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Abstract
The identification of tire text codes (TTC) during the production and opera-
tional phases of tires can significantly improve safety andmaintenance practices.
Current methods for TTC identification face challenges related to stability,
computational efficiency, and outdoor applicability. This paper introduces an
automated TTC identification system founded on a robust framework that is
both user-friendly and easy to implement, thereby enhancing the practical use
and industrial applicability of TTC identification technologies. Initially, instance
segmentation is creatively utilized for detecting TTC regions on the tire side-
wall through You Only Look Once (YOLO)-v8-based models, which are trained
on a dataset comprising 430 real-world tire images. Subsequently, a computa-
tionally efficient rotation algorithm, along with specific image pre-processing
techniques, is developed to tackle common issues associated with centripetal
rotation in the TTC region and to improve the accuracy of TTC region detection.
Furthermore, a series of YOLO-v8 object detection models were assessed using
an independently collected dataset of 1127 images to optimize the recognition
of TTC characters. Ultimately, a portable Internet of Things (IoT) vision device
is created, featuring a comprehensive workflow to support the proposed TTC
identification framework. The TTC region detection model achieves a segmen-
tation precision of 0.8812, while the TTC recognition model reaches a precision
of 0.9710, based on the datasets presented in this paper. Field tests demonstrate
the system’s advancements, reliability, and potential industrial significance for
practical applications. The IoT device is shown to be portable, cost-effective, and
capable of processing each tire in 200 ms.
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1 INTRODUCTION

Vehicle tire information provides vital information for
transportation and infrastructure maintenance (Sitton
et al., 2024; Y. Yang et al., 2024). Among all, tire text codes
(TTC) identification offers the most intuitive access to
vehicle information (Kazmi et al., 2019), such as “imprint-
ing quality of TTC” for online tire production quality
inspection (Cheng et al., 2024), which is primarily used
in indoor application, and “manufacturing date” for eval-
uating the remaining service life of on-road vehicle (Ju
et al., 2024; Kazmi et al., 2020) and “size information” for
estimating the gross weight of service truck (M. Q. Feng
et al., 2020; Kong et al., 2022; D. Li et al., 2024), applica-
ble in outdoor scenarios. TTC also contains speed and load
index, which can be used for traffic information manage-
ment (Kamjoo et al., 2024; Yeum et al., 2016). However, to
efficiently and accurately identify TTC is one of the most
challenging optical character recognition (OCR) tasks due
to inherent properties like small size, abrasion, low con-
trast, irregular geometric arrangement, varied shapes and
sizes, and external factors like vehicle speed, illumination,
detection distance. Therefore, the traditional tire OCR
methods, such as template matching (Scholz & Koehler,
2012), laser scanning (Sukprasertchai & Suesut, 2016),
digital image processing (C. Liu et al., 2022), and edge
operator detection (Ham et al., 1995) are transforming
into intelligent character recognition (ICR) utilizing deep
learning-based image analysis for enhanced robustness
and precision. Yet, current outdoor tire ICR tasks face lim-
itations, including complex multi-stage processing, high
computing resource consumption, and inefficient device
workflows. Therefore, it is essential to develop a fully
upgraded, economical Internet of Things (IoT; Garrido-
Hidalgo et al., 2023) TTC identification system (D. Liu
et al., 2024) that is easily intelligible, deployable, and
repeatable, demonstrating strong industry potential.
TTC region detection is the crucial initial step that

determines the reliability and stability of the TTC identi-
fication task. Kazmi et al. (2019, 2020) developed a region
of interest (RoI; Girshick, 2015) based convolutional neural
network (CNN) to detect the “Department of Transporta-
tion” (DOT) TTC region on the tire images that have
been straightened using histogram of oriented gradients
algorithm so as to detect tire circularity. However, this
method involves multiple image processing steps that
require significant computing resources, particularly due
to its reliance on a binocular vision system. This depen-
dency limits the size and speed of the vehicles that can
be measured and introduces instability in performance. F.
Gao et al. (2021) utilized YOLO-v4 object detection means
(Pan et al., 2023) for initial TTC region detection and

subsequently trained a CRAFT network for refined TTC
region detection. However, due to the curved and multi-
directional nature of the TTC, the bounding box cannot
accurately delineate the edges of the TTC region. This
limitation often results in bounding boxes that encom-
pass extraneous areas around the TTC region, which
can significantly impact the accuracy of TTC recogni-
tion following the initial detection. Moreover, secondary
TTC detection methods involve higher computing costs
and reduced robustness. Segmentation-based TTC region
detection, which achieves pixel-level accuracy, offers a
solution (Z. He et al., 2024). Although many studies have
demonstrated success with curved text detection in com-
mon scene applications (Zhuotao Tian et al., 2019; Xu et al.,
2019), curved OCR detection methods, such as Progressive
Scale ExpansionNetwork (PSE-Net) (W.Wang et al., 2019),
require complex dataset annotation process as evidenced
by CTW1500 datasets. Hence, a pixel-level precision TTC
region detection method that simplifies dataset creation is
needed to improve TTC detection accuracy and reduce the
need for complex image post-processing.
TTC regions are not only curved but can also be com-

pletely reversed and have irregular centripetal arrange-
ment. Centripetal rotation of the TTC region presents
another significant challenge following the initial detec-
tion. Current button-up approaches require computation-
ally intensive post-processing to extract recognizable text.
Yin et al. (2015) adopted clustering methods to gener-
ate readable text regions for slant fonts, involving three
types of clustering, which may result in reduced robust-
ness. Shi et al. (2017) used a segmentation approach to
detect each word individually and then connected each
target into words using a proposed directional adjacent
link method, which needed huge computation resources.
F. Gao et al. (2020) further applied similar techniques on
metal OCR tasks, generating character bounding points
and fitting connected curve to recertify rotated charac-
ters. F. Gao et al. (2021) then implanted this centripetal
character curves fitting method on TTC identification.
However, the proposed rotation strategy failed to align the
TTC into an absolute upright position due to the misalign-
ment of YOLO’s bounding boxes, necessitating multiple
post-processing steps. This resulted in costly text-by-text
recertification. Another costly solution, Kazmi et al. (2019,
2020) employed the unwrapped-segment method by com-
bining two cameras to work as a binocular vision system
capturing tire image twice to separate tire rubber from
the rim. However, this process took 500 ms per image
and required complex multi-system linkage, and fixed size
tires can only be detected at a fixed distance. Therefore,
a computationally effective, stable, and general TTC rota-
tion algorithm is essential to streamline the overall TTC
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identification workflow and to facilitate the creation of a
high-quality, readable TTC recognition dataset.
There is currently no end-to-end method for TTC recog-

nition due to the limitations imposed by the scarcity and
specificity of available database. Existing scene text detec-
tion and recognition methods are not well-suited for TTC
identification (F. Gao et al., 2021). In the field of vision-
based non-contact vehicle weight-in-motion, Feng et al.
(M. Q. Feng & Leung, 2021) utilized open-sourced OCR
Application Programming Interface (API) to recognize
four types of TTC after background filtering. However, this
approach demonstrated poor detection stability. Kazmi
et al. (2019, 2020) developed a lightweight CNN network
to categorize TTC characters into 39 classes, training it
on synthetic images one word at a time. This recogni-
tion method focused solely on identifying “DOT,” and
word-by-word training approach hindered the model to
understand the global context of TTC. Similarly, F. Gao
et al. (2021) compared ASTER, MORANv2, and CRNN
models to develop an effective TTC recognition system,
expanding its application beyond “DOT” to include other
types of TTC (Cheng et al., 2024). Nevertheless, “image-to-
sequence” datasets used in the methods described above
are difficult to produce and are not publicly available,
which hindered the repeatability of TTC identification
methods. In the authors’ opinion, TTC is not merely scene
optical character text; rather, each TTC character can be
regarded as a distinct object category. Given the state-of-
the-art performance of YOLO models (Dan et al., 2024;
Jocher et al., 2023; Redmon&Farhadi, 2018), adapting TTC
recognition to handwriting classification (Lecun et al.,
1998) based on object detection tasks could yield significant
results even with relatively small datasets. This approach
would circumvent the need for extensive pre-processing
techniques typically required for scene text recognition.
Consequently, it would be valuable to establish an object
detection-based benchmark TTC recognition database and
to exploit an object detection model for TTC recognition
tasks (Rafiei & Adeli, 2017), facilitating ease of replication
and future upgrade.
In conclusion, outdoor TTC recognition is of important

value for transportation maintenance. However, complex
character shapes, multi-directional curvature, low con-
trast, and sensitivity to lighting and vehicle speed have
limited the performance of OCR methods. Existing ICR
approaches still face high computational costs, complex
workflows, limited generalization, and difficulties in out-
door deployment. Therefore, this study proposes a sim-
plified, standardized dataset production method for deep
learning-based TTC identification framework, along with
a specifically designed TTC angle correction algorithm, all
integrated into IoT devices to address the current insuf-
ficient TTC research in outdoor application of estimating

remaining service life and gross weight. Consequently, this
paper aims to advance outdoor TTC identification technol-
ogy to a more practical level of industrialization by devel-
oping a cost-effective and portable IoT device and estab-
lishing an efficient, easily deployable three-stage algorithm
framework,which is beneficial for real-time transportation
management.

1. A dataset of 430 high-quality-annotated tire sidewall
images (TSIs) is collected, and instance segmentation
is employed for pixel-level detection of the TTC region
in the first instance. An optimal YOLO-seg model is
trained.

2. A novel and efficient TTC rotation algorithm is pro-
posed to work seamlessly with segmentation-based
TTC detection, eliminating the need for complex and
unnecessary character-by-character recertification.

3. Building on the concept of handwriting OCR, object
detection is introduced to enhance TTC recognition,
providing greater robustness and facilitating easier data
production. A dataset of 1127 high-quality-annotated
TTC recognition images was generated using the pro-
posed framework to comprehensively train an optimal
YOLO-obj model.

4. An automatic TTC identification system, which is com-
pact, efficient, and user-friendly, has been developed by
integrating the proposed three-stage algorithm frame-
work into a portable IoT device. This device features
complete workflow and can be easily deployed in var-
ious application scenarios. The reliability of the system
has been evaluated through field tests.

This study is presented in the following order. Section 2
introduces the overview of the proposed methods, Sec-
tion 3 details the proposed framework, Section 4 illustrates
the experiments and validations, Section 5 describes the
developed IoT device and system, and Section 6 gives the
conclusion.

2 METHODOLOGY OF PROPOSED
AUTOMATIC TTC IDENTIFICATION
SYSTEM

TTC identification is a complex task due to several chal-
lenges, including low contrast, small size, irregular mor-
phology, and centripetal, as shown in Figure 1. To identify
TTC, the TSI is needed as the basic element for extract-
ing the essential tire sidewall character image (TSCI) data,
which contain the required character data that needs to be
recognized.
This study presents a straightforward and robust strat-

egy for TTC identification, and the establishment process
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F IGURE 1 Pictures of tire sidewall character image (TSCI)
and tire sidewall image (TSI). DOT, Department of Transportation.

F IGURE 2 Establishment of the proposed tire text codes (TTC)
identification framework: (a) TTC detection, (b) pre-processing of
TTC image, and (c) TTC recognition. IoT, Internet of Things.

of the proposed TTC identification framework is shown in
Figure 2.
Here, “TTC detection” refers to identifying the region

of tire character region while “TTC recognition” involves
interpreting these characters. Initially, TSI datasets,
encompassing various tire types, were collected to train
a YOLO-v8-based segment model for detecting four types
of TTC. Utilizing image pre-processing techniques and
the proposed TTC rotation algorithm, the TTC is oriented
positively for accurate character recognition. Meanwhile,
TSCI datasets were generated for training the TTC recog-
nition model. A YOLO-v8-based object detection model
was trained across the four types. In Figure 2, the black

line flowchart depicts the establishment of the datasets
and models, while the light line flowchart shows the
complete inference stage for TTC identification. Finally,
an innovative IoT roadside device was invented for
automated TTC identification of passing vehicles.
In conclusion, an automatic TTC identification

system was developed by integrating AI (Artificial
Intelligence)-based framework into an IoT device for
multi-transportation scene application as shown in
Figure 3. This system features a comprehensive workflow
and has been deployed in field tests to enhance current
TTC identification solutions. The detail of the proposed
framework is illustrated in Figure 4. The IoT device facil-
itates TTC identification by capturing tire images at the
roadside. These images are processed by a development
board using integrated deep learning models and algo-
rithms, allowing for the recognition of four types of TTC.

3 METHOD OF DETECTING,
ROTATING, AND RECOGNIZING TTC

3.1 Segmentation-based TTC detection
method

This study aims to develop high-performance methods for
TTC identification to extract tire sidewall character infor-
mation, including tire/rim specifications, speed levels,
standard pressure, and so forth.
Given that different types of TTC are randomly posi-

tioned on tire sidewalls, and varied in shapes and sizes,
accurate TTC region detection is crucial. Unlike previous
research that directly employed object detection networks
for TTC region detection, this study introduces a novel
strategy that combines image segmentation methods with
computational algorithms to achieve pixel-level detection
of the TTC region. This segmentation approach effectively
avoids the detection of redundant negative samples and
irrelevant regions (H. Li et al., 2024) and provides high-
quality TSCI for TTC recognition. To ensure rapid and
accurate TTC region detection, this study utilizes a YOLO-
v8 seg-based network to develop a robust and efficient
TTC detection model. YOLO-v8 represents an advanced
integration of object detection and segmentation, mark-
ing a significant improvement within the YOLO series.
The open-source available YOLO family has facilitated
its widespread application in intelligence transporta-
tion research. Due to the significant advancement in the
YOLO-v8model, this study posits that (1) the robust feature
extraction capabilities of the Cross Stage Partial Network
(CSPNet) backbone (Bochkovskiy et al., 2020; C.-Y. Wang
et al., 2020), enhanced by the introduction of C2f convolu-
tion model, can effectively facilitate TTC region detection;
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F IGURE 3 Application scenarios of the proposed TTC identification system: (a) bridge, (b) toll station, and (c) road. IoT, Internet of
Things.

F IGURE 4 Overview of the proposed TTC identification system. IoT, Internet of Things.

(2) integration of the feature pyramid network (FPN; Lin
et al., 2017) with path aggregation network (S. Liu et al.,
2018) structure can balance global and local information,
which is advantageous for detecting TTC regions at various
scales; and (3) dynamic allocation of negative and positive
samples allows themodel to concentratemore on the inter-
ested TTC targetswhile avoiding additional inference costs
for the proposed pixel-level task. However, selecting the

optimalmodel still requires comparingYOLO-v8 seg-based
models with different parameters, data augmentation
techniques, and detecting heads to adapt to the proposed
dataset.
As shown in Figure 5a, the YOLO-v8 architecture pro-

cesses images through five convolutional layers (P1–P5),
enhancing feature depth from 64 to 1024 while reduc-
ing resolution. P modules include Conv2d, BatchNorm2d,
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6 ZHANG et al.

F IGURE 5 Architecture of YOLO-v8: (a) YOLO-v8 baseline,
(b) YOLOv8 Segmentation head, and (c) YOLO-v8 Detection head.

and Sigmoid Linear Unit (SiLU) layers, transitioning from
low-level details to high-level characteristics. C2f modules
stack bottleneck layers for improved feature extraction.
The FPN combines high- and low-level features for multi-
scale outputs (X0, X1, X2), and the Spatial Pyramid Pooling

- Fast (SPPF)module enriches contextual information. The
segmentation head combines features from three different
levels, assigning pixel-level labels to detected targets. Fea-
ture X0 is up-sampled to create a prototypemask, while X1,
X2, and X3 are processed to predict anchor box confidence
scores, classes, and bounding box coordinates, as shown in
Figure 5b.
To enhance the segmentation performance of the model

in the TTC region detection task, this paper employs
an instance segmentation approach. Specifically, the
four types of TTC targets, “Large Size Mark,” “Inflation
Pressure and Load Index,” “DOT Marker,” and “Small
Size Marker” are categorized into distinct classes. This
segmentation scheme incorporates a classification task
to increase the model’s accuracy. If all four types of TTC
regions are regarded as the same category, themodelmight
incorrectly recognize TTC regions not of interest, as the
non-target regions could be visually like the targeted ones.
The initial positioning of the TTC region is vital, and the
bounding box generated by YOLO may not align with the
centripetal direction of the TTC region. Consequently, the
YOLO bounding box is frozen to save certain computing
resources. Instead, a new bounding box re-establishment
strategy, which is more advantageous for TTC recognition,
will be introduced in the next section. Once the model
roughly locates the TTC region, if the segmentation is
insufficient to cover all TTC regions, image pre-processing
techniques can be applied to enhance segmentation and
provide high-quality TSCI. However, if positioning errors
occur, they may preclude further processing steps. Addi-
tionally, TTC region detection results cannot be directly
used for TTC recognition without orientation correction.
Therefore, this study has specifically designed a simpli-
fied and intuitive general pre-processing algorithm to
improve TTC detection results as opposed to text-by-text
rectification.

3.2 General pre-processing algorithm
for TTC detection

The automatic recognition of tire characters poses signifi-
cant challenges due to their tilted angles and irregularity.
Moreover, the segmentation results from the TTC detec-
tion model might fail to completely detect the TTC region
or cover the entire target area. To address these issues, a
novel algorithm has been proposed to rotate the tire char-
acters into a standard orientation. This is complemented
by image noise filtering, dilation of the TTC target area,
and bounding box generation to improve the quality of
TCSI. These enhancements aim to optimize the previous
methods and improve the accuracy of character recogni-
tion. The proposed rotation algorithm and three image
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F IGURE 6 Comparison of image dilation effect: (a) label TTC
region, (b) initial TTC detection region, and (c) dilated TTC region.

pre-processing techniques are designed to refine the seg-
mented output from the TTC detectionmodel. The process
involves the following steps.

3.2.1 Pre-process of TTC detection mask

First, the number of pixel blocks in the connected
regions of all character segments is calculated using
“cv2.contourArea()” function from the OpenCV API
(Pulli et al., 2012). Subsequently, these regions are thus
referred to as TTC “target regions.” To ensure the integrity
of all target regions and to prevent the omission of any
characters within the target regions that were not ade-
quately segmented, an image dilation algorithm from the
OpenCV API (Gil & Kimmel, 2002; cv2.dilate(mask, (15,
15), iterations = 3)) is employed within a single connected
character region. This approach is utilized to expand the
area of the initial TTC detection polygon, thereby ensur-
ing that the character regions adjacent to the segmented
“target regions” that were not fully covered are more
comprehensively included within the positioning polygon
as shown in Figure 6.
In Figure 6, the dilation process enhances the segmen-

tation results of TTC detection. The original results with
limited segmentation effectiveness do not fully cover the
entire TTC target region. However, the image dilation opti-
mization algorithm expands the recognition area, ensuring
that all the characters within the regions are included,
which is conducive to the subsequent character recogni-
tion. To successfully utilize the proposed rotation method,
it is imperative to accurately calculate the “geometric cen-
ter coordinates” of the connected region and the “unique
normal orientation angle” within the TTC target region

F IGURE 7 Comparison of the geometric center points: (a)
label TTC region, (b) dilated TTC region, and (c) Minimum External
Bounding Box (MEBB) region.

F IGURE 8 Comparison of MEBB and YOLO-v8 detected
bounding boxes: (a) YOLO BB and (b) MEBB.

as shown in Figure 7c with white arrow. In contrast, the
dilated TTC region in Figure 7b exhibits multiple normal
orientation angles, which cannot be uniquely defined.
Moreover, in Figure 7b, the area of the dilated TTC

region is not uniformly distributed, with more than half
of the area concentrated on the right side. Consequently,
the geometric center is skewed to the right. However, after
generating a bounding box, the geometric center realigns
closely with the true geometric center of the label TTC
region in Figure 7a.
It should be noted that the proposed MEBB is more

appropriate than the YOLO-v8 detected bounding box in
this study. In Figure 8a, the bounding box generated by the
YOLO model contains many unnecessary non-character
areas and can only be a horizontal box, and its normal
orientation angle is either 0 degrees or 90 degrees. There-
fore, if the TTC region is rotated based on the YOLO
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8 ZHANG et al.

F IGURE 9 The image coordinate system of TSI.

BB’s orientation by black arrow, it cannot remain upright
after rotation, which negatively impacts the computational
efficiency of the subsequent TTC recognition model.

3.2.2 TTC detection mask rotation
algorithm

After noise removal, image dilation, and MEBB genera-
tion, the tire characters are completely enclosed within
the TTC target regions. Hence, TTC target regions that are
already correctly oriented meet the basic recognition con-
ditions. However, TTC regions that remain inclined cannot
yet be recognized. This challenge ismainly due to the pecu-
liarity of tire centripetal characters. Currently, no existing
algorithmormodel in the field ofOCR is capable of directly
recognizing inverted or tilted characters. To address this
problem, this paper proposes a general algorithm to rotate
the tire character to the correct orientation. This method
is straightforward and avoids the computational cost and
instability associated with complex transformations of
TTC regions used in previous studies. The proposed TTC
rotation method contains three steps.
First, the pixel width w and pixel height h of the image

are calculated to determine “the fixed center point of the
upper boundary of the image” and “the fixed center point
of the image.” The line connecting these two points is
taken as the y-axis, while the line perpendicular to this
is designated as the x-axis, thereby establishing the image
coordinate system, as shown in Figure 9. Then, to facilitate
the implementation of the algorithm, a transformation of
the coordinate system is required for the coordinates of the
fixed center point of the upper boundaryCup = (w/2,0) and
the fixed center point of the imageCcenter = (w/2,h/2) in the

ALGORITHM 1 TTC region rotation

formcx,mcy in masks:
Δ𝑦 = 𝑚𝑐𝑦−𝑡𝑖𝑐𝑦

Δ𝑥 = 𝑚𝑐𝑥−𝑡𝑖𝑐𝑥

𝐿 =

√
(Δ𝑥)

2
+ (Δ𝑦)

2

cos 𝛼 =
Δ𝑥

𝐿

sin 𝛼 =
Δ𝑦

𝐿

If sin 𝛼 ≥ 0and cos 𝛼 ≥ 0 (1 quadrant)
𝛼 = 270

◦
+ arctan(| Δ𝑦

Δ𝑥
|)

elseif sin 𝛼 ≥ 0and cos 𝛼 < 0 (2 quadrant)
𝛼 = 90

◦
− arctan(| Δ𝑦

Δ𝑥
|)

elseif sin 𝛼 < 0and cos 𝛼 < 0 (3 quadrant)
𝛼 = 90

◦
+ arctan(| Δ𝑦

Δ𝑥
|)

elseif sin 𝛼 < 0and cos 𝛼 ≥ 0 (4 quadrant)
𝛼 = 270

◦
− arctan(| Δ𝑦

Δ𝑥
|)

end

original image coordinate. The transformation equations
are:

𝑥′ = (𝑥 − Δ𝑥) (1)

𝑦′ = −(𝑦 − Δ𝑦) (2)

where Δx = +w/2, Δy = +h/2, and Cup and Ccenter are:

𝐶up =

(
0,
ℎ

2

)
(3)

𝐶center = (0, 0) (4)

Finally, based on the transformed coordinate system,
the central coordinate of each bounding box of the TTC
target regions is calculated as shown in Figure 10a. Next,
as depicted in Figure 10b, a line is drawn connecting
the center of the TTC target region to a fixed central
point. The clockwise angle between this line and the
image’s verticalmedial y-axis is thenmeasured as shown in
Figure 10c.
Following the obtained rotation angle, the characters

can be easily rotated to the top by determining the quad-
rant of the coordinate system, with the angle calculated
using basic trigonometric function and quadrantal angle
calculations. The pseudo-code for the rotation algorithm is
shown in Algorithm 1. The inputs are tire_image_center_x
(ticx): x coordinates of the center point of the tire
image; tire_ image_center_ y (ticy): y coordinates of the
center point of the tire image; mask_center_x (mcx):
x coordinates of the rectangular mask character area;
mask_center_ y (mcy): y coordinates of the rectangular
mask character area, and the output is 𝜑: the clockwise
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ZHANG et al. 9

F IGURE 10 Schematic diagram of the character rotation algorithm: (a) calculating center points, (b) locating target center region, and
(c) calculating rotation angle.

F IGURE 11 TTC rotation algorithms: (a) mask image pre-processing, (b) mask of each TTC target region, (c) rotated mask of TTC target
region, (d) rotated image of TTC target region, (e) skewed TSCI, and (f) rectified.

rotation angle required to align the mask region with the
positive y-axis.
The overall flowchart of the TTC detection algorithm

is shown in Figure 11. In Figure 11c,d, each TTC region
is precisely rotated clockwise by angle 𝜑 and aligned
as closely as possible with the horizontal axis before
being further cropped for TTC recognition. However, some
TTC target regions remain slightly skewed as shown

in Figure 11e. To correct this, an image rectification
method based on horizontal projection (cv2.warpAffine
(RoI, image size)) is used, aligning the TTC region to
the horizontal axis, as shown in Figure 11f. By combin-
ing the image segmentation method with the proposed
rotation strategy, the prerequisite for TTC recognition tech-
nology is satisfied and improved within a straightforward
framework.
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10 ZHANG et al.

3.3 TTC recognition based on object
detection

As presented above, the processes of TTC detection,
noise filtering, target region dilation, bounding box
generation, and positive rotation of TTC regions provide
a fundamental dataset for the development of the TTC
recognition model. The shapes or fonts of characters on
the tire sidewalls can vary significantly, even within the
same character category, due to differences in brand,
manufacturing, and tire type. Hence, the conventional
OCR techniques, which are designed for uniform fonts,
are not well-suited for recognizing tire characters. How-
ever, the variety of tire characters is limited, consisting
only of Arabic numerals, alphabets, and a few special
symbols, giving a total of 48 classes. This paper contends
that the proven performance of the YOLO series network
in the classification tasks is sufficient to enable YOLO
to accurately classify different types of TTC, and its
generalization ability is robust enough to correctly detect
various shapes or fonts within the same type of TTC.
Furthermore, the size of tire character varies significantly
across different types of TTC, especially on different tires.
Fortunately, YOLO-v8’s anchor-free mechanism (Zhi Tian
et al., 2020) facilitates effective training and detection of
TTC data of varying sizes and shapes. In contrast, the
traditional anchor-based mechanism hinders the model’s
generalization across objects of different scales and con-
sumes more computational resources (Z. He et al., 2022).
This efficiency allows YOLO to be easily deployed on the
proposed IoT device with minimal edge inference costs.
Moreover, the “Decoupled-Head” detection structure,
combined with distributional focal loss (DFL), improves
the model’s accuracy by minimizing learning conflicts
between object “Classify” and “Detection” (Dong. Liu &
Jiang, 2024; W. Liu et al., 2018; Zhang et al., 2023), which is
beneficial to the 48 categories of object detection task used
in this study. YOLOv8’s detection head uses multi-scale
feature maps (CV0, CV1, CV2). It splits into “box” and
“cls” branches, with the “box” branch using DFL for
better bounding box accuracy and the “cls” branch for
class probabilities. This designmerges predictions from all
scales for enhanced performance as shown in Figure 5c.
Therefore, by utilizing YOLO-v8 obj model, this study

leverages the superior speed and performance of the YOLO
network for object detection tasks. The TTC recognition
problem is thus transformed into a more straightforward
handwriting classification or object detection problem,
which reduces the development costs. This approach effec-
tively diminishes the complexity of character recognition
tasks and the need for large datasets. This approach avoids
complex label annotation, enhances the model’s relevance

to the task, and endows high scalability for testing var-
ious methods. This facilitates dataset publication of the
subsequent model performance optimization.

4 VALIDATIONS

4.1 TTC data acquisition and generation

To validate the proposed framework, experiments were
carried out by field datasets collection and model compar-
ison, and two sets of data were established for training the
YOLO-v8 seg-based TTC detection and YOLO-v8 obj-based
TTC recognition model.

4.1.1 TTC detection datasets

To perform a comprehensive data collection, a total of 430
high-resolution (5120 × 5120) TSIs, with focal lengths from
8 to 12 mm using industrial cameras at three highway toll
stations were used to make sure of the diversity of tires.
The pass by vehicle travels at different speeds and dis-
tances, and only the vehicle traveling under 5 m/s and
ranging within 1–1.5 m can be captured, and the focal
lengths were manually changed by the distance. The TSI
datasets encompass different backgrounds, outdoor light-
ing conditions, brand, types, sizes, and wear levels. Then,
the “labelme” API (Russell et al., 2008) was used to accu-
rately annotate four types of TTC regions: DOT Marker
(Class 0), Large Size Mark (Class 1), Inflation Pressure
and Load Index (Class 2), and Small Size Mark (Class
3). Second, these annotations were then converted from
“json” files into a grayscale label image. In addition, data
augmentation methods, including “Horizontal flipping,”
“Vertical flipping,” “Gaussian blur,” “Affine transforma-
tion,” and “random deformation” were adopted to expand
the dataset and the corresponding label by a factor of five
times in 2150 original images and 2150 label images, which
enhanced the variety of the data. The statistical infor-
mation of TTC detection datasets before augmentation is
shown in Figure 12.
In Figure 12, it can be observed that the samples

of “Inflation Pressure and Load Index” are the most
numerous. This is because this category consists of two
different strings: one indicating the tire standard inflation
pressure and the other indicating the information of the
tire standard load index. Therefore, these two different
strings in “Class 2” were segmented and labeled separately
but are considered the same type of TTC. The “Small Size
Mark” is an indispensable mark, but wear has caused
“Class 3” to be missing in a few samples. The “DOT”
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ZHANG et al. 11

F IGURE 1 2 Statistical information of TTC detection datasets.
DOT, Department of Transportation.

F IGURE 13 Comparison of TSCI: (a) TSCI during the TTC
detection process and (b) TSCI data for model training.

mark is only applicable to the United States; therefore, tire
data collected from other countries may miss this mark.
Finally, “Large Size Mark” is not present on every tire,
leading to its lower number of samples.
Since each type of TTC has a considerable number of

samples, the instance segmentation method can be used
to improve the model’s understanding of different types of
TTC regions and improve its accuracy rather than treating
all character blocks as the same category. The datasets
were divided into 8:1:1 for model training, validation, and
testing.

4.1.2 TTC recognition datasets

The TTC recognition datasets, or TSCI, are extracted spon-
taneously from TTC detection datasets, known as TSI. The
TSCI is directly cropped from the original segmentation
labels of TSI after being pre-processed using the proposed
rotation algorithm as shown in Figure 13b. Here, a simple
and high-quality method for generating TTC recognition
datasets is achieved through a designed rotation algorithm.
After rotating and cropping 1376 TSCI data from 430

TSI images, the “labelimg” tool was utilized to annotate
these images and categorize them into different groups.
Specifically, special words like “DOT,” “PRESSURE,” and
“LOAD” were marked as a whole object to decrease train-
ing cost and increase the model’s discernment ability on

F IGURE 14 Statistical information of TTC recognition
datasets.

these special words, while numbers and other characters
were categorized separately. The categories are in follow-
ing orders: “0,” “1,” “2,” “3,” “4,” “5,” “6,” “7,” “8,” “9,” “A,”
“B,” “C,” “D,” “E,” “F,” “G,” “H,” “I,” “J,” “K,” “L,” “M,”
“N,” “O,” “P,” “Q,” “R,” “S,” “T,” “U,” “V,” “W,” “X,” “Y,”
“Z,” “/,” “AT,” “COLD,” “DOT,” “INFLATION,” “KG,”
“KPA,” “LOAD,” “LBS,” “MAX,” “PRESSURE,” “PSI.”
The categories include numerals, alphabets, abbreviations,
and special tire-related terms. The dataset is organized into
these 48 categories, and the statistical information of TTC
recognition datasets is shown in Figure 14. In this study,
plentiful data of numbers and special words have been
collected. Except for a very rare letter, the distribution of
collected letters is relatively uniform. The datasets were
randomly divided with a ratio of 8:1:1 for model training
and evaluation.

4.2 Training results and discussion

4.2.1 TTC detection validation

The training of TTC detection models is performed on a
computer system with Ubuntu system, Intel(R) Xeon(R)
Gold 6248R CPU at 3.00 GHz, Nvidia RTX 4080 GPU,
Python, and PyTorch-based environment. Speed evalua-
tions were performed on i9-13980HX and Nvidia RTX 4050
GPU. The training parameters were set as follows: image
size of 1024, batch size of 16, initial learning rate of 0.01,
and “Adam” optimizer. To build an optimal TTC detection
model, five different parameters size baseline YOLO-v8
official models (X, L, M, S, and N) were trained for 100
epochs without data augmentation. These models were
compared based on mean average precision (mAP), pre-
cision (P), recall (R), time (T), and model size to select
the baseline model that provides the best balance between
performance and speed, as shown in Table 1.
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12 ZHANG et al.

TABLE 1 Comparison of tire text codes (TTC) detection baseline model.

No.

Mean average
precision (50)
(mAP(50))

Precision
(P)

Recall
(R)

Time
(T)/ms

Giga Floating-point
Opeartion Per
Second (GFLOPs)

X 0.6060 0.7274 0.6242 111.0 343.7
L 0.6073 0.7221 0.5973 63.5 220.1
M 0.5840 0.7731 0.5457 47.6 110.0
S 0.5348 0.6872 0.5736 42.2 42.4
N 0.5025 0.6514 0.5315 38.2 12.0
L-P6 0.2479 0.3787 0.3194 63.3 222.3
L-EFF 0.5842 0.7172 0.5452 66.0 228.5
L-Opt 0.8623 0.8812 0.8282 63.5 220.1

F IGURE 15 The mean average precision (50) (mAP(50)) comparison of TTC detection models.

The initial comparison results show that all the models
were converged, with model L achieving the best perfor-
mance, having an mAP(50) of 0.6073 and an acceptable
inference speed of 63.5 ms. Model X exhibited similar
performance but had a slower speed of 111.0 ms. Hence,
model L was chosen for further comparison using dif-
ferent detection heads. Then, another 100 epochs were
carried out to compare YOLO-v8-seg-L-P6 (an additional
detection head outputmodification for small targets, based
on P2-P5) and YOLO-v8-seg-L-Efficient head, aiming to
identify amore computationally effectivemodel. However,
the efficient head showed limited improvement, and P6’s
performance was unsatisfactory. Therefore, the YOLO-
v8-seg-L model is then chosen for 400 epochs training,
repeated three times with online augmentation strategies.
Here, the selected augmentation parameters are image
rotation = +10◦, translate = 0.1, scale = 0.5, flip up = 0.5,
flip left and right = 0.5, copy and paste, and mosaic. The
training results of the optimal TTC detectionmodel on 400
epochs are shown in Figure 15.
The training process stopped early due to the patience

parameter set at 100, indicating no further improvement,

The results show that the YOLO-v8-seg-L model achieved
the best performance with mAP(50) of 0.8632 and an
acceptable speed, making it suitable for subsequent TTC
detection. Figure 16 illustrates the effectiveness of the
optimal model in TTC detection on selected test sam-
ples and demonstrates the image expansion algorithm’s
capability to optimize any imperfection in TTC detection.
In Figure 16, the TTC region area of each sample was
progressively compared to the area of the original label
after detection by themodel and continuous enhancement
through dilation and bounding box generation as marked
by auxiliary mark lines.

4.2.2 TTC recognition validation

Base on the optimal TTC detection model and proposed
highly stable pre-process and rotation methods, the opti-
mal TTC recognition model is further established by
comparing seven models. The datasets were resized to
640, with the Adam optimizer, an initial learning rate
of 0.01, and a batch size of 16. The X, L, M, S, and N
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ZHANG et al. 13

F IGURE 16 Effectiveness of the TTC detection model and enhanced results on selected testing datasets.

TABLE 2 Comparison of TTC recognition baseline model.

No. mAP(50) P R T/ms
Model size
(GFLOPs)

X 0.9557 0.9451 0.9062 13.9 257.6
L 0.9320 0.9665 0.8785 10.4 165.0
M 0.9076 0.9402 0.8323 6.9 78.8
S 0.8269 0.893 0.7912 5.4 28.5
N 0.6917 0.8304 0.6387 5.2 8.1
X-AFPN 0.8310 0.9041 0.7990 18.0 229.5
X-EFF 0.9255 0.9635 0.8803 14.2 270.7
X-Opt 0.9710 0.9682 0.9449 13.9 257.6

baseline models were trained for 100 epochs to compare
mAP and speed performance as shown in Table 2. The ini-
tial comparison shows that the speed differences among
the baselinemodels wereminimal.Model X shows the best
performance in terms of mAP and recall, while model L
shows the highest precision but has low recall, indicat-
ing overfitting. Hence, the Asymptotic Feature Pyramid
Network (AFPN) structure (G. Yang et al., 2023), which
may have stronger multi-scale TTC recognition capabili-
ties and an efficient head, known for its computational

advantages, was further tested on model X baseline over
100 epochs. As shown in Figure 17, the convergence of
models shows that YOLO-v8-obj-X-EFF performs simi-
larly to model L, while YOLO-v8-obj-X-AFPN shows lower
capacity, comparable to model N, which could be due to
scene non-adaptation. TheYOLO-v8-obj-Xmodelwas then
trained for 400 epochs, repeated three times, using online
augmentation strategies. Here, the selected augmentation
parameters included image rotation=+5◦, translate= 0.2,
scale = 0.5, flip up = 0.5, flip left and right = 0.5, copy and
paste, mosaic, and another erasing parameter set to 0.4 to
help the model focus on training targets. After training,
YOLO-v8-obj-X achieved significant results with the high-
estmAPof 0.9710, precision of 0.96827, and recall of 0.9449.
The effectiveness of the optimal model in recognizing

TTC is demonstrated in Figure 18 using selected untrained
samples, which illustrate correctly recognized characters
on various TTCs. The proposed approach efficiently and
accurately recognizes TTCs by leveraging YOLO for object
detection tasks. Transforming of the character recognition
problem reduces complexity, resulting in high accuracy
and recall rates. Combined with TTC detection (63.5 ms)
and pre-processing (20ms), the average speed of the whole
framework is 100.5 ms.
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14 ZHANG et al.

F IGURE 17 mAP(50) comparison of TTC recognition models.

F IGURE 18 Effectiveness of TTC recognition models. DOT, Department of Transportation.
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ZHANG et al. 15

Moreover, transforming the TTC recognition problem
into an object detection task reduces the image quality
requirement for the TSCI. In previous studies, researchers
needed to develop a secondary object detection model
to extract high-quality TSCI from rough TSCI. Yet, the
proposed object detection-based TTC recognition system
can directly perform satisfactory ICR tasks on rotated
raw TSCI. This approach significantly reduces the com-
putational overhead associated with TTC identification,
facilitates edge deployment of the framework on IoT
devices, minimizes pre-processing steps for TTC detec-
tion, and enhances the overall stability of identification
tasks.

5 AUTOMATIC SYSTEM FOR TTC
IDENTIFICATION

5.1 Portable IOT device

In a previous study, due to the limitation of the algorithms,
the roadside devices (binocular devices) were required to
take multiple photographs of the tires in the TTC identi-
fication task (Kazmi et al., 2020). Another study achieved
TTC identification with monocular vision. However, due
to the complexity of the computational models involved,
outdoor deployment on edge devices was not pursued (F.
Gao et al., 2021). Instead, the focus shifted toward a costly
optical scanning method for indoor tire detection appli-
cations (Cheng et al., 2024). On the contrary, this paper
presents a fully automated IoT device, named the “Portable
TTC Identification Device,” designed for outdoor appli-
cation scenarios using monocular vision. The proposed
device is equipped with basic waterproof and splash-proof
features and is designed to be portable, easy to install
and disassemble. To support effective field TTC identi-
fication, the device allows remote adjustment of image
acquisition parameters, continuous triggering and acquisi-
tion, synchronized multi-trigger operations, and includes
a portable power source for outdoor operation, along
with comprehensive program error protection (Peng et al.,
2023).
Figure 19 illustrates the overall appearance and key com-

ponents of the device. It comprises components such as
the light source, camera, trigger radar, and development
board. (1) To realize automatic detection, a 20 Hz trigger
radar of 25 watt is installed, capable of detecting passing
vehicles at around 1.5 m. (2) A lens of 25 million pixels is
utilized to ensure precise imaging within the same work-
ing distance as the radar. (3) An industrial camera powered
by USB (Universal Serial Bus) with a high resolution of
5120 × 5120 was chosen to work seamlessly with the cam-
era underexpose time of 300 ms. (4) A trigger strobe LED

F IGURE 19 Diagram of proposed Internet of Things (IoT)
device.

(Light-Emitting Diode) light of 50watt, capable of emitting
light with a diameter of 1.5 m at 1 m away, is incorpo-
rated to make the tire target in the image clear, facilitating
the proposed algorithm and allowing the system to adapt
to various lighting conditions. Testing showed that with
the assistance of LED light, the device can capture vehi-
cles traveling at a speed of 20 km/h without compromising
the algorithm’s detection accuracy. (5) A Jetson Orin NX
NVIDIA development board of 25 watt with a 150-watt
mobile power source set on the baseplate is exploited to
process the TTC identification framework. The cost of this
device is about $4000.
In practical scenarios, utilizing a trigger mechanism in

the device is imperative to automate the identification pro-
cess. A two-tiered triggering logic is employed to achieve
this. The detailed implementation process is shown in
Figure 20 to elucidate the operational principles. Initially,
when a vehicle enters the testing area, the primary trig-
ger radar detects its presence and counts the number of
vehicles. As the vehicle’s tires enter the detection zone, the
secondary triggering mechanism is activated. During the
preliminary experiment, a pulse trigger was chosen, and
a single pulse was transmitted to the development board
to control the camera for image capture. These images
are then transmitted to the development board for edge
computing using the previously proposed deep-learning
framework. The system continuously monitors for new
vehicles to test. If no new vehicle is detected, it processes
to the next axle of the current vehicle until a new target
vehicle is identified. A 2-s buffer period is incorporated
to accommodate vehicles with longer axle distances. If no
new tire targets are detected within this period, the sys-
tem saves the recognition results for all axles of the vehicle
and simultaneously checks for new incoming vehicles. The
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16 ZHANG et al.

F IGURE 20 Workflow of IoT device.

F IGURE 2 1 Proposed IoT device for field test.

workflow logic outlined in this paper effectively meets the
requirements for TTC recognition in various operational
scenarios.

5.2 Field test of the proposed system

A field test was conducted to verify the proposed auto-
matic TTC identification system, which integrated a deep
learning-based TTC identification framework compiled in
Python. The setup of the field test is shown in Figure 21. A
laptop was used to enable image-based secondary trigger-
ing of the IoT device, control data acquisition, and display
images from the device. The testing platform was posi-
tioned on the roadside on a sunny day with good lighting

condition to perform TTC identification on passing vehi-
cles. All tested vehicles are traveling at a speed of 5 m/s
and within a distance between 1 and 1.5 m. The lens was
adjusted to 1×1 m view at a distance of 1 m. The IoT device
was on a tripodwith aheight of 50 cm.The display platform
was a laptop with a CPU of i5-1135G7/16G.
The test results show that the computational speed of

the integrated deep learning framework on a 16 GB Jet-
son Orin NXwith amobile power source is approximately:
TTC detection took about 100 ms, TTC pre-process and
rotation took 20 ms, and TTC recognition averaged 80 ms,
resulting in a total average of roughly 200 ms.
This speed performance is superior to Kazmi’s 1000–

2000 ms (Kazmi et al., 2019, 2020), Gao’s 407 ms (F. Gao
et al., 2021) and Cheng’s 9000 ms (Cheng et al., 2024). The
results demonstrate that the system is efficient and reliable
for industrial applications, with significant potential to
meet real-time detection requirements in many scenarios.
Figure 22 illustrates the field test results of the proposed
framework on samples that were untrained during the
model establishment.
In Figure 22, the green characters represent the tar-

gets redundantly identified, and the red characters indicate
targets incorrectly identified. The results show that the
TTC region detection model can accurately detect the TTC
region without generating incorrect or superfluous tar-
gets. However, the TTC recognition model exhibits some
deficiencies in recognition performance. This study argues
that excessive “Dilation and Bounding box generation”
may be the main cause of the redundant identification
of green characters. Adjusting parameters could reduce
the size of the TTC target region and minimize exces-
sive recognition. The incorrectly identified red characters
are attributed to inherent challenges in recognizing TTCs
that are worn, tilted, small, or densely packed, highlight-
ing the need for more extensive datasets to improve the
model. Nevertheless, the TTC recognition model still pro-
vides valuable results for the interpretation of four types of
tire text code.

6 REMARKS

The proposed TTC identification system provides a
practical, plug-and-play solution that can be readily
adopted by engineers in various transportation scenarios.
By installing the IoT device at toll stations, bridges, or
roadside lanes and leveraging its built-in triggering mech-
anism, the system can automatically capture and process
tire images on the edge, and relay recognized TTCs to a
central operations platform in real time. Engineers can
then examine the tire information for traffic operations
management and maintenance planning. In additional,
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ZHANG et al. 17

F IGURE 22 Field test results of the proposed framework on selected samples. DOT, Department of Transportation.

every tire has a unique serial number, and the recognized
incomplete sequence can be cross-referenced with a
tire database to assess character-missing rates, thereby
estimating tire abrasion conditions for pass by drivers.
Furthermore, in the non-contact weighing field (J. Feng
et al., 2024; K. Gao et al., 2024), precise tire character data
can significantly improve the accuracy of vehicle weight
estimations, making it a valuable upgrade for existing
non-contact weigh-in-motion methods. It should be noted
that one device can be only used for one traffic lane,
blocked vehicle cannot be tested, and toll station can be
a solution for multi-monitoring with multi-devices. The
proposed system can onlymonitor vehicles at 1–1.5 m away
with vehicle speed under 5 m/s. More advanced camera
and autofocus lens could provide better monitoring view
with further distance.
Compared in Table 3, the proposed approach stands

out in speed (0.2 s per tire), recognition accuracy (96.82%
on four TTC categories), ease of deployment (a sin-
gle monocular IoT camera), and production method
of datasets. Different from other methods that either
require multi-camera setups, expensive 3-D camera con-
sole, extensive pre-processing, or are too slow for practical
roadside deployment, this framework offers a current
state-of-the-art outdoor solution for TTC identification.
Additionally, further enhancements such as enlarging
the dataset coverage and combining language model-
based TTC restore for extreme wear or heavily faded

characters would help refine the accuracy. Moreover,
a super-resolution-based method (García-Aguilar et al.,
2023) can be adopted to improve the segmentation
result.

7 CONCLUSION

This study proposed an efficient automatic TTC identifi-
cation framework integrated into a “Portable TTC Iden-
tification Device.” The training strategies and the dataset
production are straightforward to implement, making
the framework easy to deploy, propagate, and iteratively
upgraded.

1. An instance segmentation method is adequately used
to detect four types of TTC regions at a pixel level. The
optimal YOLO-v8-seg-L model is selected, demonstrat-
ing the best performance with an mAP(50) of 0.8623
and a speed of 63.5ms, effectively preventing redundant
TTC region detection and supporting the subsequent
pre-processing and recognition of detected TTC region.

2. A straightforward TTC rotation algorithm is designed
to perform general TTC orientation correction by deter-
mining each TTC region’s quadrant and rotation angle
relative to the y-axis. This algorithm integrates seam-
lessly with the proposed TTC detection method and
reduces the requirement of model performance and
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TABLE 3 Comparison of tire text detection systems.

Method Model

Inference
speed per
tire

Recognition
accuracy Rotation Device Dataset Object

Kazmi
Outdoor

Intelligent
character
recognition (ICR)
detection

Light
convolutional
neural
network
(CNN)
with Rectified
Linear Unit
(ReLU)

1–2 s 80.0%
on
Department
of Transporta-
tion (DOT)
only

√ Binocular
Internet of
Things (IoT)
camera

1) “DOT”/700k 1 TTC

Gao
Outdoor

ICR
detection

YOLOv4
+CRAFT
+MORANv2

0.4 s 94.5%
on DOT
only

√ Monocular
industrial
camera

1) TID/NA
2) TCCID NA
3) RTCD/NA
Not available

1 TTC

Cheng
Indoor

ICR
detection

CTPN
+CRNN

3–9 s >96%
on
4 TTCs

√ 3D-camera with
rotary console

1) Tire/1.8k
2) TTC/1k
Not available

4 TTCs

Proposed
method
Outdoor

ICR
segmentation
+detection

YOLOv8-
Segmentation
+YOLOv8-
Detection

0.2 s 96.82%
on
4 TTCs

√ Monocular
IoT camera

1) Tire/430
2) TTC/1.3k
Fully available

4 TTCs

Note: Kazmi (Kazmi et al., 2020); Gao (F. Gao et al., 2021); Cheng (Cheng et al., 2024).

datasets coverage, offering stable performance and aid-
ing in the production of TSCI datasets that are very
rare.

3. The optimal YOLO-v8-obj-X model with an mAP(50) of
0.9710 and a speed of 13.9 ms was selected for recogniz-
ing characters of four types of TTC with high accuracy,
eliminating the need for secondary TTC region detec-
tion and re-certification. Finally, a fully integrated
automatic IoT device is developed to cost-effectively
compass the proposed TTC identification framework in
real scene applications.

However, error missing and redundancy in TTC iden-
tification still occur occasionally. Additional datasets are
needed to enhance model performance, and other base-
linemodels can be further explored for potential outcomes.
Implementing mechanisms like “Self-Attention,” “Class-
Attention,” or “RoI” may improve the model’s focusing
ability on relevant and rare targets and reduce redundancy
and error detections. While the system shows promise, its
deployment and performance in more diverse and chal-
lenging environments (e.g., high-speed vehicles, different
lighting conditions) remain to be thoroughly tested. Future
work could also include langue model-based semantic
analysis or restoration of TTC recognition results.
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