerical minimisation approach is typically advocated for. However, this is not devoid
from numerical difficulties, stemming from the ill-conditioning of the correlation matrix R(0), existence
of multiple local minima, etc. Various optimisation methods are available that address the problem
described in (70), such as quasi-Newton methods [29], genetic algorithms [30] followed by a dynamic
hill climber [31], or even the well-known function fmincon in MatLab [32]. In our work, we use of the
algorithm boz-min [33].

For the sake of clearness the process described above has been depicted graphically in Figure 3. To
begin with, the only information known is that the simulator is a continuous and differentiable function.
Considering this prior knowledge, Figure 3a shows 5 possible realisations of a Kriging with zero mean and
quadratic exponential correlation providing the uniform shaded area. From the observations depicted in
Figure 3b, a posterior model is obtained having optimised the parameters of the prior model (Figure 3d).
As a result, Figure 3c shows the mean prediction and the shading represents variance of the emulator.

3.4. Gradient-enhanced Kriging based prediction

In addition to function observations, it is possible to make use of observations regarding derivatives
of the output with respect to its inputs, with the aim of improving the accuracy of the predictor. The
resulting model is known as Gradient Enhanced Kriging in the literature [34, 35], in contrast to the stan-
dard Kriging described through Sections 3.1-3.3. While the intuition behind the inclusion of derivative
information to enhance the emulator’s accuracy, using the same number of training points, may seem
evident, we present a clear demonstration of this phenomenon in the simple one-dimensional example
depicted in Figure 4. In this illustration, the ground truth model (an analytical one-dimensional func-
tion) exhibits significantly closer similarity to the behavior depicted by the gradient-enhanced Kriging
(Figure 4(b)) than to the Kriging model that solely incorporates information from the function while
excluding derivative information (Figure 4(b)). The comparison provides tangible evidence of the pro-
nounced improvement achieved by incorporating derivatives in the emulator, underlining the significance
of this approach for enhancing accuracy with the same number of training points.

In order to create a gradient enhanced predictor, the vector of observations is extended to include
derivatives of the strain energy density U with respect to its input variables I, such that

U= U“),...,U(m%aIU(l),...,aIU(m)}T, (71)

where T
v =ua®)  avt = o, v, o, u0] (72)

To interpolate both the variable and its gradient at any unobserved location, the correlation matrix
R is extended to take into account the correlation between the variable and its gradient as

Ryu Ryy ]
R = , 73
[RITJU/ Ry (73)
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error bounds: +1.96 % o

O Observations

25

=15

0.5

1 = 0.4353

Figure 3: Stages involved in the construction of a metamodel for M(x) = (62 —2)2-sin((6z—2)?). (a) displays 5 realisations
of the prior model; (b) demonstrates a selection of observations (stage 1); (c) portrays the posterior model having trained
the parameters on the observations (stage 2); (d) presents the minimisation of the reduced likelihood function (stage 2).

Figure 4: Comparison between trained Ordinary Kriging model, shown in (a), and trained Gradient Enhanced Kriging,
shown in (b). Region of uncertainty shaded in blue is close to non-distinguishable in (b) promoting the advantages of using

a gradient based approach for the same number of points.



where Ryy is the correlation matrix presented in (53) for the non-gradient case. Ry includes the
partial derivatives of R according to

31(1)73(1(1)71(1)7 0) ... 8I<m>R(I(1),I(m), 0)
Ryy' = 5 B : : (74)
O RAM 1D, 8) .. 9y RAM, 1M )

given

 [ora®,19),0) oRA®, 1), 6) oRAD 10, 9)]"

0 <'>R(I(i), I(j)7 0) : ’ ! . | 75)
; on’ ory o1
The submatrix Ryg contains the second derivatives
812(1)1(1)72(1(1),1(1), 6) ... a%(l)l(m)R(I(l),I(m), 0)
Ry = : : , (76)
Oy RATW, TN, 0) o Oy RAT T, 6)
where | . | | |
L 812(”1(1)72(1(2)71(])7 o) ... 812(1)I(m>R(I(l)7 1), 9)
oy RV, 1), 0) = : - : : (77)
02 RAD, IV, 0) ... 02 R(IO,10),9)

Similarly the vector of cross-correlations between the observations and the prediction is extended as
follows

T
r(I) = [R(I, 10.6), ..., RILI™, 0), 9,0, RLIV. 0), ... dymRAIM™, 9)] . (78)

Once these adaptations have been made, the new definitions for the various quantities can be substi-
tuted into the definitions detailed in Subsections 3.2 and 3.3. To start with, recall the mean prediction

po (D) = g()-B+r(D) - R7H(U - GB), (79)
and the variance
o2(I) = oF (1 — (D) R (D) + u(I) - (GTR_IG) _1u(I)> : (80)
with )
B(0) = (GTR(a)*G) G7 (R(a)) U:
9 * 1 " —1 . (81)
02" () = m(v -Ga ) (RO) - (U-6B'0);
and
c (9" (Byng(@))”
co-|Gvli e=| 1 |1 Gu- ; , (52
(g(@my))” (Frm g(10)) "

where g(I (i)) = 1 and hence Gl(m)g(I(i)) = 01xn. Finally, the optimal hyperparameters are achieved by
minimizing the log-likelihood function.
~ m(l+n)

LU0t 0) = ———log(1(0)) +

m(1+n)

5 (log(2m) + 1) (83)

where the reduced likelihood function has been introduced as

¥(0) = 02" (8)|R(B)| 70D (84)




Remark 4: A potential aspect open to critique when applying the Kriging and Gradient Enhanced
Kriging techniques, described in Sections 3.1 to 3.4, arises from the requisite inclusion of strain energy
values (U) at each individual observation or training juncture. This necessity imparts notable constraints
on their applicability to datasets originating from physical laboratory experiments, as opposed to those
derived through in-silico or numerical means which, constitutes the focus of this paper. The challenge
stems from the inherent difficulty in quantifying energy measurements.

Nevertheless, an advantageous facet of the Gradient Enhanced Kriging methodology lies in its adapt-
ability to scenarios where only a singular observation point is utilized for strain energy (U), an instance
realizable by selecting F' = I, where U typically assumes a value of 0. Herein, derivative information
at this specific point, coupled with derivatives at multiple other points, can be seamlessly incorporated.
This tailored approach is delineated in greater detail within Section Appendix C.

3.5. Derivatives of strain energy density for Gradient Enhanced Kriging

As discussed in Section 3.4, the gradient-enhanced Kriging approach involves not only the strain
energy density U but also its derivatives with respect to the input variables I. In cases where the
material symmetry groups are isotropy or transverse isotropy and a principal invariant approach is
employed (refer to Section 2.5), it becomes necessary to consider the derivatives of U with respect to
either {I1,Is, I3} or {Ii,Is, I3, 14,15}, respectively. In the case of analytical energies, such as those
derived from a Mooney-Rivlin model, obtaining these derivatives is relatively straightforward. However,
for more complex strain energy densities arising from composites through homogenisation techniques
of varying complexity (e.g. rank-one laminates in Section 2.6.1), these derivatives may not be readily
available. Instead, it may be necessary to derive these derivatives from the first Piola-Kirchhoff stress
tensor P. This can be achieved using standard linear algebra principles and will be specifically outlined
for the two aforementioned cases, i.e., strain energies that are either isotropic or transversely isotropic.

In the case of isotropy, the expression for the first Piola-Kirchhoff stress tensor given in (25) permits
to define P as a linear combination of three terms. This is conveniently re-written as

P= (ah U) Vit (OIZU) Vot (813U) Vs (85)
where
Vi=2F;, Vy=2HxXF; Vs-H, (86)

can be understood as the linear independent vectors of a basis, whilst (811. U) represent the coordinates
of P along the vectors V;, (i = {1,2,3}). As standard in basic courses of linear algebra, given P, the
coordinates (811U ) can be obtained through projection of the latter over the three vector of the basis,

which yields the following linear system of equations

PV, onLU
P:Vy| =M, |0,U|, M), =Vi:Vj, ij={1,23} (87)
P V3 313(]

From the algebraic system of equations in (87) it is possible to derive under which conditions it would
be possible to obtain the solution of {07, U, 0r,U, 0r,U }. which represent the components of P over the
components of the basis V. Clearly, the above system of equations is solvable (i.e. {V,V4y, V3}
are linearly independent vectors) when its determinant is different from 0. Without loss of generality,
consideration of a diagonal deformation gradient tensor F', written in terms of its principal values, namely
F = diag[\1, A2, A3] permits to obtain the following expression for the determinant of M, as

detMis = 6403 — A3)%(A3 — A3)°(N3 — A3)? (88)

Clearly, the three possible situations under which the above linear system of equations is not solvable
corresponds when two of the principal stretches of F' are identical or when the three of them are identical.
The former can be mathematically stated as

/\i = >\]7 L#Jv 27.7 = {17273}7

89
A== A3 (89)

detMiso =0 <~— {
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For the case of transverse isotropy, the expression for the first Piola-Kirchhoff stress tensor in equation
(27) can be conveniently writen as

P = (0,01 + (0,0) Vo + (0,U) Vi + (00,U) Vi + (9,U) Vs (90)
where
Vi=2F, V,=2HxF, V3;=H, V,=2FN®N, Vs;=2HNGgN)xF (91)

Projection of P in (90) over vectors V;, with ¢ = {1,...,5} in (91) yields the following system of
algebraic equations

P: Vl 811U
PV, oL, U
P:Vs| =My |0LU|, [Ml;,; =Vi:Vj, i,5=A{L,-,5} (92)
P:V, o, U
P:Vy oL U
Clearly, the above system of equations is solvable (i.e. V; with ¢ = {1,...,5} are linearly independent

vectors) when its determinant is different from 0. Consideration of a diagonal F', written in terms of its
principal stretches permits to obtain the following expression for the determinant of My; as

det M ; = det Misoc(0, ¢)g(A1, A2, A3, 0, ¢) (93)

where (0, ¢) € [0, 27] x [0, 7] enable the spherical parametrisation of the preferred direction IN according
to

N = [cos(6) sin(¢) sin(f)sin(¢) cos(¢)] (94)

Furthermore, in (93), the term det My, can be found in equation (88), and the functions ¢ and ¢ are
defined below

(6, ) = 64 cos(¢)? cos(#)? sin(¢)? sin(0)?
(A1, A2y Az, 0, 8) = AING — 20T 4+ A3+ NIAS -+ AOAZ + X3S 4+ A5 — 203020 — AIAIA3 — ATAZN3
+sin(¢)? (BATA3 — ATAZ + AIAS — AN 4+ A3AS — 3AJA3 + ATASAS — ATASA])
+ sin(¢)? sin(0)% (=ATAS + ATAZ — BAIAS + ATA3 + 3A305 — ASAT — ATAIA] + ATA3AG)

(95)
Therefore, the conditions that prevent the system of equations in (92) from being solved are
Ai =N, i #£7, 4,7 =1{1,2,3},
det M = 0 1=, #7545 =1{1,2,3}
Al =2 = A3
c(0,9) =0 =S N=A, i #7,4,5=1{1,2,3}
detMti =0 < COS(G) = (96)

<~ N=V,;, i={1,2,3}

Remark 5: The ill-conditioning of the system of equations in (87) and (92) arises due to two primary
factors: the presence of principal stretches of deformation with equal values (in both isotropy and
transverse isotropic models) or the alignment of principal deformation directions with the preferred
direction of transverse isotropy. To address this numerical issue, we propose a perturbation approach,
wherein we introduce slight variations to the identical principal stretches and a misalignment of the
coincident principal direction with the preferred direction. By doing so, we ensure the solvability of both
(87) and (92).
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3.5.1. Noise reqularisation

Kriging fundamentally serves as an interpolation method. Nevertheless, it is widely recognized that in
cases of substantial training data and the incorporation of derivative information into the training strat-
egy (e.g., in the context of gradient-enhanced Kriging), the correlation matrix R defined in equation (73)
can become ill-conditioned. To mitigate this issue, a customary practice is to introduce regularization
by augmenting the correlation matrix with a diagonal matrix as follows: [20]

R— Ryy +e1lpmxm Ryy
R{IU’ RU’U’ =+ 52Im~n><m~n

s €1,€2 € R* (97)

While our paper primarily highlights the interpolation properties of this technique, we consistently
employ sufficiently small values of €7 and €2 to mitigate potential challenges. It is noteworthy, as
elucidated in Remark 3, that Kriging and its gradient counterpart can achieve interpolation when R
remains unregularized, specifically for e; = €9 = 0. However, when €; # 0 and €2 # 0, and in the
extreme scenario of both parameters assuming large values, Kriging transitions from an interpolation
technique to a regression technique.

In this study, we exclusively analyze in-silico data that is intentionally devoid of noise. Conse-
quently, it becomes feasible to employ regularization parameters of minimal magnitude, effectively caus-
ing Gradient-Enhanced Kriging to exhibit characteristics akin to an interpolation technique rather than
a regression one. Nevertheless, for the sake of comprehensiveness, we undertake an investigation of the
performance of Gradient-Enhanced Kriging in a regression context, particularly when confronted with
severely ill-conditioned correlation matrices arising from noise-contaminated data. To elucidate this
aspect, we employ two designated training samples, denoted as:

o Unperturbed sample: training sample devoid from noise in the output variables, including the
values of the energy W(F') = U (11, I2, I3) and its derivatives {91, U, 9r,U, 0r,U }, where the ground-
truth constitutive model from which these data have been generated in-silico corrresponds with
the Mooney-Rivlin model described in Appendix A.

e Noisy sample: this training sample has been obtained by perturbing the deterministic sample
according to:

U=U+N(©O,00);  0,U=0,U+N(0,05,0),i=1{1,23} (98)

with
oy = 0.2mean(U); oo,,u = 0.2mean(0,,U), i = {1,2,3} (99)

In both datasets, Figure 5 illustrates the performance of Gradient-Enhanced Kriging utilizing an
interpolation-oriented approach, characterized by the use of small €1 and &5 values. As anticipated,
in the case of the unperturbed sample (see Figure 5a), Kriging impeccably reproduces the training
data points (represented by circles). Conversely, in the noisy sample, Kriging strives to replicate the
perturbed and irregular data to the greatest extent possible. Discrepancies observed at certain points,
resulting in the loss of interpolation properties, can be attributed to the necessity of employing small ¢
and 7 values. Notably, it is evident that the condition number of the matrix R experiences a substantial
increase when dealing with the noisy sample, as illustrated in Figure 5b. This observation aligns with
expectations and raises concerns regarding the predictive accuracy of Kriging between training points,
potentially leading to undesired oscillations.

Alternatively, we have explored a regression-based methodology, as detailed in [20]. In this context,
the regularization parameters {1,e2} are treated as supplementary hyperparameters. Consequently,
both sets of hyperparameters, namely {61, 02, 03} and {e1,e2}, are optimized through the minimization
of the reduced likelihood function ()

~% ~ ~

6 =argmin (6), st. [0]; >0 i={1,2,---,5} (100)
]
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Figure 5: (a) Unperturbed sample; (b) Noisy sample. Performance of interpolation-based Gradient-Enhanced Kriging.
Circles (a) or squares (b) represent the training points used. Continuous corresponds with the prediction of the Kriging.

where the augmented set of hyperparameters is defined as 6= {61,02,05,21,22}. Applying this approach
to only the the noisy sample yields the outcomes depicted in Figure 6. The values of {¢1,e2} are de-
termined to strike a balance between the interpolation and regression properties of the Kriging response.
Naturally, the response does not precisely match the noisy data, thereby avoiding the introduction of
undesirable oscillations caused by data perturbations (see Figure 6a). Crucially, when removing the noise

from the data, we can observe that the regression Kriging is capable of fitting these data (see Figure
6b).

16 ‘ ‘ ‘ ‘ 1.4
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Figure 6: Performance of regression-based Gradient-Enhanced Kriging. (a) Squares represent the training points from the
noisy sample; (b) Circles represent the values of the noisy sample devoid from noise, showing that the Kriging model is
capable of reproducing the behaviour of the unperturbed ground truth model.

4. Calibration of Kriging and Gradient Enhanced Kriging metamodels

4.1. Design of Experiments

In this section, we present the procedure used for generating synthetic data, utilizing a diverse set of
ground truth constitutive models. The strain energy densities and material parameters for these models
can be found in Appendix A. The models employed encompass the following: Mooney-Rivlin, quadratic
Mooney-Rivlin, Gent, Yeoh, Arruda-Boyce, a transversely isotropic model, a rank-one laminate com-
posite, and a computationally homogenised RVE comprising elastomer matrix with centered spherical
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inclusion. Table 4.1 shows all the ground truth models considered, and in parallel, we indicate the ma-
terial symmetry group of its corresponding Kriging or Gradient-Enhanced Kriging (since all data in this
paper has been generated in-silico, we advocate for the Gradient-Enhanced Kriging approach described
in Section 3.4, encompassing energy and derivative information at all training points) counterpart.

Ground truth model Kriging-based counterpart
Mooney-Rivlin Isotropic model, U = U (11, I, I3)
Gent model Isotropic model, U = U (11, I3, I3)
Yeoh model Isotropic model, U = U (11, I, I3)
Arruda-Boyce model Isotropic model, U = U (11, I, I3)
Transversely Isotropic (TI) model TI model, U = U(Iy, I2, I3, 14, I5)

Rank-one laminate composite TI model, U = U(I4, I, I3, 14, I5)
RVE Orthotropic model, U = U(Iy, I2, I3, 14, I5, I5)

To generate the data, we follow the methodology described in [36]. The deformation gradient tensor
F' is parametrized using a carefully selected sample of deviatoric directions, amplitudes, and Jacobians
J (i.e., the determinant of F'). The process of generating the sampling points for deviatoric directions,
amplitudes, and Jacobians is outlined in Algorithm 1.

Algorithm 1 Pseudo-code for sample generation

: Set the number of amplitudes, directions and determinants: {ng, nx,ns};

: Initialise the vector of amplitudes and determinants: ¢t = [0, ..., 1.7]n,x1; J = [0.8, ..., 1.2]5, x1;

: Initialise a vector of Latin Hypercube Sampled angles: ¢1 = [0, 2755 x1;

: Initialise three vectors of Latin Hypercube Sampled angles: ¢2, 4 = [0, T]px x1;

. Construct the directions, X, using an extended Spherical parametrisation in R® - detailed in (101);

: Evaluate the deformation gradient tensors, F, parametrised in terms of deviatoric directions X,
amplitudes ¢ and determinants J - detailed in Algorithm 2;

7: Evaluate the invariants, energy and stress - detailed in (24), Section Appendix A, (25) respectively.

S O s W N =

Regarding the deviatoric directions, we have constructed them using a spherical parametrization in
R®. Specifically, we represent these directions in terms of four relevant angular measures {¢1, o, 3, ¢4}
within this 5-dimensional space, as follows:

cos ¢t
sin ¢ cos ¢
X' = sin ¢! sin ¢ cos ¢ ; 1<i<nx (101)
sin ¢} sin @ sin ¢4 cos ¢
sin ¢4 sin @} sin d)g sin ¢

Once the sample is generated following Algorithm 1, the reconstruction of the deformation gradient
tensor becomes possible at each of the sampling points. This reconstruction process is demonstrated
in Algorithm 2, where ¥ represents the basis for symmetric and traceless tensors (refer to Appendix
Appendix B for details on ¥).

4.2. Calibration and Validation

The synthetic data, generated as described in Section 4.1, serves to calibrate both Kriging and
Gradient Enhanced Kriging surrogate models, following the principles outlined in Section 3. To assess
the accuracy of the Kriging and Gradient Enhanced Kriging model at non-observation points (different
from those used for calibration), a set of evaluation points can be generated using the same procedure
as described in Section 4.1. These evaluation points are not part of the calibration data but are used
to test the performance of the surrogate model. One commonly used metric in our work to determine
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Algorithm 2 Pseudo-code for construction of the set of deformation gradient tensors

1: fori=1:nx do
2 for j=1:ny;do

3 for k=1:ns do

1 F =" exp (0[S0, Xjw1) )
5: end for

6 end for

7: end for

the accuracy is the relative error in the first Piola-Kirchhoff stress tensor at all evaluation points (non-
observation/calibration points). This relative error is denoted as Ep and is defined as follows

n Ant _ pKrt
oo 2=t [P =PI 6 000 (102)

iy [[PA]

where || A|| denotes the Frobenius norm of A, n is the number of experiments, PA"" and PX"" represent
the analytical and Kriging-predicted first Piola-Kirchhoff stress tensors, respectively.

It is important to highlight that for validation purposes, the authors typically employ a validation
set comprising 10,000 data points. This approach ensures that the sampled set is sufficiently dense to
assess whether the substantially smaller calibration set is capable of producing an accurate model. The
validation process enables a comprehensive evaluation of the surrogate model’s performance across a
wide range of data points and helps validate its reliability and generalizability.

The calibration and validation process will be conducted for a comprehensive battery of constitutive
models, each exhibiting a certain degree of nonlinearity. The models included in this study are as
follows: (a) Mooney-Rivlin model; (b) Arruda-Boyce; (c) Gent; (d) Quadratic Mooney-Rivlin; (e) Yeoh;
(f) Transversely isotropic; (g) Rank-one laminate composite; (h) RVE with spherical inclusion. The
specific expressions for the strain energy densities of each model can be found in Appendix A, along with
the values of the various material parameters involved. For each of these models, we have generated 2
training samples, each comprising a total number of training points of N = {20,60}. For each training
set, we have calibrated both the Kriging and Gradient Enhanced Kriging models for all 7 ground truth
models. The results, in terms of the mean squared error for first Piola-Kirchhoff stress tensor P, denoted
as R?(P) and the values of Ep in (102) and Ep, the latest defined as
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) i={1,--,n = 10,000}, (103)

are presented in Tables 1 (for N = 20 training points) and 2 (for N = 60 training points).

The results from the analysis (see Tables 1 and 2), show the performance of both Kriging and Gradient
Enhanced Kriging. In both tables, the R?(P) achieved using both approaches are remarkably high (close
to 1), indicating excellent accuracy in predicting the first Piola-Kirchhoff stress tensor. However, when
considering the two alternative metrics, namely Ep and Ep, these show a considerably superior accuracy
of the Gradient Enhanced Kriging, typically obtaining one order of magnitude smaller values with respect
to the Kriging counterpart. For instance, most values of Ep for N = 20 indicate that the worst relative
error in the validation sample are above approximately 10%, with even 25% for the Yeoh model, whereas
this value is considerably reduced by the gradient Kriging, except for the Arruda-Boyce model, which
seems similarly challenging for both approaches. The most challenging case corresponds with that where
the ground truth model is the RVE, due to the larger number inputs (i.e. 6 invariants) and to the high
contrast between the matrix and the inclusion (f,, = 10, see Table A.10). This is only shown for the case
of N = 60 training points (Table 2), where it can be seen that the worst relative error for the Kriging is
above 30%, whereas its gradient counterpart attains a value below 2%.

This observations highlight the clear advantage of employing the Gradient Enhanced technique, as
it enables accurate predictions of the first Piola-Kirchhoff stress tensor even with an extremely small
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Table 1: R*(P), Ep and Ep for all seven models for number of training points N = 20, for both Kriging and Gradient
Enhanced Kriging. {n:,nx,ns} ={2,5,2}

Ordinary Kriging Gradient Kriging

Ground truth model:

R*(|Pl) Ep Ep R (| Pl) Ep Ep
Arruda-Boyce 0.9973 221 x1072 1.19x 10! 09956 1.17x 1072 1.36 x 107!
Gent 0.9920 4.82x 1072 2.10x 107! 09987  7.03x 1073 7.36 x 1072
Yeoh 0.9997  2.39x 1072 251 x 107"  1.0000 3.56 x 1073 1.42 x 1072
Mooney-Rivlin 0.9978  3.90x 1072 1.01 x 10~'  1.0000 3.17x 107 1.72x 1072
Quadratic Mooney-Rivlin ~ 0.9991  3.18 x 1072 7.96 x 1072 1.0000  1.69 x 1073 6.04 x 1073
Transversely isotropic 0.9959  5.72x 1072 352x 107" 09997 584 x 1073 4.27 x 1072
Rank-one laminate 0.9698  1.33x 107! 211 x 107! 09995 1.25x 1072 6.46 x 1072

Table 2: R*(P), Ep and Ep for all seven models for number of training points N = 60, for both Kriging and Gradient
Enhanced Kriging. {n¢,nx,ns} = {5,6,2}

Ordinary Kriging Gradient Kriging

Ground truth model:

R* (| P|) Ep Ep R (|| P])) Ep Ep
Arruda-Boyce 0.9993 875 x 1073 854 x 1073  1.0000 1.84x107* 9.89 x 10~*
Gent 0.9998 577 x 1073 4.11x 1072  1.0000 9.65x 107° 9.89 x 10~*
Yeoh 1.0000  7.26 x 1073 1.25 x 107! 1.0000  3.42 x 107* 1.97 x 1073
Mooney-Rivlin 0.9999  5.04x 1073 1.74x 1072  1.0000 223 x107* 891 x 10~*
Quadratic Mooney-Rivlin ~ 0.9999  9.16 x 1073 3.29 x 1072  1.0000  4.24 x 107* 3.22 x 1073
Transversely isotropic 0.9999 7.71 x 1072 6.06 x 1072 1.0000  9.93 x 107* 2,19 x 1072
Rank-one laminate 0.9998  9.79x 1073 5.15x 1072  1.0000  3.20 x 1073 1.21 x 1072
RVE 0.9952  3.12x 1072 3.22x 107! 09999  6.62x 1073 1.82 x 1072

number of training points. This makes Gradient Enhanced Kriging a very convenient and efficient choice
compared to its standard Kriging counterpart.

Lastly, for the sake of completeness, Figure 7 provides a visual representation of the selected training
points (marked in red) within the space defined by the invariants I; and Is. This plot encompasses
the two transversely isotropic calibrated Gradient Enhanced Kriging constitutive models, namely those
whose ground truth counterpart are the transversely isotropic model and the rank-one laminate model,
showcasing the relative error in the first Piola-Kirchhoff stress tensor across the evaluation points. The
figure offers valuable insights into how the surrogate models perform in different regions of the parameter
space and allows us to observe the accuracy distribution over the entire range of invariants.

Remark 6: Kriging and its gradient-enhanced variant inherently enable the development of infill strate-
gies based on metamodel epistemic uncertainty. Such strategies involve the selection of new training

points guided by the variance of the surrogate model o%(I) in equation (80). This selection process

identifies a point in the n-dimensional space by {I1, Is, ..., I} where 0(27(1) reaches its maximum value.

However, it is crucial to note that the deformation gradient tensor F' is parameterized using ampli-
tudes t, angles {¢1, P2, P3, ¢4, } and by the Jacobian J (see Algorithm 2). The lower and upper values
of these values defined the 6-dimensional hpercube [tmin, tmaz] X [P1,1im: Plinae] X [P2mins P2mae] X =+ X
(D4, s D) X [Jmins Jmaz]. This hypercube is what we refer to as the parametrization space. When
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Error in Piola
Error in Piola

Figure 7: (a-b) Distribution of validation points across the first two invariants. Red crosses represent the location of the
calibration/training points and the colour bar represents the distribution of error in EFp. (a) represents the transversely
isotropic and (b) the rank-one laminate models.

a substantial number of points are distributed within this parametrization space, their corresponding
F values can be computed, and subsequently, the n invariants (dependent on the material symmetry
group considered) can be derived. This process transforms the parametrization space into its coun-
terpart in the design space. However, it is important to highlight that the boundaries of the design
space form a polygon in R™ that may exhibit highly irregular shapes, in contrast to the n-cube shape
of the parametrization space. For instance, the projection of the design space onto the plane defined by
invariants I1 — Io, as shown in Figure 7, demonstrates the irregular nature of this projection.

Consequently, when seeking the point with the maximum epistemic uncertainty (i.e., maximum value
of 02 (I)), it must fall within the boundaries of the design space to avoid extrapolation. This requirement
holds true for various machine learning techniques, including neural networks. However, identifying such
a point within an irregular polygon in R” is a non-trivial task and has not been pursued in this study.
Given that our data is generated in-silico, we propose an infill strategy based on selecting a point within
the design space that results in the maximum relative error between the in-silico data and its predicted
Kriging counterpart.
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5. Numerical three-dimensional examples

The analysis conducted in Section 4 provides substantial evidence supporting the superiority of gradi-
ent enhanced Kriging over its energy-only counterpart, which lacks the consideration of first derivatives
information. As a result of these promising findings, we intend to leverage these advanced gradient
enhanced metamodels to evaluate their accuracy and performance in the context of challenging three-
dimensional Finite Element simulations. This strategic approach seeks to explore the potential of en-
hanced predictive capabilities and further validate the applicability of gradient enhanced Kriging for
addressing complex engineering problems with superior accuracy and efficiency.

5.1. Simple uniform deformation example

Before delving into complex 3D Finite Element simulations, we examine the case of uniform defor-
mations, recognizing its potential to offer valuable and insightful information. In such cases, instabilities
may arise, potentially leading to loss of ellipticity. In order to examine the instabilities present in the
ground truth and Kriging models, we will generate them by introducing an electromechanical term to
the strain energy density as

1
Wiotal(F', Do) = U(F) +p(J — 1)+ 527 IF Do Ilpp, = FDyg- FDy, (104)
where W(F') denotes the strain energy of the material (whether it is the ground truth or gradient Kriging
model). The Lagrange multiplier p is included to ensure the incompressibility constraint, while the third
term represents the electromechanical contribution. The material electric field Ey is the conjugate of
Dy, and can be obtained as

1
Eo=0p,¥ = gFTFDO, (105)

which permits, given Ej, to obtain an explicit expression for Dy, namely

Dy=cJFFTE,. (106)

Ground truth mechanical energy:
1 Mooney-Riviin -

2 Rank-one laminate | |

3 RVE

Figure 8: Uniform deformation induced in prism of dimensions [ao, bo, co] after applying voltage gradient AV = —%

yielding uniformly prism with dimensions [a,bo,c]. Mechanical energies used for the ground truth models are: Mooney-
Rivlin, rank-one laminate and RVE (see Appendix A). Induced deformation through addition of the coupled term %I IrD,
into the strain energy in (104).

k]

We impose the following specific form of the deformation gradient tensor F' and on Ey, i.c.

Fy 0 0 0
F=|0 1 0|;: Ey=1|o0 (107)
0 0 F33 Ey
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For any value of Ey, {F11, F33,p} can be obtained from the stationary conditions of Wiya in (104),
1.e
D\Iltotal[(SFll] = P : DF[5F11] = P115F11 = O;
D\Iltotal[5F33] = P : DF[5F33] = P335F33 = O; (108)
D\IJt()tal[(Sp] = (J — 1)5}7 =0
with the first Piola-Kirchhoff stress tensor P defined as

1 1
P = 0pV(F)+pH + — (FDy 2 Dy - 2—JIIFD0H> (109)

Therefore, given Ej in (107), the following nonlinear permit to determine {F, F33, A}, i.e.
RFH =P =0; RFBS = P33 =0; 'R,p =J—-1=0; (1]_0)

The objective is to analyse, for this specific uniform deformation case, the behaviour of the Gradient-
Enhanced Kriging model when the following ground truth models are consider: (a) Mooney-Rivlin; (b)
rank-one laminate composie; (¢) composite material characterised by RVE with elastomeric matrix and
spherical inclusion.

5.1.1. Mooney-Rivlin ground truth model

We consider a Mooney-Rivlin model (whose analytical expression is in equation (A.1)) and rank-one
laminate model (see Section 2.6.1 and equation (A.7)) for the mechanical contribution of the energy,
namely U(F'). For the ground truth Mooney-Rivlin model, we choose the material parameters given in
Table A.3.

Figure 9a — b illustrates the equilibrium path (obtained by means of an arc-length technique) for
both the Mooney-Rivlin ground truth model and the gradient-enhanced Kriging calibrated model. Re-
markably, these paths are practically indistinguishable, demonstrating strong similarity between the two
models. Furthermore, Figure 9a — b highlights the specific regions where convexity is lost in both models
with respect to Fi1, F33.

For the ground truth Mooney-Rivlin model, which incorporates the electromechanical term defined
in (104), it is well-established that it maintains its ellipticity, as indicated by equation (16). This
characteristic is reflected in Figure 9., which reveals the absence of regions where the acoustic tensor loses
its positive definiteness for all possible directions V' parametrized spherically. Similarly, the gradient-
enhanced model depicted in Figure 9, exhibits a comparable region of convexity loss. Notably, it also
satisfies the ellipticity condition within the explored region shown in Figure 9.

5.1.2. Rank-one laminate composite ground truth model

For the rank-one laminate model, we use the material parameters in Table A.9, selecting the me-
chanical contrast fy, as f,,, = 10, and introducing a slight modification in the lamination orientation IV,
which is now selected to be

. . . 3.4m
N = [cos@smd} sin @ sin v COS@ZJ] : =0 1/):T (111)

Figure 10a — b depicts the equilibrium path obtained through an arc-length technique for both the
rank-one laminate ground truth model and the gradient-enhanced Kriging calibrated model. Once
again, these paths exhibit remarkable similarity, highlighting the strong resemblance between the two
models. Moreover, Figure 10c — d showcases the specific regions where both models experience a loss of
convexity with respect to Fi1, F33, as well as regions where the ellipticity condition is violated. Notably,
these regions exhibit striking similarities between the two models. A noteworthy observation is that
the region of loss of ellipticity in the gradient-enhanced Kriging model extends to a higher value of Fig
compared to the ground truth model.

On the equilibrium path depicted in Figure 10c — d, three points are highlighted. At each point,
the minors of the acoustic tensor are monitored for both models. Figure 11 indeed demonstrates the
remarkable similarity in the minor of the acoustic tensor for all directions V' spherically parameterized
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Figure 9: (a) and (b) represent equilibrium path for U(F') in (104) representing the Mooney-Rivlin ground truth model
and the gradient enhanced Kriging calibrated model, respectively. (c¢) and (d) represent the regions Mooney-Rivlin ground
truth and its gradient enhanced Kriging counterpart, respectively, lose convexity with respect to {F11, Fz3}.

26



s Ground Truth Model
e Kriging Model

s Ground Truth Model
e Kriging Model

Figure 10: (a) and (b) represent equilibrium path for W(F') in (104) representing the rank-one laminate ground truth model
and the gradient enhanced Kriging calibrated model. (c) and (d) represent the regions where the ground truth model and
its gradient enhanced counterpart lose convexity with respect to {F11, F33} and ellipticity.
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according to (111), where 6, ¢ correspond to the longest and shortest sides of the rectangular grid utilized
in each plot of Figure 11.

Lastly, Figure 12 visually represents the shear modulus i associated with Wiy, for both models,
which is defined as

fi = 0pr Yot s €(0,0) ® e(0, ) @ e(0,¢) © e(0,), (112)

where e(6, ) is spherically parameterized in terms of § and ¢ according to (111), yielding a reasonable

similarity between both models at the three points considered.

31e+00 6 B 10 12 14 16es0]
|

—

310400 6 8 10 12 1.5e+01
——

(f)

Figure 11: Spherical parametrisation of the least of the minors of the acoustic tensor at: (a) Point 1 in Figure 10c¢ (ground
truth model); (d) Point 1 in Figure 10d (Gradient Enhanced Kriging); (b) Point 1 in Figure 10c¢ (ground truth model); (e)
Point 1 in Figure 10d (Gradient Enhanced Kriging); (c) Point 1 in Figure 10c (ground truth model); (f) Point 1 in Figure
10d (Gradient Enhanced Kriging).
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Figure 12: Spatial parametrisation of the shear modulus z in (112) at: (a) Point 1 in Figure 10c¢ (ground truth model); (d)
Point 1 in Figure 10d (Gradient Enhanced Kriging); (b) Point 1 in Figure 10c¢ (ground truth model); (e) Point 1 in Figure
10d (Gradient Enhanced Kriging); (c) Point 1 in Figure 10c¢ (ground truth model); (f) Point 1 in Figure 10d (Gradient
Enhanced Kriging).
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5.1.8. RVE with elastomer matriz and spherical inclusion

Now we consider the case of a composite material characterised by the RVE shown in Figure 13,
comprising an elastomeric hexahedral matrix with an centered spherical inclusion. The homogenisation
principles which permit to obtain the effective properties (i.e. energy U and first Piola-Kirchhoff stress
tensor P) are shown in Section 2.7. The specific form of the strain energies for both matrix and inclusion,
as well as their respective material parameters, can be found in Appendix A.

As already indicated, the Gradient-Enhanced Kriging counterpart is an orthotropic material charac-
terised by the prefered directions N| = [1 0 O]T, Ny = [O 1 O]T and N3 = [O 0 l]T. Notice
that N3 is not needed in order to define the 6 required irreducible basis of invariants associated to this
material symmetry group, as indicated in Section 2.5.3.

Figure 13 illustrates the equilibrium path for both the effective response of the RVE ground truth
model and the orthotropic gradient-enhanced Kriging calibrated model up to a stretch of F11 = 1.9. Re-
markably, these paths are practically indistinguishable, demonstrating strong similarity between the two
models. For completeness, we show the value of the micro-fluctuations (), in the undeformed configu-
ration of the RVE for three different points in the equilibrium path of the computationally homogenised
ground truth model.

RVE for ground truth model

s Ground Truth Model
s Kriging Model

Figure 13: (a) and (b) represent equilibrium path for W(F') in (104) representing the Mooney-Rivlin ground truth model
and the gradient enhanced Kriging calibrated model, respectively. The parameter p has been taken as that from the matrix,
namely p = 3(ui* + p5*). Contour plot of micro-fluctuations ()2 in the undeformed configuration of the RVE for three
different points in the equilibrium path of the computationally homogenised ground truth model.
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5.2. Cantilever Beam Example

As indicated in the abstract and introductory section of this paper, a primary goal is to integrate
gradient enhanced Kriging models into an in-house Finite Element computational framework. This inte-
gration aims to substantiate the accuracy and efficacy of these metamodels by rigorously comparing their
predictions against the Finite Element solution provided by their respective ground truth counterparts.
Specifically, the evaluation will encompass complex and demanding scenarios such as bending, torsion,
and wrinkles, offering a robust assessment of the metamodels’ performance under challenging conditions.

The first of these Finite Element examples is represented by the cantilever beam depicted in Figure
14. The geometry and boundary conditions for this example are described precisely on Figure 14. With
regards to the Finite Element discretisation used, tri-quadratic Q2 Finite Elements have been used for
the interpolation of the displacement field.

Figure 14: Cantilever beam example: beam with squared section 0.1 x 0.1 (m2) and length 1 m. Beam completely fixed at
X1 = 0 and applied surface force acting at X; = 1 along the X3 direction with value 0.018 N =2,

In this example, we consider a Mooney-Rivlin model (whose analytical expression is in equation (A.1))
and rank-one laminate model (see Section 2.6.1 and equation (A.7)) for the mechanical contribution of the
energy, namely W(F'). For the ground truth Mooney-Rivlin model, we choose the material parameters
given in Table A.3. For the rank-one laminate model, we use the material parameters in Table A.9,
selecting the mechanical contrast f,, as fp,, = 10.

Upon application of the surface force, the induced deformation for both ground truth and gradient
enhanced Kriging models can be seen in Figure 15. The similarity between the ground truth and its
gradient enhanced Kriging counterpart is remarkable for both Figures 15a and 15b, where the ground
truth models correspond with the Mooney-Rivlin and rank-one laminate models, respectively. Crucially,
the similarity also reflects in the countour plot of the hydrostatic pressure p = %tr(a), where o =
J 'PF" denotes the Cauchy stress tensor. These consistent similarities validate the accuracy and
reliability of the gradient enhanced Kriging models, highlighting their potential for effectively capturing
the intricate behavior of the underlying physical systems
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Figure 15: Cantilever beam bending using (a) Mooney-Rivlin (b) a rank-one laminate constitutive model. Note the left
and right beams represents the analytical and gradient enhanced Kriging based solutions, respectively. The axis {z,y, 2z}
correspond to {X1, X2, X3} in Figure 14.
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5.8. Column Twisting Example

The next example considers a column with unit area in the xy plane and with length 30 in the
Z direction. Tri-quadratic Q2 Finite Elements have been employed in a Finite Element discretisation
comprising 8 elements in the z-, y- directions and 240 elements in the z-direction. The base of the
column (Z = 0) is completely fixed, whereas an initial angular velocity €2 is considered, defined as

Qoz T
Q= =0 0 0 1] ; Qo = 100 rad/s (113)

The simulation has been carried out using a dynamic setting, by introducing a fictitious density of
p = 0.01 (kg/mm?) and a mass-proportional Rayleigh coefficient of value 100 (1/s), by employing a leap
frog time integrator, with time step At = 3 x 107° (s). We again consider a Mooney-Rivlin model (whose
analytical expression is in equation (A.1)) and rank-one laminate model (see Section 2.6.1 and equation
(A.7)) for the mechanical contribution of the energy, namely W(F'). For the ground truth Mooney-Rivlin
model, we choose the material parameters given in Table A.3. For the rank-one laminate model, we use
the material parameters in Table A.9, selecting the mechanical contrast f,, as fn, = 10.

The results shown in Figures 16 and 17, for various time step of the Finite Element simulation are
aligned with those reported in Figure 15, namely, not only the displacements but also the contour plot
distribution of the hydrostatic pressure display an almost indistinguishable difference between the ground
truth models (Mooney-Rivlin in Figure 16 and rank-one laminate in Figure 17) and their corresponding
gradient-enhanced Kriging counterparts. This further reinforces the accuracy and reliability of the
gradient-enhanced Kriging models, substantiating their ability to faithfully capture the intricate behavior
of the physical systems under investigation.
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Figure 16: contour pressure distribution for time steps: (a) 3,500; (b) 15,000; (c) 35,000; (d) 60,000. The left half of each

diagram represents the Finite Element solution by the Mooney-Rivlin model, and the right half represents the solution by
the gradient enhanced Kriging counterpart.

33



L. L. L. L.
(a) (b) (c) (d)

Pressure (Pa)
-2.4e+01 .15 -10 -5 0 5 10 15 2.4e+01
| |

Figure 17: contour pressure distribution for time steps: (a) 2,500; (b) 10,000; (c) 25,000; (d) 40,000. The left half of each
diagram represents the Finite Element solution by the rank-one laminate model, and the right half represents the solution
by the gradient enhanced Kriging counterpart.
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5.4. Thin Walled Wrinkling

For that we consider the following example with geometry and boundary conditions shown in Figure

18, which represents a thin cylinder of thickness 0.03 (m) and outer radious 3 (m), with a length of 4

(m). The cylinder is clampled at its base (i.c. X3 = 0) and it is subjected to an initial velocity profile
v|,_o defined as

v|,_o=1[0 0 UO]T; vo = 80 (m/s) (114)

Xii

Xo

/
J /
Y o oo e o ar 2l

X1
Figure 18: Thin walled wrinkling: Geometry and boundary conditions.

Regarding the Finite Element discretisation considered, Q2 (tri-quadratic) hexahedral elements have
been used, in a mesh comprising 300 x 480 x 2 elements in X3 direction, circumferential direction,
and across thickness, respectively. The simulation has been carried out using a dynamic setting, by
introducing a fictitious density of p = 0.01 (kg/mm?) and a mass-proportional Rayleigh coefficient of
value 100 (1/s), by employing a leap frog time integrator, with a time step At = le x 1072 (s). With
the aim of emulating a nearly incompressible behaviour, the following volumetric term has been added
to the strain energy of the model

%(J ~ 1% X=100, (115)

where A plays the role of a penalty term. This has been done for the ground truth model (isotropic
and rank-one laminate) and for their isotropic and transversely isotropic gradient enhanced Kriging
counterparts.

In Figure 19, the results obtained from both the ground truth Mooney-Rivlin model and its gradient
enhanced Kriging counterpart demonstrate a striking concurrence in the observed wrinkling pattern
throughout the various depicted time steps. This alignment is not only limited to the wrinkling patterns
but also extends to the contour plot distribution of the hydrostatic pressure p. Similarly, in Figure
20, a comparable level of excellence is evident in the comparison between the ground truth rank-one
laminate model and its gradient enhanced transversely isotropic Kriging counterpart. Once again, this
manifests in the agreement observed in the wrinkling patterns and stress distribution, further affirming
the robustness and accuracy of the gradient enhanced Kriging models in capturing intricate behavior
across different material models.
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Figure 19: Contour plot distribution of hydrostatic pressurefor various time steps: (a) 2,300; (b) 3,200; (c) 6,200; (d)

7,500; (e) 11,0005 (f) 22,000. The left half of each diagram represents the Finite Element solution by the Mooney-Rivlin
model, and the right half represents the solution by the gradient enhanced Kriging counterpart.
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Figure 20: Contour plot distribution of hydrostatic pressurefor various time steps: (a) 550; (b) 900; (c) 1,300; (d) 3,050;
(e) 5,000; (f) 9,750. The left half of each diagram represents the Finite Element solution by the rank-one laminate model,
and the right half represents the solution by the gradient enhanced Kriging counterpart.
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6. Concluding Remarks

This paper has advocated for a metamodeling technique based on gradient-enhanced Gaussian process
regression, allowing for the emulation of diverse hyperelastic strain energy densities. By incorporating
principal invariants as inputs for the surrogate of the strain energy density, this approach inherently
enforces fundamental physical constraints, such as material frame indifference and material symmetry,
right from the beginning.

The proposed method has demonstrated high accuracy in interpolating both the energy and the
first Piola-Kirchhoff stress tensor, effectively capturing first-order derivatives with respect to the inputs.
To validate its performance, the surrogate models have been implemented within a 3D Finite Element
computational platform, and their accuracy has been extensively assessed in various challenging scenar-
ios. Comparisons have been made between displacement and stress fields obtained from the surrogate
models and those derived from the ground-truth analytical models. Remarkably, the proposed approach
showcased its practical applicability and robustness through intricate cases of extreme twisting and buck-
ling instabilities in a thin-walled structure. The integration of derivative information in the surrogate
models resulted in exceptional accuracy, leading to a striking resemblance between the surrogate mod-
els and their corresponding ground-truth counterparts, particularly concerning their respective second
derivatives. This remarkable similarity ensures that both types of models, surrogate and ground truth,
exhibited comparable behavior in terms of their positive definiteness (e.g., convexity/concatenivity) and
ellipticity properties. The achieved accuracy and fidelity of the surrogate models enable reliable predic-
tions of the mechanical behavior of the materials under study, making this approach a promising tool
in constitutive model in more complex scenarious such as those involving multi-physics interactions, i.e.
nonlinear electro or magneto mechanics.
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Appendix A. Constitutive Models

The strain energy density for the Mooney-Rivlin model is:

Appendix A.1. Mooney-Rivlin

A
UL, I, 15) = % (I —3)+ % (Iy —3) — (p1 +2u2) In (I3) + 5 (I3 — 1)2
and the material parameters used are

Table A.3: Material parameters used with the Mooney-Rivlin model.

Parameter: pu;  po A

Value: 05 05 5

Appendiz A.2. Quadratic Mooney-Rivlin

The strain energy density for ”quadratic” Mooney-Rivlin model is:
A
U (I, 12, I3) = % (11)2 + % (I2)2 — 6 (p1 +2p2) In (I3) + ) (I3 — 1)2

and the material parameters used are

Table A.4: Material parameters used with the Quadratic Mooney-Rivlin model.

Parameter: pu;  po A
Value: 05 05 5

Appendiz A.53. Gent

The strain energy density for Gent model is:

I -3

m

, A
UL, I5) = _ngln (1— ) —N1D(13)+§(13—1)2

and the specific values for the material parameters used are

Table A.5: Material parameters used with the Gent model.

Parameter: pu  J, A

Value: 1 19 5

Appendix A.4. Yeoh

The strain energy density for Yeoh model is:
A
U (I, I3) = Cio (I — 3) + Coo (I} — 3)* 4 C30 (I} — 3)> — 2C10In (I3) + 5 s = 1)2

and the material parameters used are:
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Table A.6: Presents the material parameters used with the Yeoh model.

Parameter: Ci9g Coo C30 A

Value: 1 1 1 5

Appendiz A.5. Arruda-Boyce
The strain energy density for Arruda-Boyce model is:

UL L) =a (B (1) Ae (1) — asln (%ﬁ”))) SAm) G- (A

where

f];'—flfg c
Ac(I1) = \/g\/f_l, L7 (x) = 31_—1:2; B(I) =Lt <)\ C;h))

The material parameters used in the model are:

Table A.7: Material parameters used with the Arruda-Boyce model.

Parameter: aq as A
Value: 2.1899 /6 4.9159

Appendix A.6. Transversely Isotropic
The strain energy of the polyconvex transversely isotropic model is:

UL, Io, I3, I, Is) = % (I - 3) + % (I — 3) — (11 + 2412 + p13) In (I) (A.6)
A 2, M pva M3, 8, 11 1
2 -2+ BBy BB S (s —
5 Us =7 5 T+ 55 (1) 4 5 { gk + g0

The material parameters used for this model are:

Table A.8: Material parameters used with the Transversely Isotropic model.

Parameter: pu; po pus A a B N
Value: 05 05 75 5 2 2 [1 11

]T

Appendiz A.7. Rank-One Laminate
We consider Mooney-Rivlin strain energy densities for the individual phases ¢ and b within this

composite (refer to Section 2.6.1), namely

U (I, 13, 1§) = 58 (IF — )+ 8 (7§ —3) — (i + 2048) I (1) + 2 (1§ — 1°
0 (11, 15.15) = gt (10 =3) + 50 (15 =3) = (u + 225) m (1) + 53 (18 =1)
(A7)
being the effective strain energy ¥ (F')
U(F) = argmin{¥ (F,@)}; ¥ (F,@) = 0" (F* (F,a)) + 0" (Fb (F, a)) , (A.8)
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with
v (F(F @) = U (11, 13,13); 9" (F"(F,a)) =U" (1, ,13) (A.9)
where {I{, I, I¢} and {I?, I3, I}} represent the principal invariants of F* and F? related to the macro-

scopic deformation gradient tensor F' through equation (37). The material parameters used for this
composite material are found below:

Table A.9: Material parameters used with the Rank One Laminate model.

Parameter: pf p§ A « B fm c

Value: 05 05 5 w/4 7w/4 {1.1,2,10,100} 0.6

where f,, represents the contrast in material properties, namely
b b b
H1 Ho A A
s G o R AN .10
Jm pgo opg X (A.10)
Appendiz A.8. RVE with spherical inclusions
The RVE is divided into the region associated to the matrix X, € B{)’ZL and the inclusion X, €

Béu, such that By, = Bg; U B(Z')M, and Bg; N IS’(Z')H = (. At each region, we define the energy density
U“(X/,,,Ilu,fgwfgu) =Vv,(X,, F,) according to

U;T(IlwIQ,”ISM) )(MGBSZ'4

: i (A1)
UH(Illlr7IQH’I3I‘r) Xﬂ GBOH

U ( Xy, Fy) = UM(XN711WIQMI3H) = {

We consider Mooney-Rivlin strain energy densities of both matrix and inclusion, namely
U (I, 1o, I3,) = oM (I1M - 3) T g (IQH - 3) — (1" +2p3") In (Isu) + §>\ (Iau - 1)
. 1 . /. 1 . /. v A . 1 ./ 2
ULy, o, Is,) = Spk (B, = 8) + b (13, —3) = (wh +2u5) n (B3, ) + 52 (13, — 1)

(A.12)

The material parameters used for this composite material are found below:

Table A.10: Material parameters used for the RVE.

Parameter: p*  pyt N fin R

Value: 0.5 05 5 10 0.5

where R represents the diameter of the centered sphere within the hexahedral RVE and f, represents
the contrast in material properties, namely

po_opy N
foot_H A13
pitoopgt AT (8.13)
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Appendix B. Basis for Symmetric Traceless Second Order Tensors

T2 0 0 cfo 0 o cfo 10

Wi=y/o [0 -1 0 Wa=1/5(0 1 0 Wi=1/5(1 0 0 (B.1)
0 0 -1 0 0 —1 000
-0 01 —[0 0 0

Wi=4/510 00 Ws=4/510 0 1 (B.2)
1.0 0 0 1 0

Appendix C. Gradient-enhanced Gaussian-process based prediction using a single obser-
vation point in the strain energy

The gradient enhanced Kriging approach, described in Section 3.4, can be particularised to the case
when there is only one observation point for energy, whilst still retaining n observation points for the
derivatives of the energy with respect to invariants. In order to particularise this approach to this
scenario, the vector of observations U is now defined as

T
)

U=[vWauo, .. aIU“n)} (C.1)
where
v —uay  su = [ahU(“,...,aInU“)}T. (C.2)
The correlation matrix R is similar to that in (73), with the same block structure, namely
w={nfy muu) ca
with Ryy = R(IY, 1Y, 0). Ry includes the partial derivatives of R according to
Ryy = [0y RAMWIW 0) ... ORIV, IM 0)], (C.4)
given
A R(IW 1) 9) = laR(I(i) ’(I_(j)’ 0) ’ ORI, I_(j)’ ) o OR(IW), I_(j)’ 9)] T | os)
0[1]) 015]) oIy

The submatrix Ry exactly the same as that in (76)-(77). Similarly the vector of cross-correlations
between the observations and the prediction is extended as follows

T
r(I) = [R(I, 10,6), 9,0, R(IL,IV, 0), ..., 8y R(L, T, 0)} . (C.6)

Once these adaptations have been made, the new definitions for the various quantities can be substi-
tuted into the definitions detailed in Subsections 3.2 and 3.3. To start with, recall the mean prediction

uo M =g -B+r1) - R (U-GB), (€7
and the variance
o2(I) = o (1 — (D) R4 (D) + (D) - (GTR_IG)_lu(I)> : (C.8)
with
t 34(9) = <GTR(0)‘1G> et (R(e)) U,
* 1 -1 (C.9)
ot (0) = (U~ 68'0) - (RO) - (U-GB0);
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